Healthy Long-Lived Human Beings—Working on Life Stages to Break the Limitation of Human Lifespans
Abstract
:Simple Summary
Abstract
1. Introduction—Breaking the Limitation on the Longevity of Human Beings
2. Evidence of Long Lifespans with Variations to Stages of Life Cycles of Different Organisms That Support the PLOSP
2.1. The Basic Life Cycle and Lifespan Foundation in Single Cell Organisms
2.2. The Limitations and Breaking the Limitations to the Life Stages in the Lifespan of Plants
2.3. The Life Cycle of Insects and Variations to the Stages of Their Lifespans
2.4. The Variation of Lifespan Caused by the Longer Duration of Body Development and Reproductivities Stages in Animals
2.5. Sex Difference and the Short Lifespan of Males
2.6. Different Organisms Achieve a Long Life with Different Elongated Stages
3. The Current Research Has Not Followed the PLOSP for Organisms
3.1. The Aging Stage Has Been the Major Focus in the Study of Longevity for Humans
3.2. Lessons from Oophorectomy in Females
3.3. Lessons from Castration and Eunuchs in Males
3.4. Unrevealed Issues in the Transition Period from One Stage to the Next in the Life Cycle
4. The PLOSP Can Be Demonstrated by Realizing the Extreme Length of the Proper Stages of the Life Cycle
4.1. Extension of Gestation Stage May Be Useful
4.2. Stage from Birth to Maturity of Reproductive Activity
4.3. Stage from Sexual Maturity to Termination of Reproductivity
4.4. Stage of Aging—From End of Reproductivity to the End of Life
4.5. New Technologies to Assist the Elongation of Lifespan
5. Challenges and Testing of the PLOSP
5.1. Challenges for the Extension of Lifespan
5.2. Considerations for the Testing of the PLOSP
5.3. Proposed Potential Studies to Indirectly Test PLOSP
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Appiah, D.; Nwabuo, C.C.; Ebong, I.A.; Wellons, M.F.; Winters, S.J. Trends in Age at Natural Menopause and Reproductive Life Span Among US Women, 1959–2018. JAMA 2021, 325, 1328–1330. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, M. COVID-19 and the growing disadvantage in US life expectancy. BMJ 2021, 373, n1530. [Google Scholar] [CrossRef]
- Garratt, M.; Try, H.; Brooks, R.C. Access to females and early life castration individually extend maximal but not median lifespan in male mice. Geroscience 2021, 43, 1437–1446. [Google Scholar] [CrossRef] [PubMed]
- Sugrue, V.J.; Zoller, J.A.; Narayan, P.; Lu, A.T.; Ortega-Recalde, O.J.; Grant, M.J.; Bawden, C.S.; Rudiger, S.R.; Haghani, A.; Bond, D.M.; et al. Castration delays epigenetic aging and feminizes DNA methylation at androgen-regulated loci. Elife 2021, 10, e64932. [Google Scholar] [CrossRef]
- Min, K.J.; Lee, C.K.; Park, H.N. The lifespan of Korean eunuchs. Curr. Biol. 2012, 22, R792–R793. [Google Scholar] [CrossRef] [Green Version]
- Pezaro, C.; Omlin, A.; Lorente, D.; de Bono, J. Management of patients with castration-resistant disease. Hematol. Oncol. Clin. N. Am. 2013, 27, 1243–1260. [Google Scholar] [CrossRef]
- Bame, M.; Pentiak, P.A.; Needleman, R.; Brusilow, W.S. Effect of sex on lifespan, disease progression, and the response to methionine sulfoximine in the SOD1 G93A mouse model for ALS. Gend. Med. 2012, 9, 524–535. [Google Scholar] [CrossRef]
- Pyrkov, T.V.; Avchaciov, K.; Tarkhov, A.E.; Menshikov, L.I.; Gudkov, A.V.; Fedichev, P.O. Longitudinal analysis of blood markers reveals progressive loss of resilience and predicts human lifespan limit. Nat. Commun. 2021, 12, 2765. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.H.; Sibly, R.M. Life-history evolution under a production constraint. Proc. Natl. Acad. Sci. USA 2006, 103, 17595–17599. [Google Scholar] [CrossRef] [Green Version]
