Neutrophile-Lymphocyte Ratio and Outcome in Takotsubo Syndrome
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Endpoints
2.4. Statistics
3. Results
Parameter | Total | No Complications (n = 288) | Complications (n = 49) | p Value |
---|---|---|---|---|
demographics | ||||
female sex | 86.9% (n = 293) | 87.5% (n = 253) | 83.3% (n = 40) | 0.486 |
age | 72 (62–79) | 72 (62–79) | 73 (65–81) | 0.437 |
comorbidities | ||||
arterial hypertension | 61.7% (n = 208) | 61.5% (n = 177) | 63.3% (n = 31) | 0.875 |
hyperlipidemia | 34.1% (n = 115) | 34.7% (n = 100) | 30.6% (n = 15) | 0.628 |
history of coronary artery disease | 11.0% (n = 37) | 10.8% (n = 31) | 12.2% (n = 6) | 0.805 |
atrial fibrillation | 12.8% (n = 43) | 12.5% (n = 36) | 14.3% (n = 7) | 0.816 |
other supraventricular arrhythmia | 1.2% (n = 4) | 1.4% (n = 4) | 0% (n = 0) | 1.000 |
chronic kidney disease | 13.6% (n = 46) | 10.4% (n = 30) | 32.7% (n = 16) | <0.001 * |
COPD | 22% (n = 74) | 21.9% (n = 63) | 22.4% (n = 11) | 1.000 |
diabetes mellitus type 2 | 15.7% (n = 53) | 14.6% (n = 42) | 22.4% (n = 11) | 0.201 |
psychiatric disease | 21.4% (n = 72) | 22.9% (n = 66) | 12.2% (n = 6) | 0.130 |
history of previous TTS | 1.2% (n = 4) | 1.4% (n = 4) | 0% (n = 0) | 1.000 |
current smoker | 23.5% (n = 74) | 22.2% (n = 59) | 30.6% (n = 15) | 0.204 |
previous smoker | 14.3% (n = 45) | 16.5% (n = 44) | 2% (n = 1) | 0.006 * |
triggers for TTS | ||||
emotional trigger | 21.9% (n = 74) | 24.2% (n = 70) | 8.2% (n = 4) | 0.014 * |
physical trigger | 25.4% (n = 86) | 24.2% (n = 70) | 32.7% (n = 16) | 0.217 |
both emotional and physical trigger | 4.3% (n = 12) | 4.3% (n = 10) | 4.9% (n = 2) | 0.695 |
unclear trigger | 49.1% (n = 166) | 48.1% (n = 139) | 55.1% (n = 27) | 0.440 |
laboratory tests | ||||
hs-troponin T (ng/L, n = 121 [35.8%]) | 192 (69–416) | 194 (75–417.75) | 138 (53–328) | 0.361 |
hs-troponin I (pg/mL, n = 7 [2.1%]) | 3165 ± 3726 | 3165 ± 3726 | N/A | N/A |
troponin I (ng/mL, n = 195 [57.7%]) | 1.82 (0.448–4.105) | 1.59 (0.448–4.023) | 2.215 (0.458–4.803) | 0.603 |
elevated troponin | 97.7% (n = 214) | 97.3% (n = 177) | 100% (n = 37) | 0.592 |
leukocytes at admission (G/L) | 9.88 (7.82–13.17) | 9.90 (7.81–12.99) | 9.61 (7.85–15.51) | 0.622 |
CRP at admission (mg/L) | 5.4 (2.8–14.3) | 4.8 (2.8–12.6) | 9.2 (4.1–60.4) | 0.002 * |
neutrophile granulocytes (G/L) | 7.3 (5.0–10.9) | 6.9 (5.0–10.4) | 9.3 (6.3–15.1) | 0.005 * |
lymphocytes (G/L) | 1.7 (1.11–2.32) | 1.8 (1.2–2.4) | 1.5 (0.9–2.1) | 0.019 * |
NLR at admission | 4.33 (2.51–7.93) | 4.05 (2.49–7.00) | 6.12 (3.40–15.09) | 0.002 * |
nt-proBNP (pg/mL, n = 198 [58.6%]) | 2352 (742–6030) | 2417 (738–5799) | 1930 (784–7739) | 0.828 |
imaging | ||||
left ventricular ejection fraction (%, n = 285 [84.3%]) | 46.0 ± 13.7 | 48.0 ± 12.3 | 35.4 ± 15.4 | <0.001 * |
right ventricular involvement (n = 167 [49.4%] | 5.4% (n = 9) | 5.0% (n = 7) | 7.4% (n = 2) | 0.639 |
apical ballooning | 48.5% (n = 148) | 51.7% (n = 134) | 30.4% (n = 14) | 0.010 * |
midventricular ballooning | 48.5% (n = 148) | 45.2% (n = 117) | 67.4% (n = 31) | 0.006 * |
basal ballooning | 2.3% (n = 7) | 2.3% (n = 6) | 2.2% (n = 1) | 1.000 |
combined scores | ||||
GEIST score [10] (n = 161 [47.6%]) | −0.4 (−0.5–19.5) | −0.4 (−0.5–19.5) | −0.2 (−0.4–19.6) | 0.034 * |
hospital stay | ||||
hospital stay (days) | 5 (3–10) | 5 (3–8) | 11 (6–25) | <0.001 * |
