Modelling 5-km Running Performance on Level and Hilly Terrains in Recreational Runners
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
2.4. Level and Hilly 5-km Running Maximal Tests
2.5. CoT and Biomechanical Parameters
2.6. Repetition Maximum Test (1RM)
2.7. Anthropometric Assessments
2.8. Maximal Oxygen Consumption Test (VO2max)
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blythe, D.A.J.; Király, F.J. Prediction and Quantification of Individual Athletic Performance of Runners. PLoS ONE 2016, 11, e0157257. [Google Scholar] [CrossRef]
- Clermont, C.A.; Phinyomark, A.; Osis, S.T.; Ferber, R. Classification of higher- and lower-mileage runners based on running kinematics. J. Sport Heal. Sci. 2017, 8, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Tartaruga, M.P.; Brisswalter, J.; Peyré-Tartaruga, L.A.; Ávila, A.O.V.; Alberton, C.L.; Coertjens, M.; Cadore, E.; Tiggemann, C.L.; Silva, E.M.; Kruel, L.F.M. The Relationship Between Running Economy and Biomechanical Variables in Distance Runners. Res. Q. Exerc. Sport 2012, 83, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Musgjerd, T.; Anason, J.; Rutherford, D.; Kernozek, T.W. Effect of Increasing Running Cadence on Peak Impact Force in an Outdoor Environment. Int. J. Sports Phys. Ther. 2021, 16, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.R., Jr.; Howley, E.T. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med. Sci. Sports Exerc. 2000, 32, 70–84. [Google Scholar] [CrossRef] [PubMed]
- Paavolainen, L.; Häkkinen, K.; Hämäläinen, I.; Nummela, A.; Rusko, H. Explosive-strength training improves 5-km running time by improving running economy and muscle power. J. Appl. Physiol. 1999, 86, 1527–1533. [Google Scholar] [CrossRef] [PubMed]
- Paavolainen, L.; Nummela, A.; Rusko, H. Muscle power factors and VO2max as determinants of horizontal and uphill running performance. Scand. J. Med. Sci. Sports 2000, 10, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Kyrolainen, H.; Kivelä, R.; Koskinen, S.; McBride, J.; Andersen, J.L.; Takala, T.; Sipila, S.; Komi, P.V. Interrelationships between Muscle Structure, Muscle Strength, and Running Economy. Med. Sci. Sports Exerc. 2003, 35, 45–49. [Google Scholar] [CrossRef]
- Dellagrana, R.A.; Guglielmo, L.G.; Santos, B.V.; Hernandez, S.G.; da Silva, S.G.; de Campos, W. Physiological, Anthropometric, Strength, and Muscle Power Characteristics Correlates With Running Performance in Young Runners. J. Strength Cond. Res. 2015, 29, 1584–1591. [Google Scholar] [CrossRef]
- Forsyth, J.; Burt, D.; Ridley, F.; Mann, C. Using lactate threshold to predict 5-km treadmill running performance in veteran athletes. Biol. Sport 2017, 3, 233–237. [Google Scholar] [CrossRef]
- Minetti, A.E.; Ardigò, L.P.; Saibene, F. Mechanical determinants of the minimum energy cost of gradient running in humans. J. Exp. Biol. 1994, 195, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Townshend, A.D.; Worringham, C.J.; Stewart, I.B. Spontaneous Pacing during Overground Hill Running. Med. Sci. Sports Exerc. 2010, 42, 160–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khassetarash, A.; Vernillo, G.; Martinez, A.; Baggaley, M.; Giandolini, M.; Horvais, N.; Millet, G.Y.; Edwards, W.B. Biomechanics of graded running: Part II—Joint kinematics and kinetics. Scand. J. Med. Sci. Sports 2020, 30, 1642–1654. [Google Scholar] [CrossRef]
