Neuro- and Cardiovascular Activities of Montivipera bornmuelleri Snake Venom
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Venom
2.2. Animal Handling and Ethics
2.3. Developmental Toxicity Assay
2.4. Coiling Test
2.5. Cell Culture and Differentiation
2.6. Primary Cortical Neuron Cultures
2.7. LDH Cytotoxicity Test
2.8. Determination of Cardiovascular Toxicity and Hemorrhage
2.9. Statistical Analysis
3. Results
3.1. Montivipera bornmuelleri’s Venom Developmental Toxicity on Zebrafish Embryos
3.2. Neurotoxicity of M. bornmuelleri’s Venom on Zebrafish Embryos
3.3. Cardiotoxic Effects of M. bornmuelleri’s Venom on Zebrafish Embryos
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Abd El-Aziz, M.; Soares, G.; Stockand, J.D. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins 2019, 11, 564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rima, M.; Alavi Naini, S.; Karam, M.; Sadek, R.; Sabatier, J.-M.; Fajloun, Z. Vipers of the Middle East: A Rich Source of Bioactive Molecules. Molecules 2018, 23, 2721. [Google Scholar] [CrossRef] [Green Version]
- Accary, C.; Hraoui-Bloquet, S.; Hamze, M.; Mallem, Y.; El Omar, F.; Sabatier, J.-M.; Desfontis, J.-C.; Fajloun, Z. Protein content analysis and antimicrobial activity of the crude venom of Montivipera bornmuelleri; a viper from Lebanon. Infect. Disord. Drug Targets 2014, 14, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Rima, M.; Accary, C.; Haddad, K.; Sadek, R.; Hraoui-Bloquet, S.; Desfontis, J.C.; Fajloun, Z. Identification of L-amino acid oxidase (Mb-LAAO) with antibacterial activity in the venom of Montivipera bornmuelleri, a viper from Lebanon. Infect. Disord. Drug. Targets 2013, 13, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Accary, C.; Rima, M.; Kouzahya, A.; Hleihel, W.; Sadek, R.; Desfontis, J.C.; Fajloun, Z.; Hraoui-Bloquet, S. Effect of the Montivipera bornmuelleri snake venom on human blood: Coagulation disorders and hemolytic activities. Open J. Hematol. 2014, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Accary, C.; Mantash, A.; Mallem, Y.; Fajloun, Z.; Elkak, A. Separation and Biological Activities of Phospholipase A2 (Mb-PLA2) from the Venom of Montivipera bornmuelleri, a Lebanese Viper. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 833–839. [Google Scholar] [CrossRef]
- Accary, C.; Hraoui-Bloquet, S.; Sadek, R.; Alameddine, A.; Fajloun, Z.; Desfontis, J.-C.; Mallem, Y. The relaxant effect of the Montivipera bornmuelleri snake venom on vascular contractility. J. Venom Res. 2016, 7, 10–15. [Google Scholar]
- Sawan, S.; Yaacoub, T.; Hraoui-Bloquet, S.; Sadek, R.; Hleihel, W.; Fajloun, Z.; Karam, M. Montivipera bornmuelleri venom selectively exhibits high cytotoxic effects on keratinocytes cancer cell lines. Exp. Toxicol. Pathol. 2017, 69, 173–178. [Google Scholar] [CrossRef]
- Haddoub, C.; Rima, M.; Heurtebise, S.; Lawand, M.; Jundi, D.; Sadek, R.; Amigorena, S.; Fajloun, Z.; Karam, M. Cytotoxic effect of Montivipera bornmuelleri’s venom on cancer cell lines: In vitro and in vivo studies. PeerJ. 2020, 8, e9909. [Google Scholar] [CrossRef]
- Yacoub, T.; Rima, M.; Sadek, R.; Hleihel, W.; Fajloun, Z.; Karam, M. Montivipera bornmuelleri venom has immunomodulatory effects mainly up-regulating pro-inflammatory cytokines in the spleens of mice. Toxicol. Rep. 2018, 5, 318–323. [Google Scholar] [CrossRef]
- Del Brutto, O.H. Neurological effects of venomous bites and stings: Snakes, spiders, and scorpions. Handb. Clin. Neurol. 2013, 114, 349–368. [Google Scholar]
- Frangieh, J.; Park, J.; Fajloun, Z.; Quinton, L.; Sadek, R.; Henrion, D.; Mattei, C.; Legros, C. The venom of the Lebanese viper, Montivipera bornmuelleri contains vasoactive compounds. Arch. Cardiovasc. Dis. Suppl. 2021, 13, 191. [Google Scholar] [CrossRef]