4. Discussion
Limitations and Strengths
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Subgroup | n | OR (95% CI) | p | p for Interaction |
---|---|---|---|---|
Age ≥ 70 years | 194 | 1.05 (1.01–1.09) | 0.006 | 0.622 |
Age < 70 years | 128 | 1.04 (1.00–1.08) | 0.030 | |
Female gender | 286 | 1.04 (1.02–1.07) | 0.003 | 0.676 |
Male gender | 37 | 1.06 (1.00–1.16) | 0.098 | |
LVEF ≥ 45% | 155 | 1.04 (1.00–1.07) | 0.028 | <0.001 |
LVEF < 45% | 117 | 1.06 (1.02–1.12) | 0.008 |
References
- Lyon, A.R.; Bossone, E.; Schneider, B.; Sechtem, U.; Citro, R.; Underwood, S.R.; Sheppard, M.N.; Figtree, G.A.; Parodi, G.; Akashi, Y.J.; et al. Current state of knowledge on Takotsubo syndrome: A Position Statement from the Taskforce on Takotsubo Syndrome of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2016, 18, 8–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weihs, V.; Szucs, D.; Fellner, B.; Eber, B.; Weihs, W.; Lambert, T.; Metzler, B.; Titscher, G.; Hochmayer, B.; Dechant, C.; et al. Electrocardiogram changes and wall motion abnormalities in the acute phase of Tako-Tsubo syndrome. Eur. Heart J. Acute Cardiovasc. Care 2016, 5, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Medina de Chazal, H.; Del Buono, M.G.; Keyser-Marcus, L.; Ma, L.; Moeller, F.G.; Berrocal, D.; Abbate, A. Stress Cardiomyopathy Diagnosis and Treatment: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2018, 72, 1955–1971. [Google Scholar] [CrossRef]
- Summers, M.R.; Prasad, A. Takotsubo cardiomyopathy: Definition and clinical profile. Heart Fail Clin. 2013, 9, 111–122. [Google Scholar] [CrossRef]
- Citro, R.; Rigo, F.; D’Andrea, A.; Ciampi, Q.; Parodi, G.; Provenza, G.; Piccolo, R.; Mirra, M.; Zito, C.; Giudice, R.; et al. Echocardiographic correlates of acute heart failure, cardiogenic shock, and in-hospital mortality in tako-tsubo cardiomyopathy. JACC Cardiovasc. Imaging 2014, 7, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Redfors, B.; Vedad, R.; Angeras, O.; Ramunddal, T.; Petursson, P.; Haraldsson, I.; Ali, A.; Dworeck, C.; Odenstedt, J.; Ioaness, D.; et al. Mortality in takotsubo syndrome is similar to mortality in myocardial infarction—A report from the SWEDEHEART registry. Int. J. Cardiol. 2015, 185, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.; Athanasiadis, A.; Schwab, J.; Pistner, W.; Gottwald, U.; Schoeller, R.; Toepel, W.; Winter, K.D.; Stellbrink, C.; Muller-Honold, T.; et al. Complications in the clinical course of tako-tsubo cardiomyopathy. Int. J. Cardiol. 2014, 176, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Jesel, L.; Berthon, C.; Messas, N.; Lim, H.S.; Girardey, M.; Marzak, H.; Marchandot, B.; Trinh, A.; Ohlmann, P.; Morel, O. Ventricular arrhythmias and sudden cardiac arrest in Takotsubo cardiomyopathy: Incidence, predictive factors, and clinical implications. Heart Rhythm. 2018, 15, 1171–1178. [Google Scholar] [CrossRef]
- Kim, H.; Senecal, C.; Lewis, B.; Prasad, A.; Rajiv, G.; Lerman, L.O.; Lerman, A. Natural history and predictors of mortality of patients with Takotsubo syndrome. Int. J. Cardiol. 2018, 267, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Santoro, F.; Núñez Gil, I.J.; Stiermaier, T.; El-Battrawy, I.; Guerra, F.; Novo, G.; Guastafierro, F.; Tarantino, N.; Novo, S.; Mariano, E.; et al. Assessment of the German and Italian Stress Cardiomyopathy Score for Risk Stratification for In-hospital Complications in Patients with Takotsubo Syndrome. JAMA Cardiol. 2019, 4, 892–899. [Google Scholar] [CrossRef]