- Buenrostro, J.D.; Wu, B.; Litzenburger, U.M.; Ruff, D.; Gonzales, M.L.; Snyder, M.P.; Chang, H.Y.; Greenleaf, W.J. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 2015, 523, 486–490. [Google Scholar] [CrossRef]
- Kolter, R.; Siegele, D.A.; Tormo, A. The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 1993, 47, 855–874. [Google Scholar] [CrossRef] [PubMed]
- Gruninger, R.J.; Puniya, A.K.; Callaghan, T.M.; Edwards, J.E.; Youssef, N.; Dagar, S.S.; Fliegerova, K.; Griffith, G.W.; Forster, R.; Tsang, A.; et al. Anaerobic fungi (phylum Neocallimastigomycota): Advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol. Ecol. 2014, 90, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caswell, H.; Salguero-Gómez, R. Age, stage and senescence in plants. J. Ecol. 2013, 101, 585–595. [Google Scholar] [CrossRef]
- Hackney, J.F.; Cherbas, P. Injury response checkpoint and developmental timing in insects. Fly Austin 2014, 8, 226–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, A.A.; Shokhirev, M.N.; Shoshitaishvili, B. Revamping the evolutionary theories of aging. Ageing Res. Rev. 2019, 55, 100947. [Google Scholar] [CrossRef]
- Thorarinsdóttir, G.; Steingrímsson, S.A. Size and age at sexual maturity and sex ratio in ocean quahog Arctica islandica (Linneaus, 1767) of north-west Iceland. J. Shellfish Res. 2000, 19, 943–947. [Google Scholar]
- Tuatara: In Wikipedia. Available online: https://en.wikipedia.org/wiki/Tuatara (accessed on 11 March 2022).
- Wanamaker, J.; Alan, D.; Heinemeier, J.; Scourse, J.D.; Richardson, C.A.; Butler, P.G.; Eiriksson, J.; Knudsen, K.L. Very Long-Lived Mollusks Confirm 17th Century AD Tephra-Based Radiocarbon Reservoir Ages for North Icelandic Shelf Waters (PDF). Radiocarbon 2008, 50, 399–412. [Google Scholar] [CrossRef] [Green Version]
- Koi Hanako: Oldest Koi Fish with Longest Recorded Lifespan. Available online: https://www.fishlaboratory.com/fish/koi-hanako-longest-living-fish-ever/ (accessed on 11 March 2022).
- Eckhardt, F.; Kappeler, P.M.; Kraus, C. Highly variable lifespan in an annual reptile, Labord’s chameleon (Furcifer labordi). Sci. Rep. 2017, 7, 11397. [Google Scholar] [CrossRef] [PubMed]
- Hendry, A.P.; Morbey, Y.E.; Berg, O.K.; Wenburg, J.K. Adaptive variation in senescence: Reproductive lifespan in a wild salmon population. Proc. Biol. Sci. 2004, 271, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perry, K. 10 Animals Who Die Immediately after Mating. Available online: https://www.ranker.com/list/animals-who-die-after-mating/Kellen-perry (accessed on 11 March 2022).
- Johnson, A.A.; Stolzing, A. The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 2019, 18, e13048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nourmoussavi, M.; Pansegrau, G.; Popesku, J.; Hammond, G.L.; Kwon, J.S.; Carey, M.S. Ovarian ablation for premenopausal breast cancer: A review of treatment considerations and the impact of premature menopause. Cancer Treat Rev. 2017, 55, 26–35. [Google Scholar] [CrossRef]
- Shoupe, D.; Parker, W.H.; Broder, M.S.; Liu, Z.; Farquhar, C.; Berek, J.S. Elective oophorectomy for benign gynecological disorders. Menopause 2007, 14, 580–585. [Google Scholar] [CrossRef]
- Ley, S.H.; Li, Y.; Tobias, D.K.; Manson, J.E.; Rosner, B.; Hu, F.B.; Rexrode, K.M. Duration of Reproductive Life Span, Age at Menarche, and Age at Menopause Are Associated with Risk of Cardiovascular Disease in Women. J. Am. Heart Assoc. 2017, 6, e006713. [Google Scholar] [CrossRef] [Green Version]
- Benedusi, V.; Martini, E.; Kallikourdis, M.; Villa, A.; Meda, C.; Maggi, A. Ovariectomy shortens the lifespan of female mice. Oncotarget 2015, 6, 10801–108011. [Google Scholar] [CrossRef] [Green Version]
