Goats as Valuable Animal Model to Test the Targeted Glutamate Supplementation upon Antral Follicle Number, Ovulation Rate, and LH-Pulsatility
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location, Ethical-Welfare Issues, and Animal Management
2.2. Experimental Design
2.3. Estrus Synchronization, Blood Sampling, and LH Determinations
2.4. Ultrasonographic Evaluation of Ovarian Activity
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szpręgiel, I.; Wrońska, D. The role of photoperiod and melatonin in the control of seasonal reproduction in mammals. Rocz. Nauk. Pol. Tow. Zootech. 2020, 16, 39–47. [Google Scholar] [CrossRef]
- Fabre-Nys, C.; Chanvallon, A.; Dupont, J.; Lardic, L.; Lomet, D.; Martinet, S.; Scaramuzzi, R.J. The “Ram Effect”: A “non-classical” mechanism for inducing LH surges in sheep. PLoS ONE 2016, 11, e0158530. [Google Scholar] [CrossRef]
- Escareño, L.M.; Wurzinger, M.; López, F.P.; Salinas, H.; Sölkner, J.; Iñiguez, L. La cabra y los sistemas de producción caprina de los pequeños productores de la Comarca Lagunera en el norte de México. Rev. Chapingo Serie Cienc. For. Ambiente 2011, 17, 235–246. [Google Scholar] [CrossRef]
- Dardente, H.; Lomet, D.; Robert, V.; Decourt, C.; Beltramo, M.; Pellicer-Rubio, M.T. Seasonal breeding in mammals: From basic science to applications and back. Theriogenology 2016, 86, 324–332. [Google Scholar] [CrossRef]
- Weems, P.W.; Goodman, R.L.; Lehman, M.N. Neural mechanisms controlling seasonal reproduction: Principles derived from the sheep model and its comparison with hamsters. Front. Neuroendocrinol. 2015, 37, 43–51. [Google Scholar] [CrossRef] [Green Version]
- Duarte, G.; Nava-Hernández, M.P.; Malpaux, B.; Delgadillo, J.A. Ovulatory activity of female goats adapted to the subtropics is responsive to photoperiod. Anim. Reprod. Sci. 2010, 120, 65–70. [Google Scholar] [CrossRef]
- Iremonger, K.J.; Constantin, S.; Liu, X.; Herbison, A.E. Glutamate regulation of GnRH neuron excitability. Brain Res. 2010, 1364, 35–43. [Google Scholar] [CrossRef]
- Meza-Herrera, C.A.; Ross, T.; Hallford, D.; Hawkins, D.; González-Bulnes, A. Effects of body condition and protein supplementation on LH secretion and luteal function in sheep. Reprod. Domest. Anim. 2007, 42, 461–465. [Google Scholar] [CrossRef]
- Dhandapani, K.M.; Brann, D.W. The role of glutamate and nitric oxide in the reproductive neuroendocrine system. Biochem. Cell Biol. 2000, 78, 165–179. [Google Scholar] [CrossRef]
- Meza-Herrera, C.A.; Vergara-Hernández, H.P.; Paleta-Ochoa, A.; Álvarez-Ruíz, A.R.; Véliz-Deras, F.G.; Arellano-Rodríguez, G.; Rosales-Nieto, C.A.; Macías-Cruz, U.; Rodríguez-Martínez, R.; Carrillo, E. Glutamate supply reactivates ovarian function while increases serum insulin and triiodothyronine concentrations in criollo x saanen-alpine yearlings’ goats during the anestrous season. Animals 2020, 10, 234. [Google Scholar] [CrossRef] [Green Version]
- FASS. Guide for the Care and Use of Agricultural Animals in Agricultural Research and Teaching, 3rd ed.; Federation Animal Science Society: Champaing, IL, USA, 2010; p. 177. [Google Scholar]
- NAM-National Academy of Medicine. Guide for the Care and Use of Laboratory Animals. Co-Produced by the National Academy of Medicine—Mexico and the Association for Assessment and Accreditation of Laboratory Animal Care International, 1st ed.; Harlan: Mexico City, Mexico, 2002. [Google Scholar]
- NRC—National Research Council. Nutrient Requirements of Goats: Angora, Dairy and Meat Goats in Temperature and Tropical Countries; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 15th ed.; AOAC: Arlington, VA, USA, 1990. [Google Scholar]