- Yerasi, C.; Tripathi, B.; Banga, S.; McNown, C.; Jonnalagadda, A.K.; Al-Qaisi, S.; Miryala, V.; Nafisi, S.; Waksman, R.; Ben-Dor, I. Predictors of 90-Day Readmission and in-Hospital Mortality in Takotsubo Cardiomyopathy: An Analysis of 28,079 Index Admissions. Cardiovasc. Revasc. Med. 2019, 20, 973–979. [Google Scholar] [CrossRef] [PubMed]
- Syed, M.; Khan, M.Z.; Osman, M.; Alharbi, A.; Khan, M.U.; Munir, M.B.; Balla, S. Comparison of Outcomes in Patients with Takotsubo Syndrome With-vs-Without Cardiogenic Shock. Am. J. Cardiol. 2020, 136, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Santoro, F.; Guastafierro, F.; Zimotti, T.; Mallardi, A.; Leopizzi, A.; Cannone, M.; Di Biase, M.; Brunetti, N.D. Neutrophil/lymphocyte ratio predicts in-hospital complications in Takotsubo syndrome. Results from a prospective multi-center registry. Clin. Cardiol. 2020, 43, 1294–1300. [Google Scholar] [CrossRef]
- Weihs, V.; Szucs, D.; Fellner, B.; Eber, B.; Weihs, W.; Lambert, T.; Metzler, B.; Titscher, G.; Hochmayer, B.; Dechant, C.; et al. Stress-induced cardiomyopathy (Tako-Tsubo syndrome) in Austria. Eur. Heart J. Acute Cardiovasc. Care 2013, 2, 137–146. [Google Scholar] [CrossRef]
- Rickham, P.P. Human Experimentation. Code of Ethics of the World Medical Association. Declaration of Helsinki. Br. Med. J. 1964, 2, 177. [Google Scholar] [CrossRef] [Green Version]
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [Green Version]
- Pogran, E.; Abd El-Razek, A.; Gargiulo, L.; Weihs, V.; Kaufmann, C.; Horvath, S.; Geppert, A.; Nurnberg, M.; Wessely, E.; Smetana, P.; et al. Long-term outcome in patients with takotsubo syndrome: A single center study from Vienna. Wien. Klin. Wochenschr. 2021, 134, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Lebhart, G.; Neustädter, C.; Kytir, J. The new Population Register at Statistics Austria: Conceptualization and Methodology for Register-based Flow and Stock Statistics. Austrian J. Stat. 2007, 36, 277–289. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Chow, C.K.; Teo, K.K.; Rangarajan, S.; Islam, S.; Gupta, R.; Avezum, A.; Bahonar, A.; Chifamba, J.; Dagenais, G.; Diaz, R.; et al. Prevalence, awareness, treatment, and control of hypertension in rural and urban communities in high-, middle-, and low-income countries. JAMA 2013, 310, 959–968. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christensen, T.E.; Bang, L.E.; Holmvang, L.; Hasbak, P.; Kjaer, A.; Bech, P.; Ostergaard, S.D. Neuroticism, depression and anxiety in takotsubo cardiomyopathy. BMC Cardiovasc. Disord. 2016, 16, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regnante, R.A.; Zuzek, R.W.; Weinsier, S.B.; Latif, S.R.; Linsky, R.A.; Ahmed, H.N.; Sadiq, I. Clinical characteristics and four-year outcomes of patients in the Rhode Island Takotsubo Cardiomyopathy Registry. Am. J. Cardiol. 2009, 103, 1015–1019. [Google Scholar] [CrossRef]