- Arriola Apelo, S.I.; Lin, A.; Brinkman, J.A.; Meyer, E.; Morrison, M.; Tomasiewicz, J.L.; Pumper, C.P.; Baar, E.L.; Richardson, N.E.; Alotaibi, M.; et al. Ovariectomy uncouples lifespan from metabolic health and reveals a sex-hormone-dependent role of hepatic mTORC2 in aging. Elife 2020, 9, e56177. [Google Scholar] [CrossRef]
- Mason, J.B.; Cargill, S.L.; Anderson, G.B.; Carey, J.R. Transplantation of young ovaries to old mice increased lifespan in transplant recipients. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64, 1207–1211. [Google Scholar] [CrossRef] [Green Version]
- Mason, J.B.; Parkinson, K.C.; Habermehl, T.L. Orthotopic Ovarian Transplantation Procedures to Investigate the Life- and Health-span Influence of Ovarian Senescence in Female Mice. J. Vis. Exp. 2018, 132, 56638. [Google Scholar] [CrossRef]
- Chataigneau, T.; Schini-Kerth, V.B. Vascular effects of ovariectomy and chronic oestrogen treatment in rats: Controversy or experimental protocol diversity? Br. J. Pharmacol. 2005, 144, 161–163. [Google Scholar] [CrossRef] [Green Version]
- Robertson, O.H. Prolongation of the lifespan of kokanee salmon (oncorhynchus nerka kennerlyi) by castration before beginning of gonad development. Proc. Natl. Acad. Sci. USA 1961, 47, 609–621. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, F.; Nishi, H.; Misumi, K.; Fujiki, M. Serum cross-linked N-telopeptide of type I collagen across the canine life span: An investigation in intact and neutered male and female dogs. Res. Vet. Sci. 2021, 136, 609–615. [Google Scholar] [CrossRef]
- Molteni, R.A. Placental growth and fetal/placental weight (F/P) ratios throughout gestation—Their relationship to patterns of fetal growth. Semin. Perinatol. 1984, 8, 94–100. [Google Scholar] [PubMed]
- Benyi, E.; Sävendahl, L. The Physiology of Childhood Growth: Hormonal Regulation. Horm. Res. Paediatr. 2017, 88, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Veldhuis, J.D.; Roemmich, J.N.; Richmond, E.J.; Rogol, A.D.; Lovejoy, J.C.; Sheffield-Moore, M.; Mauras, N.; Bowers, C.Y. Endocrine control of body composition in infancy, childhood, and puberty. Endocr. Rev. 2005, 26, 114–146. [Google Scholar] [CrossRef] [PubMed]
- Talaulikar, V. Menopause transition: Physiology and symptoms. Best Pract. Res. Clin. Obstet. Gynaecol. 2022, 16. [Google Scholar] [CrossRef]
- Ayoola, A.B.; Zandee, G.L.; Adams, Y.J. Women’s Knowledge of Ovulation, the Menstrual Cycle, and Its Associated Reproductive Changes. Birth 2016, 43, 255–262. [Google Scholar] [CrossRef]
- Gomez-Salinero, J.M.; Itkin, T.; Rafii, S. Developmental angiocrine diversification of endothelial cells for organotypic regeneration. Dev. Cell 2021, 56, 3042–3051. [Google Scholar] [CrossRef] [PubMed]
- Garreta, E.; Kamm, R.D.; Chuva de Sousa Lopes, S.M.; Lancaster, M.A.; Weiss, R.; Trepat, X.; Hyun, I.; Montserrat, N. Rethinking organoid technology through bioengineering. Nat. Mater. 2021, 20, 145–155. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, W. Healthy Long-Lived Human Beings—Working on Life Stages to Break the Limitation of Human Lifespans. Biology 2022, 11, 656. https://doi.org/10.3390/biology11050656
Gu W. Healthy Long-Lived Human Beings—Working on Life Stages to Break the Limitation of Human Lifespans. Biology. 2022; 11(5):656. https://doi.org/10.3390/biology11050656
Chicago/Turabian StyleGu, Weikuan. 2022. "Healthy Long-Lived Human Beings—Working on Life Stages to Break the Limitation of Human Lifespans" Biology 11, no. 5: 656. https://doi.org/10.3390/biology11050656
APA StyleGu, W. (2022). Healthy Long-Lived Human Beings—Working on Life Stages to Break the Limitation of Human Lifespans. Biology, 11(5), 656. https://doi.org/10.3390/biology11050656