Osteosynthesis Metal Plate System for Bone Fixation Using Bicortical Screws: Numerical–Experimental Characterization
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Three-Point Bending Specimens
2.2. Pull-Out Specimens
2.3. Four-Point Bending Specimens
3. Mechanical Tests
3.1. Three-Point Bending Tests
3.2. Pull-Out Strength Tests
3.3. Four-Point Bending Tests
4. Numerical Models
Cohesive Zone Modeling
5. Results and Discussion
5.1. Experimental Tests
5.1.1. Three-Point Bending Test
5.1.2. Pull-Out Strength Tests
5.1.3. Four-Point Bending Tests
5.2. Numerical Analysis
5.2.1. Pull-Out Tests
5.2.2. Four-Point Bending Tests
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Cowin, S.C. Bone Mechanics Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2001; ISBN 978-0849391170. [Google Scholar]
- Sheng, W.; Ji, A.; Fang, R.; He, G.; Chen, C. Finite Element- and Design of Experiment-Derived Optimization of Screw Configurations and a Locking Plate for Internal Fixation System. Comput. Math. Methods Med. 2019, 2019, 5636528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.-J.; Zhao, M.; Liu, D.; Liu, H.-Y.; Du, C.-F. Biomechanical Property of a Newly Designed Assembly Locking Compression Plate: Three-Dimensional Finite Element Analysis. J. Healthc. Eng. 2017, 2017, 8590251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacLeod, A.R.; Pankaj, P.; Simpson, A.H.R. Does screw–bone interface modelling matter in finite element analyses? J. Biomech. 2012, 45, 1712–1716. [Google Scholar] [CrossRef] [PubMed]
- Avery, C.; Bujtár, P.; Simonovics, J.; Dézsi, T.; Váradi, K.; Sándor, G.K.; Pan, J. A finite element analysis of bone plates available for prophylactic internal fixation of the radial osteocutaneous donor site using the sheep tibia model. Med. Eng. Phys. 2013, 35, 1421–1430. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Li, J.; Chen, Y.; Tao, C.; Ji, R. Investigation of load transfer process between external fixator and bone model by experimental and finite element methods. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800019826512. [Google Scholar] [CrossRef] [Green Version]
- Chatzistergos, P.E.; Magnissalis, E.A.; Kourkoulis, S.K. Numerical simulation of bone screw induced pretension: The cases of under-tapping and conical profile. Med. Eng. Phys. 2014, 36, 378–386. [Google Scholar] [CrossRef]
- Katthagen, J.C.; Schwarze, M.; Warnhoff, M.; Voigt, C.; Hurschler, C.; Lill, H. Influence of plate material and screw design on stiffness and ultimate load of locked plating in osteoporotic proximal humeral fractures. Injury 2016, 47, 617–624. [Google Scholar] [CrossRef]
- Lee, C.-H.; Shih, K.-S.; Hsu, C.-C.; Cho, T. Simulation-based particle swarm optimization and mechanical validation of screw position and number for the fixation stability of a femoral locking compression plate. Med. Eng. Phys. 2014, 36, 57–64. [Google Scholar] [CrossRef]
- Cui, S.; Bledsoe, J.G.; Israel, H.; Watson, J.T.; Cannada, L.K. Locked plating of comminuted distal femur fractures: Does unlocked screw placement affect stability and failure? J. Orthop. Trauma 2014, 28, 90–96. [Google Scholar] [CrossRef]
- Heyland, M.; Duda, G.N.; Haas, N.P.; Trepczynski, A.; Döbele, S.; Höntzsch, D.; Schaser, K.-D.; Märdian, S. Semi-rigid screws provide an auxiliary option to plate working length to control interfragmentary movement in locking plate fixation at the distal femur. Injury 2015, 46, S24–S32. [Google Scholar] [CrossRef]
- Kim, Y.-Y.; Choi, W.-S.; Rhyu, K.-W. Assessment of pedicle screw pullout strength based on various screw designs and bone densities—an ex vivo biomechanical study. Spine J. 2012, 12, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Nourisa, J.; Baseri, A.; Sudak, L.; Rouhi, G. The Effects of Bone Screw Configurations on the Interfragmentary Movement in a Long Bone Fixed by a Limited Contact Locking Compression Plate. J. Biomed. Sci. Eng. 2015, 8, 590. [Google Scholar] [CrossRef] [Green Version]
- Karunratanakul, K.; Schrooten, J.; Van Oosterwyck, H. Finite element modelling of a unilateral fixator for bone reconstruction: Importance of contact settings. Med Eng. Phys. 2010, 32, 461–467. [Google Scholar] [CrossRef]
- Okumura, N.; Stegaroiu, R.; Kitamura, E.; Kurokawa, K.; Nomura, S. Influence of maxillary cortical bone thickness, implant design and implant diameter on stress around implants: A three-dimensional finite element analysis. J. Prosthodont. Res. 2010, 54, 133–142. [Google Scholar] [CrossRef] [PubMed]