- Summers, M.R.; Lennon, R.J.; Prasad, A. Pre-morbid psychiatric and cardiovascular diseases in apical ballooning syndrome (tako-tsubo/stress-induced cardiomyopathy): Potential pre-disposing factors? J. Am. Coll. Cardiol. 2010, 55, 700–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weihs, V.; Pogran, E.; Kunschitz, E.; Weihs, W.; Prinz, E.; Eichenberg, C.; Fiegl, J.; Friedrich, O.; Huber, K. Psychocardiological assessment in the acute phase of the takotsubo syndrome: Somatic and depressive disorders, resilience and illness perception. Wien. Klin. Wochenschr. 2021, 134, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Del Buono, M.G.; Montone, R.A.; Meucci, M.C.; La Vecchia, G.; Camilli, M.; Giraldi, L.; Pedicino, D.; Trani, C.; Sanna, T.; Galiuto, L.; et al. Left ventricular end-diastolic pressure predicts in-hospital outcomes in takotsubo syndrome. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 661–667. [Google Scholar] [CrossRef]
- Kato, K.; Sakai, Y.; Ishibashi, I.; Himi, T.; Fujimoto, Y.; Kobayashi, Y. Predictors of in-hospital cardiac complications in patients with Takotsubo syndrome. Heart Vessel. 2018, 33, 1214–1219. [Google Scholar] [CrossRef]
- Bento, D.; Azevedo, O.; Santos, R.; Almeida, A.; Domingues, K.; Marmelo, B.; Reis, L.; Ruivo, C.; Guerreiro, R.; Lima, R.; et al. Short- and medium-term prognosis of Takotsubo syndrome in a Portuguese population. Rev. Port. Cardiol. 2019, 38, 349–357. [Google Scholar] [CrossRef]
- Jha, S.; Zeijlon, R.; Enabtawi, I.; Espinosa, A.S.; Chamat, J.; Omerovic, E.; Redfors, B. Electrocardiographic predictors of adverse in-hospital outcomes in the Takotsubo syndrome. Int. J. Cardiol. 2020, 299, 43–48. [Google Scholar] [CrossRef]
- Pelargonio, G.; La Rosa, G.; Di Stasio, E.; Narducci, M.L.; Rocco, E.; Angelini, A.; Pinnacchio, G.; Bencardino, G.; Perna, F.; Comerci, G.; et al. Ventricular arrhythmias in Takotsubo Syndrome: Incidence, predictors and clinical outcomes. J. Cardiovasc. Med. 2021, 22, 180–189. [Google Scholar] [CrossRef]
- Zalewska-Adamiec, M.; Małyszko, J.; Bachórzewska-Gajewska, H.; Tomaszuk-Kazberuk, A.; Kożuch, M.; Kralisz, P.; Dobrzycki, S. Takotsubo syndrome and chronic kidney disease: A deadly duet in long-term follow-up. Pol. Arch. Intern. Med. 2018, 128, 518–523. [Google Scholar] [CrossRef] [Green Version]
- Uribarri, A.; Nunez-Gil, I.J.; Conty, D.A.; Vedia, O.; Almendro-Delia, M.; Duran Cambra, A.; Martin-Garcia, A.C.; Barrionuevo-Sanchez, M.; Martinez-Selles, M.; Raposeiras-Roubin, S.; et al. Short- and Long-Term Prognosis of Patients With Takotsubo Syndrome Based on Different Triggers: Importance of the Physical Nature. J. Am. Heart Assoc. 2019, 8, e013701. [Google Scholar] [CrossRef] [PubMed]
- Afari, M.E.; Bhat, T. Neutrophil to lymphocyte ratio (NLR) and cardiovascular diseases: An update. Expert Rev. Cardiovasc. Ther. 2016, 14, 573–577. [Google Scholar] [CrossRef] [PubMed]
- Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 2005, 352, 1685–1695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, X.H.; Chen, Q.; Shi, Y.; Li, H.W. Association of neutrophil/lymphocyte ratio with long-term mortality after ST elevation myocardial infarction treated with primary percutaneous coronary intervention. Chin. Med. J. 2010, 123, 3438–3443. [Google Scholar] [PubMed]
- Dentali, F.; Nigro, O.; Squizzato, A.; Gianni, M.; Zuretti, F.; Grandi, A.M.; Guasti, L. Impact of neutrophils to lymphocytes ratio on major clinical outcomes in patients with acute coronary syndromes: A systematic review and meta-analysis of the literature. Int. J. Cardiol. 2018, 266, 31–37. [Google Scholar] [CrossRef]