- Dewolf, A.H.; Peñailillo, L.E.; Willems, P.A. The rebound of the body during uphill and downhill running at different speeds. J. Exp. Biol. 2016, 219, 2276–2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vernillo, G.; Giandolini, M.; Edwards, W.B.; Morin, J.-B.; Samozino, P.; Horvais, N.; Millet, G. Biomechanics and Physiology of Uphill and Downhill Running. Sports Med. 2016, 47, 615–629. [Google Scholar] [CrossRef]
- Alvero-Cruz, J.R.; Parent Mathias, V.; Garcia Romero, J.; Carrillo de Albornoz-Gil, M.; Benítez-Porres, J.; Ordoñez, F.J.; Knechtle, B. Prediction of performance in a short trail running race: The role of body composition. Front. Physiol. 2019, 1306. [Google Scholar] [CrossRef]
- Ehrström, S.; Tartaruga, M.P.; Easthope, C.S.; Brisswalter, J.; Morin, J.-B.; Vercruyssen, F. Short Trail Running Race. Med. Sci. Sports Exerc. 2018, 50, 580–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheer, V.; Basset, P.; Giovanelli, N.; Vernillo, G.; Millet, G.P.; Costa, R.J.S. Defining Off-road Running: A Position Statement from the Ultra Sports Science Foundation. Endoscopy 2020, 41, 275–284. [Google Scholar] [CrossRef]
- Peyré-Tartaruga, L.A.; Dewolf, A.H.; di Prampero, P.E.; Fábrica, G.; Malatesta, D.; Minetti, A.E.; Zamparo, P. Mechanical work as a (key) determinant of energy cost in human locomotion: Recent findings and future directions. Exp. Physiol. 2021, 106, 1897–1908. [Google Scholar] [CrossRef]
- USA T& F. USA Masters Age Grading; Track & Field, Inc.: Simi Valley, CA, USA.
- Tartaruga, M.P.; Peyré-Tartaruga, L.; Coertjens, M.; De Medeiros, M.; Kruel, L. The influence of the allometric scale on the relationship between running economy and biomechanical variables in distance runners. Biol. Sport 2009, 26, 263–273. [Google Scholar] [CrossRef] [Green Version]
- Saibene, F.; Minetti, A.E. Biomechanical and physiological aspects of legged locomotion in humans. Eur. J. Appl. Physiol. 2003, 88, 297–316. [Google Scholar] [CrossRef] [PubMed]
- Peyré-Tartaruga, L.A.; Coertjens, M. Locomotion as a Powerful Model to Study Integrative Physiology: Efficiency, Economy, and Power Relationship. Front. Physiol. 2018, 9, 1789. [Google Scholar] [CrossRef] [PubMed]
- Pavei, G.; Seminati, E.; Cazzola, D.; Minetti, A.E. On the Estimation Accuracy of the 3D Body Center of Mass Trajectory during Human Locomotion: Inverse vs. Forward Dynamics. Front. Physiol. 2017, 8, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavanagh, P.R.; Kram, R. Stride length in distance running. Med. Sci. Sports Exerc. 1989, 21, 467–479. [Google Scholar] [CrossRef]
- Leitch, J.; Stebbins, J.; Paolini, G.; Zavatsky, A.B. Identifying gait events without a force plate during running: A comparison of methods. Gait Posture 2011, 33, 130–132. [Google Scholar] [CrossRef]
- Brown, L.E.; Weir, J.P. ASEP procedures recommendation I: Accurate assessment of muscular strength and power. J. Exerc. Physiol. Online 2001, 4, 1–21. [Google Scholar]
- Petroski, E.L.; Neto, C.S.P. Validação de equações antropométricas para a estimativa da densidade corporal em mulheres. Rev. Bras. De Ativ. Física Saúde 1995, 1, 65–73. [Google Scholar]
- Wahrlich, V.; Anjos, L.; Going, S.B.; Lohman, T.G. Validation of the VO2000 calorimeter for measuring resting metabolic rate. Clin. Nutr. 2006, 25, 687–692. [Google Scholar] [CrossRef]