- Giacomotto, J.; Ségalat, L. High-throughput screening and small animal models, where are we? Br. J. Pharmacol. 2010, 160, 204–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howe, K.; Clark, M.D.; Torroja, C.F.; Torrance, J.; Berthelot, C.; Muffato, M.; Collins, J.E.; Humphray, S.; McLaren, K.; Matthews, L.; et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature 2013, 496, 498–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalueff, A.V.; Echevarria, D.J.; Stewart, A.M. Gaining translational momentum: More zebrafish models for neuroscience research. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2014, 55, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Crofton, K.M.; Mundy, W.R.; Shafer, T.J. Developmental neurotoxicity testing: A path forward. Congenit. Anom. 2012, 52, 140–146. [Google Scholar] [CrossRef]
- D’Amora, M.; Giordani, S. The Utility of Zebrafish as a Model for Screening Developmental Neurotoxicity. Front. Neurosci. 2018, 12, 976. [Google Scholar] [CrossRef] [Green Version]
- D’Costa, A.; Shepherd, I.T. Zebrafish development and genetics: Introducing undergraduates to developmental biology and genetics in a large introductory laboratory class. Zebrafish 2009, 6, 169–177. [Google Scholar] [CrossRef]
- D’Amora, M.; Camisasca, A.; Lettieri, S.; Giordani, S. Toxicity Assessment of Carbon Nanomaterials in Zebrafish during Development. Nanomaterials 2017, 7, 414. [Google Scholar] [CrossRef] [Green Version]
- D’Amora, M.; Cassano, D.; Pocoví-Martínez, S.; Giordani, S.; Voliani, V. Biodistribution and biocompatibility of passion fruit-like nano-architectures in zebrafish. Nanotoxicology 2018, 12, 914–922. [Google Scholar] [CrossRef] [Green Version]
- D’Amora, M.; Sancataldo, G.; Cella Zanacchi, F.; Diaspro, A. Influence of Nanoparticle Exposure on Nervous System Development in Zebrafish Studied by Means of Light Sheet Fluorescence Microscopy. Biophys. J. 2016, 110, 148a. [Google Scholar] [CrossRef]
- Nishimura, Y.; Murakami, S.; Ashikawa, Y.; Sasagawa, S.; Umemoto, N.; Shimada, Y.; Tanaka, T. Zebrafish as a systems toxicology model for developmental neurotoxicity testing. Congenit. Anom. 2015, 55, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Tierney, K.B. Behavioural assessments of neurotoxic effects and neurodegeneration in zebrafish. Biochim. Biophys. Acta Mol. Basis Dis. 2011, 1812, 381–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zindler, F.; Beedgen, F.; Brandt, D.; Steiner, M.; Stengel, D.; Baumann, L.; Braunbeck, T. Analysis of tail coiling activity of zebrafish (Danio rerio) embryos allows for the differentiation of neurotoxicants with different modes of action. Ecotoxicol. Environ. Saf. 2019, 186, 109754. [Google Scholar] [CrossRef]
- De Oliveira, A.; Brigante, T.; Oliveira, D. Tail Coiling Assay in Zebrafish (Danio rerio) Embryos: Stage of Development, Promising Positive Control Candidates, and Selection of an Appropriate Organic Solvent for Screening of Developmental Neurotoxicity (DNT). Water 2021, 13, 119. [Google Scholar] [CrossRef]
- Drapeau, P.; Saint-Amant, L.; Buss, R.R.; Chong, M.; McDearmid, J.R.; Brustein, E. Development of the locomotor network in zebrafish. Prog. Neurobiol. 2002, 68, 85–111. [Google Scholar] [CrossRef]
- Kimmel, C.B.; Ballard, W.W.; Kimmel, S.R.; Ullmann, B.; Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn. 1995, 203, 253–310. [Google Scholar] [CrossRef]
- Saint-Amant, L.; Drapeau, P. Time course of the development of motor behaviors in the zebrafish embryo. J. Neurobiol. 1998, 37, 622–632. [Google Scholar] [CrossRef]
- AAT Bioquest Inc. Quest Graph™ LD50 Calculator. Available online: https://www.aatbio.com/tools/ld50-calculator (accessed on 7 June 2021).