- Hoefler, H.; Hallford, D.M. Influence of suckling status and type of birth on serum hormone profiles and return to estrus early pospartum spring lambing ewes. Theriogenology 1987, 27, 887–892. [Google Scholar] [CrossRef]
- Merriam, G.R.; Wachter, K.W. Algorithms for the study of episodic hormone secretion. Am. J. Physiol.-Endocrinol. Metab. 1982, 243, E310–E318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, G.B.; Oldham, C.M.; Lindsay, D.R. Increased plasma LH levels in seasonally anovular Merino ewes following the introduction of rams. Anim. Reprod. Sci. 1980, 3, 125–132. [Google Scholar] [CrossRef]
- Martin, G.B.; Scaramuzzi, R.J.; Oldham, C.M.; Lindsay, D.R. Effects of progesterone on the responses of Merino ewes to the introduction of rams during anoestrus. Aust. J. Biol. Sci. 1983, 36, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickie, A.M.; Paterson, C.; Anderson, L.M.; Boyd, J.S. Determination of corpora lutea numbers in Booroola—Texel ewes using transrectal ultrasound. Theriogenology 1999, 51, 1209–1224. [Google Scholar] [CrossRef]
- Littell, C.R.; Henry, P.R.; Ammermam, C.B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [CrossRef] [Green Version]
- Weems, P.; Smith, J.; Clarke, I.J.; Coolen, L.M.; Goodman, R.L.; Lehman, M.N. Effects of season and estradiol on KNDy neuron peptides, colocalization with D2 dopamine receptors, and dopaminergic inputs in the ewe. Endocrinology 2017, 158, 831–841. [Google Scholar] [CrossRef]
- Lehman, M.N.; Ladha, Z.; Coolen, L.M.; Hileman, S.M.; Connors, J.M.; Goodman, R.L. Neuronal plasticity and seasonal reproduction in sheep. Eur. J. Neurosci. 2010, 32, 2152–2164. [Google Scholar] [CrossRef] [Green Version]
- Gérard, N.; Loiseau, S.; Duchamp, G.; Seguin, F. Analysis of the variations of follicular fluid composition during follicular growth and maturation in the mare using proton nuclear magnetic resonance (^1H NMR). Reproduction 2002, 124, 241–248. [Google Scholar] [CrossRef]
- Meza-Herrera, C.A.; González-Velázquez, A.; Véliz-Deras, F.G.; Rodríguez-Martínez, R.; Arellano-Rodríguez, G.; Serradilla, J.M.; García-Martínez, A.; Avendaño-Reyes, L.; Macías-Cruz, U. Short-term glutamate administration positively affects the number of antral follicles and the ovulation rate in cycling adult goats. Reprod. Biol. 2014, 13, 298–301. [Google Scholar] [CrossRef]
- Kuehl-Kovarik, M.C.; Pouliot, W.A.; Halterman, G.L.; Handa, R.J.; Dudek, F.E.; Partin, K.M. Episodic bursting activity and response to excitatory amino acids in acutely dissociated gonadotropin-releasing hormone neurons genetically targeted with green fluorescent protein. J. Neurosci. 2002, 22, 2313–2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, M.; Sasaki, S.; Watanabe, T.; Nishimura, S.; Ideta, A.; Yamazaki, M. Ionotropic glutamate receptor AMPA1 is associated with ovulation rate. PLoS ONE 2010, 5, e13817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tachibana, N.; Kinoshita, M.; Saito, Y.; Ikeda, S. Identification of the N-Methyl-D-aspartate receptor (NMDR)-related epitope, NR2B, in the normal human ovary: Implication for the pathogenesis of anti-NMDR encephalitis. Tohoku J. Exp. Med. 2013, 230, 13–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayode, O.T.; Rotimi, D.E.; Kayode, A.A.A.; Olaolu, T.D.; Adeyemi, O.S. Monosodium glutamate (MSG)-induced male reproductive dysfunction: A mini review. Toxics 2020, 8, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meza-Herrera, C.A.; Torres-Moreno, M.; López-Medrano, J.L.; González-Bulnes, A.; Véliz-Deras, F.G.; Mellado, M.; Wurzinger, M.; Soto-Sanchez, M.J.; Calderón-Leyva, M.G. Glutamate