- da Silva, F.G.A.; de Moura, M.F.S.F.; Dourado, N.; Xavier, J.; Pereira, F.A.M.; Morais, J.J.L.; Dias, M.I.R.; Lourenço, P.J.; Judas, F.M. Fracture characterization of human cortical bone under mode II loading using the end-notched flexure test. Med. Biol. Eng. Comput. 2016, 55, 1249–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, F.; de Moura, M.; Dourado, N.; Xavier, J.; Pereira, F.; Morais, J.; Dias, M. Mixed-mode I+II fracture characterization of human cortical bone using the Single Leg Bending test. J. Mech. Behav. Biomed. Mater. 2016, 54, 72–81. [Google Scholar] [CrossRef]
- Li, Z.; Peng, S.; Pan, H.; Tang, B.; Lam, R.W.M.; Lu, W.W. Microarchitecture and Nanomechanical Properties of Trabecular Bone After Strontium Administration in Osteoporotic Goats. Biol. Trace Element Res. 2011, 145, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.B.; Burr, D.B.; Sharkey, N.A.; Fyhrie, D.P. Skeletal Tissue Mechanics; Springer: New York, NY, USA, 2015. [Google Scholar]
- Pereira, F.; Xavier, J.; Morais, J.; Real, V. Portugal Identification of transverse elastic properties of the diaphysis of cortical bone. J. Mech. Eng. Biomech. 2018, 2, 50–55. [Google Scholar] [CrossRef]
- Patil, M.M.; Kulkarni, M.S.; Yerudkar, D.S. Determination of Elastic Properties of Bovine Femur Bone: Solid Mechanics Approach. Trends Biomater. Artif. Organs 2020, 34, 67–72. [Google Scholar]
- Tümer, D.; Güngörürler, M.; Havıtçıoğlu, H.; Arman, Y. Investigation of effective coating of the Ti–6Al–4V alloy and 316L stainless steel with graphene or carbon nanotubes with finite element methods. J. Mater. Res. Technol. 2020, 9, 15880–15893. [Google Scholar] [CrossRef]
- Pereira, F.; de Moura, M.; Dourado, N.; Morais, J.; Xavier, J.; Dias, M. Direct and inverse methods applied to the determination of mode I cohesive law of bovine cortical bone using the DCB test. Int. J. Solids Struct. 2017, 128, 210–220. [Google Scholar] [CrossRef]
Materials | Elastic Properties | |
---|---|---|
Goat Cortical Bone Tissue | 14.8 GPa (1) | |
8.9 GPa (2) | ||
0.17 (3) | ||
0.18 (3) | ||
3.60 GPa (3) | ||
3.57 GPa (3) | ||
316L Stainless Steel (316L SS) | 193 GPa (4) | |
0.28 (4) |
Sec. | (N/mm) | (N/mm) | (MPa) | (MPa) | (mm) | (mm) | (MPa) | (MPa) | (mm) | (mm) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 2.00 | 70.0 | 50.0 | 60 | 0.035 | 1.0 | 30.10 | 24.0 | 0.039 | 1.200 |
2 | 1.63 | 45.0 | 29.3 | 35 | 0.050 | 0.7 | 18.83 | 12.6 | 0.054 | 1.450 |
3 | 1.63 | 35.0 | 70.0 | 33 | 0.010 | 0.4 | 43.73 | 11.27 | 0.020 | 1.270 |
4 | 1.63 | 41.3 | 110.0 | 30 | 0.001 | 0.1 | 74.32 | 8.97 | 0.010 | 1.890 |
(N/mm) | (N/mm) | (MPa) | (MPa) | (mm) | (mm) | (MPa) | (MPa) | (mm) | (mm) |
---|---|---|---|---|---|---|---|---|---|
1.5 | 2.0 | 20.0 | 20.0 | 0.01 | 0.01 | 10.0 | 10.0 | 0.075 | 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olmos, A.A.R.; Fertuzinhos, A.; Campos, T.D.; Dias, I.R.; Viegas, C.A.; Pereira, F.A.M.; Quyền, N.T.; de Moura, M.F.S.F.; Zille, A.; Dourado, N. Osteosynthesis Metal Plate System for Bone Fixation Using Bicortical Screws: Numerical–Experimental Characterization. Biology 2022, 11, 940. https://doi.org/10.3390/biology11060940
Olmos AAR, Fertuzinhos A, Campos TD, Dias IR, Viegas CA, Pereira FAM, Quyền NT, de Moura MFSF, Zille A, Dourado N. Osteosynthesis Metal Plate System for Bone Fixation Using Bicortical Screws: Numerical–Experimental Characterization. Biology. 2022; 11(6):940. https://doi.org/10.3390/biology11060940
Chicago/Turabian StyleOlmos, Andrea A. R., Aureliano Fertuzinhos, Teresa D. Campos, Isabel R. Dias, Carlos A. Viegas, Fábio A. M. Pereira, Nguyễn T. Quyền, Marcelo F. S. F. de Moura, Andrea Zille, and Nuno Dourado. 2022. "Osteosynthesis Metal Plate System for Bone Fixation Using Bicortical Screws: Numerical–Experimental Characterization" Biology 11, no. 6: 940. https://doi.org/10.3390/biology11060940
APA StyleOlmos, A. A. R., Fertuzinhos, A., Campos, T. D., Dias, I. R., Viegas, C. A., Pereira, F. A. M., Quyền, N. T., de Moura, M. F. S. F., Zille, A., & Dourado, N. (2022). Osteosynthesis Metal Plate System for Bone Fixation Using Bicortical Screws: Numerical–Experimental Characterization. Biology, 11(6), 940. https://doi.org/10.3390/biology11060940