- Podleśny-Drabiniok, A.; Sobska, J.; de Lera, A.R.; Gołembiowska, K.; Kamińska, K.; Dollé, P.; Cebrat, M.; Krężel, W. Distinct retinoic acid receptor (RAR) isotypes control differentiation of embryonal carcinoma cells to dopaminergic or striatopallidal medium spiny neurons. Sci. Rep. 2017, 7, 13671. [Google Scholar] [CrossRef] [Green Version]
- Sciarretta, C.; Minichiello, L. The preparation of primary cortical neuron cultures and a practical application using immunofluorescent cytochemistry. Methods Mol. Biol. 2010, 633, 221–231. [Google Scholar]
- Ton, C.; Lin, Y.; Willett, C. Zebrafish as a model for developmental neurotoxicity testing. Birth Defects Res. Part A Clin. Mol. Teratol. 2006, 76, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Rico, E.P.; Rosemberg, D.B.; Seibt, K.J.; Capiotti, K.M.; Da Silva, R.S.; Bonan, C.D. Zebrafish neurotransmitter systems as potential pharmacological and toxicological targets. Neurotoxicol. Teratol. 2011, 33, 608–617. [Google Scholar] [CrossRef] [PubMed]
- Rima, M.; Lattouf, Y.; Abi Younes, M.; Bullier, E.; Legendre, P.; Mangin, J.-M.; Hong, E. Dynamic regulation of the cholinergic system in the spinal central nervous system. Sci. Rep. 2020, 10, 15338. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wen, H.; Brehm, P. Function of neuromuscular synapses in the zebrafish choline-acetyltransferase mutant bajan. J. Neurophysiol. 2008, 100, 1995–2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weichert, F.G.; Floeter, C.; Meza Artmann, A.S.; Kammann, U. Assessing the ecotoxicity of potentially neurotoxic substances – Evaluation of a behavioural parameter in the embryogenesis of Danio rerio. Chemosphere 2017, 186, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Liesener, A.; Perchuc, A.-M.; Schöni, R.; Schebb, N.H.; Wilmer, M.; Karst, U. Screening of acetylcholinesterase inhibitors in snake venom by electrospray mass spectrometry. Pure Appl. Chem. 2007, 79, 2339–2349. [Google Scholar] [CrossRef]
- Dajas, F.; Silveira, R.; Cerveñansky, C. Fasciculin: Neuropharmacology of a Potent Anticholinesterase Polypeptide. In Methods in Neurosciences; Academic Press: Cambridge, MA, USA, 1992; pp. 258–270. [Google Scholar]
- Ranawaka, U.K.; Lalloo, D.G.; de Silva, H.J. Neurotoxicity in Snakebite—The Limits of Our Knowledge. PLoS Negl. Trop. Dis. 2013, 7, e2302. [Google Scholar] [CrossRef] [Green Version]
- Hertz, L.; Schousboe, A. Primary Cultures of Gabaergic and Glutamatergic Neurons as Model Systems to Study Neurotransmitter Functions, I. Differentiated Cells. In Model Systems of Development and Aging of the Nervous System; Springer US: Boston, MA, USA, 1987; pp. 19–31. [Google Scholar]
- Westergaard, N.; Larsson, O.; Jensen, B.; Schousboe, A. Synthesis and release of GABA in cerebral cortical neurons co-cultured with astrocytes from cerebral cortex or cerebellum. Neurochem. Int. 1992, 20, 567–575. [Google Scholar] [CrossRef]
- Nakamichi, N.; Matsumoto, Y.; Kawanishi, T.; Ishimoto, T.; Masuo, Y.; Horikawa, M.; Kato, Y. Maturational Characterization of Mouse Cortical Neurons Three-Dimensionally Cultured in Functional Polymer FP001-Containing Medium. Biol. Pharm. Bull. 2019, 42, 1545–1553. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.S.; Lee, C.-S.; Maeng, J.-S.; Kwon, K.-S.; Park, S.S. Chronic glutamate toxicity in mouse cortical neuron culture. Brain Res. 2009, 1273, 138–143. [Google Scholar] [CrossRef]