- Howley, E.T.; Bassett, D.R.; Welch, H.G. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sports Exerc. 1995, 27. [Google Scholar] [CrossRef]
- Lanferdini, F.J.; Silva, E.S.; Boeno, F.P.; Sonda, F.C.; Rosa, R.G.; Quevedo, R.; Baroni, B.M.; Reischak-Oliveira, A.; Vaz, M.A.; Peyré-Tartaruga, L.A. Effect of photobiomodulation therapy on performance and running economy in runners: A randomized double-blinded placebo-controlled trial. J. Sports Sci. 2021, 39, 1348–1355. [Google Scholar] [CrossRef]
- Wasserman, K.; Whipp, B.J.; Koyl, S.N.; Beaver, W.L. Anaerobic threshold and respiratory gas exchange during exercise. J. Appl. Physiol. 1973, 35, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Fagundes, A.D.O.; Monteiro, E.P.; Franzoni, L.T.; Fraga, B.S.; Pantoja, P.D.; Fischer, G.; Peyré-Tartaruga, L.A. Effects of load carriage on physiological determinants in adventure racers. PLoS ONE 2017, 12, e0189516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandford, G.; Rogers, S.; Sharma, A.P.; Kilding, A.E.; Ross, A.; Laursen, P.B. Implementing Anaerobic Speed Reserve Testing in the Field: Validation of vVO2max Prediction From 1500-m Race Performance in Elite Middle-Distance Runners. Int. J. Sports Physiol. Perform. 2019, 14, 1147–1150. [Google Scholar] [CrossRef]
- Field, A. Multiple regression using SPSS/PASW (course handout material). In Discovering Statistics Using SPSS: And Sex and Drugs and Rock “n” Roll; SAGE: Newcastle upon Tyne, UK, 2009. [Google Scholar]
- Lanferdini, F.J.; Silva, E.S.; Machado, E.; Fischer, G.; Peyré-Tartaruga, L.A. Physiological Predictors of Maximal Incremental Running Performance. Front. Physiol. 2020, 11, 979. [Google Scholar] [CrossRef]
- Lemire, M.; Falbriard, M.; Aminian, K.; Millet, G.P.; Meyer, F. Level, Uphill, and Downhill Running Economy Values Are Correlated Except on Steep Slopes. Front. Physiol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Stratton, E.; O’Brien, B.J.; Harvey, J.; Blitvich, J.; McNicol, A.J.; Janissen, D.; Paton, C.; Knez, W. Treadmill Velocity Best Predicts 5000-m Run Performance. Laryngo-Rhino-Otologie 2008, 30, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Nimmerichter, A.; Novak, N.; Triska, C.; Prinz, B.; Breese, B.C. Validity of Treadmill-Derived Critical Speed on Predicting 5000-Meter Track-Running Performance. J. Strength Cond. Res. 2017, 31, 706–714. [Google Scholar] [CrossRef] [PubMed]
- Billat, V.L.; Slawinski, J.; Bocquet, V.; Demarle, A.; Lafitte, L.; Chassaing, P.; Koralsztein, J.-P. Intermittent runs at the velocity associated with maximal oxygen uptake enables subjects to remain at maximal oxygen uptake for a longer time than intense but submaximal runs. Eur. J. Appl. Physiol. 2000, 81, 188–196. [Google Scholar] [CrossRef]
- Brisswalter, J.; Legros, P.; Durand, M. Running economy, preferred step length correlated to body dimensions in elite middle distance runners. J. Sports Med. Phys. Fit. 1996, 36, 8. [Google Scholar]
- Batliner, M.E.; Kipp, S.; Grabowski, A.M.; Kram, R.; Byrnes, W.C. Does Metabolic Rate Increase Linearly with Running Speed in all Distance Runners? Sports Med. Int. Open 2017, 2, E1–E8. [Google Scholar] [CrossRef] [Green Version]