supply positively affects serum release of triiodothyronine and insulin across time without increases of glucose during the onset of puberty in the female goat. Anim. Reprod. Sci. 2011, 125, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Meza-Herrera, C.A.; Calderón-Leyva, G.; Soto-Sánchez, M.J.; Serradilla, J.M.; García-Martínez, A.; Mellado, M.; Véliz-Deras, F.G. Glutamate supply positively affects cholesterol concentrations without increases in total protein and urea around the onset of puberty in goats. Anim. Reprod. Sci. 2014, 147, 106–111. [Google Scholar] [CrossRef]
- Moore, K.M.; Oelberg, W.L.; Glass, M.R.; Johnson, M.D.; Been, L.E.; Meisel, R.L. Glutamate afferents from the medial prefrontal cortex mediate nucleus accumbens activation by female sexual behavior. Front. Behav. Neurosci. 2019, 13, 227. [Google Scholar] [CrossRef] [Green Version]
- Calderón-Leyva, G.; Meza-Herrera, C.A.; Rodríguez-Martínez, R.; Ángel-García, O.; Rivas-Muñoz, R.; Delgado-Bermejo, J.V. Influence of sexual behavior of Dorper rams treated with glutamate and/or testosterone on reproductive performance of anovulatory ewes. Theriogenology 2018, 106, 79–86. [Google Scholar] [CrossRef]
- Calderón-Leyva, G.; Meza-Herrera, C.A.; Rodríguez-Martínez, R.; Ángel-García, O.; Rivas-Muñoz, R.; Delgado-Bermejo, J.V.; Véliz-Deras, F.G. Effect of glutamate and/or testosterone administration upon appetitive and consummatory sexual behaviors in pubertal rams and their influence upon the reproductive performance of nulliparous anovulatory ewes. J. Vet. Behav. Clin. Appl. Res. 2019, 30, 96–102. [Google Scholar] [CrossRef]
- Chiang, V.S.-C.; Park, J.H. Glutamate in Male and Female Sexual Behavior: Receptors, Transporters and Steroid Independence. Front. Behav. Neurosci. 2020, 14, 589882. [Google Scholar] [CrossRef]
- Barbano, F.; Wang, H.-L.; Zhang, S.; Miranda-Barrientos, J.; Estrin, D.J.; Figueroa-Gonzalez, A.; Liu, B.; Barker, D.J.; Morales, M. VTA glutamatergic neurons mediate innate defensive behaviors. Neuron 2020, 107, 368–382.e8. [Google Scholar] [CrossRef] [PubMed]
- Naulé, L.; Maione, L.; Kaise, U.B. Puberty, a sensitive window of hypothalamic development and plasticity. Endocrinology 2021, 162, bqaa209. [Google Scholar] [CrossRef] [PubMed]
- Ieda, N.; Assadullah; Minabe, S.; Ikegami, K.; Watanabe, Y.; Sugimoto, Y.; Sugimoto, A.; Kawai, N.; Ishii, H.; Inoue, N.; et al. GnRH (1–5), a metabolite of gonadotropin-releasing hormone, enhances luteinizing release via activation of kisspeptin neurons in female rats. Endocr. J. 2020, 67, 409–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Yeo, S.H.; McQuillan, J.; Herde, H.J.; Hessler, S.; Cheong, I.; Porteous, R.; Herbison, A.E. Highly redundant neuropeptide volume co-transmission underlying episodic activation of the GnRH neuron dendron. Elife 2021, 10, e62455. [Google Scholar] [CrossRef]
- Wakabayashi, Y.; Okamura, H.; Yakamura, T. Local administration of Neurokinin B in the arcuate nucleus accelerates the neural activity of the GnRH pulse generator in goats. J. Reprod. Dev. 2021, 67, 352–358. [Google Scholar] [CrossRef]
- Majarune, S.; Nima, P.; Sugimoto, A.; Nagae, M.; Inoue, N.; Tsukamura, H.; Uenoyoma, Y. Ad libitum feeding triggers puberty onset associated with increases in arcuate Kiss1 and Pdyn expression in growth-retarded rats. J. Reprod. Dev. 2019, 65, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Indarwati, I.; Hastuti, U.R.B.; Dewi, Y.L.R. Analysis of factors influencing female infertility. J. Matern. Child Health 2017, 2, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Weiss, R.V.; Clapauch, R. Female infertility of endocrine origin. Arq. Bras. Endocrinol. Metabol. 2014, 58, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Unuane, D.; Tournaye, H.; Velkeniers, B.; Poppe, K. Endocrine disorders & female infertility. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 861–873. [Google Scholar] [CrossRef]