- Bader, B.M.; Steder, A.; Klein, A.B.; Frølund, B.; Schroeder, O.H.U.; Jensen, A.A. Functional characterization of GABAA receptor-mediated modulation of cortical neuron network activity in microelectrode array recordings. PLoS One 2017, 12, e0186147. [Google Scholar] [CrossRef]
- Maximov, A.; Pang, Z.P.; Tervo, D.G.R.; Südhof, T.C. Monitoring synaptic transmission in primary neuronal cultures using local extracellular stimulation. J. Neurosci. Methods 2007, 161, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Wada, A.; Inoue, R.; Terasawa, K.; Kimura, I.; Nakamura, N.; Kurosaka, A. A rapid and efficient method for neuronal induction of the P19 embryonic carcinoma cell line. J. Neurosci. Methods 2014, 227, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Cormier, R.; Fu, T.; Covey, D.F.; Isenberg, K.E.; Zorumski, C.F.; Mennerick, S. Slow Death of Postnatal Hippocampal Neurons by GABA A Receptor Overactivation. J. Neurosci. 2000, 20, 3147–3156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemp, J.M.; Powell, T.P. The structure of the caudate nucleus of the cat: Light and electron microscopy. Philos. Trans. R. Soc. London. B Biol. Sci. 1971, 262, 383–401. [Google Scholar]
- Fieblinger, T. Striatal Control of Movement: A Role for New Neuronal (Sub-) Populations? Front. Hum. Neurosci. 2021, 15, 419. [Google Scholar] [CrossRef]
- Al-Musawi, M.; Chanbour, H.; El Masri, J.; Awad, R.; Armash, K. Erectile Dysfunction and Permanent Bladder Areflexia Following Montivipera Bornmuelleri Snakebite. Cureus 2021, 13, e17968. [Google Scholar] [CrossRef]
- Baldo, C.; Jamora, C.; Yamanouye, N.; Zorn, T.M.; Moura-da-Silva, A.M. Mechanisms of Vascular Damage by Hemorrhagic Snake Venom Metalloproteinases: Tissue Distribution and In Situ Hydrolysis. PLoS Negl Trop. Dis. 2010, 4, e727. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, A. Effects of Vasodilation and Arterial Resistance on Cardiac Output. J. Clin. Exp. Cardiolog. 2011, 2, 170. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sahyoun, C.; Krezel, W.; Mattei, C.; Sabatier, J.-M.; Legros, C.; Fajloun, Z.; Rima, M. Neuro- and Cardiovascular Activities of Montivipera bornmuelleri Snake Venom. Biology 2022, 11, 888. https://doi.org/10.3390/biology11060888
Sahyoun C, Krezel W, Mattei C, Sabatier J-M, Legros C, Fajloun Z, Rima M. Neuro- and Cardiovascular Activities of Montivipera bornmuelleri Snake Venom. Biology. 2022; 11(6):888. https://doi.org/10.3390/biology11060888
Chicago/Turabian StyleSahyoun, Christina, Wojciech Krezel, César Mattei, Jean-Marc Sabatier, Christian Legros, Ziad Fajloun, and Mohamad Rima. 2022. "Neuro- and Cardiovascular Activities of Montivipera bornmuelleri Snake Venom" Biology 11, no. 6: 888. https://doi.org/10.3390/biology11060888
APA StyleSahyoun, C., Krezel, W., Mattei, C., Sabatier, J. -M., Legros, C., Fajloun, Z., & Rima, M. (2022). Neuro- and Cardiovascular Activities of Montivipera bornmuelleri Snake Venom. Biology, 11(6), 888. https://doi.org/10.3390/biology11060888