- Grant, S.; Craig, I.; Wilson, J.; Aitchison, T. The relationship between 3 km running performance and selected physiological variables. J. Sports Sci. 1997, 15, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.R.; Cavanagh, P.R. Relationship between distance running mechanics, running economy, and performance. J. Appl. Physiol. 1987, 63, 1236–1245. [Google Scholar] [CrossRef] [PubMed]
- da Rosa, R.G.; Oliveira, H.B.; Gomeñuka, N.A.; Masiero, M.P.B.; Da Silva, E.S.; Zanardi, A.P.J.; Carvalho, A.R.; Schons, P.; Peyré-Tartaruga, L.A. Landing-Takeoff Asymmetries Applied to Running Mechanics: A New Perspective for Performance. Front. Physiol. 2019, 10, 415. [Google Scholar] [CrossRef]
- Boullosa, D.; Esteve-Lanao, J.; Casadom, A.; Peyré-Tartaruga, L.A.; da Rosa, R.G.; del Coso, J. Factors Affecting Training and Physical Performance in Recreational Endurance Runners. Sports 2020, 8, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balducci, P.; Clémençon, M.; Trama, R.; Blache, Y.; Hautier, C. Performance Factors in a Mountain Ultramarathon. Laryngo-Rhino-Otologie 2017, 38, 819–826. [Google Scholar] [CrossRef]
- Boullosa, D.; Del Rosso, S.; Behm, D.G.; Foster, C. Post-activation potentiation (PAP) in endurance sports: A review. Eur. J. Sport Sci. 2018, 18, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Blagrove, R.; Howatson, G.; Hayes, P.R. Use of loaded conditioning activities to potentiate middle- and long-distance performance: A narrative review and practical applications. J. Strength Cond. Res. 2019, 33, 2288–2297. [Google Scholar] [CrossRef]
- Del Rosso, S.; Barros, E.; Tonello, L.; Oliveira-Silva, I.; Behm, D.G.; Foster, C.; Boullosa, D.A.; Piacentini, M.F. Can Pacing Be Regulated by Post-Activation Potentiation? Insights from a Self-Paced 30 km Trial in Half-Marathon Runners. PLoS ONE 2016, 11, e0150679. [Google Scholar] [CrossRef] [Green Version]
- Conley, D.L.; Krahenbuhl, G.S. Running economy and distance running performance of highly trained athletes. Med. Sci. Sports Exerc. 1980, 12, 357–360. [Google Scholar] [CrossRef]
- Cunningham, L.N. Relationship of Running Economy, Ventilatory Threshold, and Maximal Oxygen Consumption to Running Performance in High School Females. Res. Q. Exerc. Sport 1990, 61, 369–374. [Google Scholar] [CrossRef]
- Black, M.I.; Allen, S.J.; Forrester, S.E.; Folland, J.P. The Anthropometry of Economical Running. Med. Sci. Sports Exerc. 2019, 52, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Garnier, Y.; Lepers, R.; Assadi, H.; Paizis, C. Cardiorespiratory Changes During Prolonged Downhill Versus Uphill Treadmill Exercise. Laryngo-Rhino-Otologie 2019, 41, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Olher, R.R.; Sales, M.M.; Sousa, C.V.; Sotero, R.C.; Madrid, B.; Cunha, R.R.; Moraes, M.R.; Simões, H.G. Heart rate cost of running in track estimates velocity associated with maximal oxygen uptake. Physiol. Behav. 2019, 205, 33–38. [Google Scholar] [CrossRef] [PubMed]
Mean | SD | Minimum | Maximum | |
---|---|---|---|---|
Age (years) | 26.1 | 6.9 | 19.0 | 44.0 |
Body Mass (kg) | 73.9 | 9.5 | 55.8 | 97.7 |
Height (m) | 1.75 | 0.06 | 1.58 | 1.81 |
Body Fat (%) | 8.0 | 2.8 | 3.8 | 12.7 |
BMI (kg·m−2) | 24.0 | 2.3 | 19.8 | 29.8 |
LLL (cm) | 92.8 | 2.9 | 89 | 98 |
5-km level performance (min:s) | 21:53 | 2:33 | 16:39 | 27:16 |
5-km hilly performance (min:s) | 25:4 | 2:34 | 19:59 | 29:15 |
Maximal lower limb strength (kg) | 231.2 | 64.7 | 120 | 335 |