- Ghajari, G.; Heydari, A.; Ghorbani, M. Mesenchymal stem cell-based therapy and female infertility: Limitations and advances. Curr. Stem Cell Res. Ther. 2022. online ahead print. [Google Scholar] [CrossRef]
- Wang, R.; Danhof, N.A.; Tjon-Kon-Fat, R.I.; Eijkemans, M.J.; Bossuyt, P.M.; Mochtar, M.H.; van Wely, M. Interventions for unexplained infertility: A systematic review and network meta-analysis. Cochrane Database Syst. Rev. 2019, 9, CD012692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carson, S.A.; Kallen, A.N. Diagnosis and Management of Infertility: A Review. J. Am. Med. Assoc. 2021, 326, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Kalds, P.; Gao, Y.; Zhou, S.; Bei Cai, B.; Xingxu Huang, X.; Wang, X.; Chen, Y. Redesigning small ruminant genomes with CRISPR toolkit: Overview & perspectives. Theriogenology 2020, 147, 25–33. [Google Scholar] [CrossRef] [PubMed]
GLUT | CONT | S.E. 1 | |
---|---|---|---|
LW-initial (kg) | 29.60 a | 29.24 a | 1.02 |
BCS-initial (units) | 3.4 a | 3.5 a | 0.17 |
LW-ultrasound (kg) | 35.06 a | 35.21 a | 1.07 |
BCS-ultrasound (units) | 3.5 a | 3.2 a | 0.20 |
Ovulation rate (units) | 1.77 a | 0.87 b | 0.20 |
Total ovarian activity (units) | 4.11 a | 1.87 b | 0.47 |
LH pulsatility, pulses/6 h (units) | 5.0 a | 2.2 b | 0.60 |
LH time to first pulse (min) | 35.0 a | 81.0 a | 31.99 |
LH amplitude (ng) | 2.35 a | 1.16 a | 0.70 |
LH nadir (ng) | 0.43 a | 0.20 a | 0.11 |
LH AUC (arbitrary units) | 72.6 a | 40.0.0 a | 21.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna-García, L.A.; Meza-Herrera, C.A.; Pérez-Marín, C.C.; Corona, R.; Luna-Orozco, J.R.; Véliz-Deras, F.G.; Delgado-Gonzalez, R.; Rodriguez-Venegas, R.; Rosales-Nieto, C.A.; Bustamante-Andrade, J.A.; et al. Goats as Valuable Animal Model to Test the Targeted Glutamate Supplementation upon Antral Follicle Number, Ovulation Rate, and LH-Pulsatility. Biology 2022, 11, 1015. https://doi.org/10.3390/biology11071015
Luna-García LA, Meza-Herrera CA, Pérez-Marín CC, Corona R, Luna-Orozco JR, Véliz-Deras FG, Delgado-Gonzalez R, Rodriguez-Venegas R, Rosales-Nieto CA, Bustamante-Andrade JA, et al. Goats as Valuable Animal Model to Test the Targeted Glutamate Supplementation upon Antral Follicle Number, Ovulation Rate, and LH-Pulsatility. Biology. 2022; 11(7):1015. https://doi.org/10.3390/biology11071015
Chicago/Turabian StyleLuna-García, Luis A., César A. Meza-Herrera, Carlos C. Pérez-Marín, Rebeca Corona, Juan R. Luna-Orozco, Francisco G. Véliz-Deras, Ramón Delgado-Gonzalez, Rafael Rodriguez-Venegas, Cesar A. Rosales-Nieto, Jorge A. Bustamante-Andrade, and et al. 2022. "Goats as Valuable Animal Model to Test the Targeted Glutamate Supplementation upon Antral Follicle Number, Ovulation Rate, and LH-Pulsatility" Biology 11, no. 7: 1015. https://doi.org/10.3390/biology11071015
APA StyleLuna-García, L. A., Meza-Herrera, C. A., Pérez-Marín, C. C., Corona, R., Luna-Orozco, J. R., Véliz-Deras, F. G., Delgado-Gonzalez, R., Rodriguez-Venegas, R., Rosales-Nieto, C. A., Bustamante-Andrade, J. A., & Gutierrez-Guzman, U. N. (2022). Goats as Valuable Animal Model to Test the Targeted Glutamate Supplementation upon Antral Follicle Number, Ovulation Rate, and LH-Pulsatility. Biology, 11(7), 1015. https://doi.org/10.3390/biology11071015