Relative strength (kg·body mass−1) | 3.1 | 0.7 | 1.68 | 4.05 |
Variables | Level Performance vs. Level Treadmill Tests | Hilly Performance vs. Incline Treadmill Tests | ||||||
---|---|---|---|---|---|---|---|---|
Mean | SD | r | p | Mean | SD | r | p | |
Stride Frequency (stride·s−1) | 1.38 | 0.062 | −0.527 | 0.017 | 1.40 | 0.62 | −0.430 | 0.058 |
Stride Length (m) | 2.01 | 0.092 | 0.500 | 0.025 | 1.97 | 0.089 | 0.410 | 0.073 |
Contact Time (s) | 0.003 | 0.022 | 0.270 | 0.249 | 0.309 | 0.019 | 0.034 | 0.886 |
Aerial Time (s) | 0.620 | 0.022 | 0.129 | 0.588 | 0.047 | 0.022 | 0.066 | 0.783 |
VO2max (mL·kg−1·min−1) | 50 | 6.4 | −0.460 | 0.041 | 50.8 | 6.0 | −0.581 | 0.007 |
vVO2max (km·h−1) | 18.3 | 1.1 | −0.744 | 0.000 | 14.5 | 0.8 | −0.560 | 0.011 |
Vpeak (km·h−1) | 18.6 | 1.2 | −0.652 | 0.001 | 14.8 | 0.8 | 0.582 | 0.007 |
VT1 (mL·kg−1·min−1) | 30.4 | 7.6 | −0.692 | 0.001 | 29.0 | 6.4 | −0.147 | 0.535 |
vVT1 (km·h−1) | 11.1 | 2.02 | −0.569 | 0.009 | 8.2 | 0.9 | −0.131 | 0.582 |
HR at VT1 (bpm) | 145.0 | 20.0 | −0.059 | 0.806 | 135.0 | 19.0 | 0.091 | 0.702 |
VT2 (mL·kg−1·min−1) | 45.4 | 7.1 | −0.649 | 0.002 | 45.5 | 6.0 | 0.769 | 0.006 |
vVT2 (km·h−1) | 15.85 | 1.5 | 0.359 | 0.001 | 12.8 | 1.0 | −0.534 | 0.015 |
HR at VT2 (bpm) | 178.0 | 13.0 | 0.336 | 0.148 | 175.0 | 12.0 | 0.363 | 0.116 |
VO2 (mL·kg−1·min−1) | 27.36 | 5.0 | −0.002 | 0.993 | 42.1 | 5.6 | −0.281 | 0.231 |
CoT (J·kg−1·m−1) | 3.20 | 0.32 | / | / | 4.68 | 0.70 | / | / |
HRCOT (bpm) | 136 | 15 | 0.771 | 0.001 | 165 | 17 | 0.768 | 0.000 |
Variable Entered in Model | Standardized Coefficient (β) | Partial Eta-Squared | Explanatory Power (%) |
---|---|---|---|
Level running perfomance | |||
vVO2max | 56.83 | −0.442 | 85.50 |
VT1 | 4.93 | −0.162 | 7.46 |
HRCOT | 4.60 | 0.451 | 6.67 |
VT2 | 0.046 | 0.172 | 0.07 |
Total | 100 | ||
Hilly running performance | |||
vVO2max | 34.61 | −0.329 | 72.3 |
VT2 | 7.99 | 0.143 | 16.7 |
HRCOT | 5.27 | 0.418 | 11.0 |
Total | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, O.U.M.; Tartaruga, M.P.; de Borba, E.F.; Boullosa, D.; da Silva, E.S.; Bernardo, R.T.; Coimbra, R.; Oliveira, H.B.; da Rosa, R.G.; Peyré-Tartaruga, L.A. Modelling 5-km Running Performance on Level and Hilly Terrains in Recreational Runners. Biology 2022, 11, 789. https://doi.org/10.3390/biology11050789
Melo OUM, Tartaruga MP, de Borba EF, Boullosa D, da Silva ES, Bernardo RT, Coimbra R, Oliveira HB, da Rosa RG, Peyré-Tartaruga LA. Modelling 5-km Running Performance on Level and Hilly Terrains in Recreational Runners. Biology. 2022; 11(5):789. https://doi.org/10.3390/biology11050789
Chicago/Turabian StyleMelo, Onécimo Ubiratã Medina, Marcus Peikriszwili Tartaruga, Edilson Fernando de Borba, Daniel Boullosa, Edson Soares da Silva, Rodrigo Torma Bernardo, Renan Coimbra, Henrique Bianchi Oliveira, Rodrigo Gomes da Rosa, and Leonardo Alexandre Peyré-Tartaruga. 2022. "Modelling 5-km Running Performance on Level and Hilly Terrains in Recreational Runners" Biology 11, no. 5: 789. https://doi.org/10.3390/biology11050789
APA StyleMelo, O. U. M., Tartaruga, M. P., de Borba, E. F., Boullosa, D., da Silva, E. S., Bernardo, R. T., Coimbra, R., Oliveira, H. B., da Rosa, R. G., & Peyré-Tartaruga, L. A. (2022). Modelling 5-km Running Performance on Level and Hilly Terrains in Recreational Runners. Biology, 11(5), 789. https://doi.org/10.3390/biology11050789