- Im, S.I.; Shin, S.Y.; Na, J.O.; Kim, Y.H.; Choi, C.U.; Kim, S.H.; Kim, J.W.; Kim, E.J.; Han, S.W.; Rha, S.W.; et al. Usefulness of neutrophil/lymphocyte ratio in predicting early recurrence after radiofrequency catheter ablation in patients with atrial fibrillation. Int. J. Cardiol. 2013, 168, 4398–4400. [Google Scholar] [CrossRef]
- Gibson, P.H.; Cuthbertson, B.H.; Croal, B.L.; Rae, D.; El-Shafei, H.; Gibson, G.; Jeffrey, R.R.; Buchan, K.G.; Hillis, G.S. Usefulness of neutrophil/lymphocyte ratio as predictor of new-onset atrial fibrillation after coronary artery bypass grafting. Am. J. Cardiol. 2010, 105, 186–191. [Google Scholar] [CrossRef]
- Ding, B.; Liu, P.; Zhang, F.; Hui, J.; He, L. Predicting Values of Neutrophil-to-Lymphocyte Ratio (NLR), High-Sensitivity C-Reactive Protein (hs-CRP), and Left Atrial Diameter (LAD) in Patients with Nonvalvular Atrial Fibrillation Recurrence After Radiofrequency Ablation. Med. Sci. Monit. 2022, 28, e934569. [Google Scholar] [CrossRef]
- Benites-Zapata, V.A.; Hernandez, A.V.; Nagarajan, V.; Cauthen, C.A.; Starling, R.C.; Tang, W.H. Usefulness of neutrophil-to-lymphocyte ratio in risk stratification of patients with advanced heart failure. Am. J. Cardiol. 2015, 115, 57–61. [Google Scholar] [CrossRef]
- Dominguez, Y.C.; Mathur, A.P.; Angeli, D.; Cocke, T.; Vaidya, P.; Elmann, E.M.; Luozzo, G.D.; Ng, A.; Delaportas, E.; Hillary, N.; et al. TCT-676 Prognostic Impact of Neutrophil to Lymphocyte Ratio in Patients Undergoing Transcatheter Aortic Valve Replacement. J. Am. Coll. Cardiol. 2015, 66, B276–B277. [Google Scholar] [CrossRef] [Green Version]
- Núñez, J.; Fácila, L.; Llàcer, A.; Sanchís, J.; Bodí, V.; Bertomeu, V.; Sanjuán, R.; Blasco, M.L.; Consuegra, L.; Bosch, M.J.; et al. Prognostic value of white blood cell count in acute myocardial infarction: Long-term mortality. Rev. Esp. Cardiol. 2005, 58, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghadri, J.R.; Wittstein, I.S.; Prasad, A.; Sharkey, S.; Dote, K.; Akashi, Y.J.; Cammann, V.L.; Crea, F.; Galiuto, L.; Desmet, W.; et al. International Expert Consensus Document on Takotsubo Syndrome (Part I): Clinical Characteristics, Diagnostic Criteria, and Pathophysiology. Eur. Heart J. 2018, 39, 2032–2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmann, M.; Sautner, T. Immunomodulatory effects of vasoactive catecholamines. Wien. Klin. Wochenschr. 2002, 114, 752–761. [Google Scholar] [PubMed]
- Kim, M.H.; Gorouhi, F.; Ramirez, S.; Granick, J.L.; Byrne, B.A.; Soulika, A.M.; Simon, S.I.; Isseroff, R.R. Catecholamine stress alters neutrophil trafficking and impairs wound healing by beta2-adrenergic receptor-mediated upregulation of IL-6. J. Invest. Dermatol. 2014, 134, 809–817. [Google Scholar] [CrossRef] [Green Version]
- Flierl, M.A.; Rittirsch, D.; Nadeau, B.A.; Chen, A.J.; Sarma, J.V.; Zetoune, F.S.; McGuire, S.R.; List, R.P.; Day, D.E.; Hoesel, L.M.; et al. Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 2007, 449, 721–725. [Google Scholar] [CrossRef] [Green Version]
- Scally, C.; Abbas, H.; Ahearn, T.; Srinivasan, J.; Mezincescu, A.; Rudd, A.; Spath, N.; Yucel-Finn, A.; Yuecel, R.; Oldroyd, K.; et al. Myocardial and Systemic Inflammation in Acute Stress-Induced (Takotsubo) Cardiomyopathy. Circulation 2019, 139, 1581–1592. [Google Scholar] [CrossRef]
- Lachmet-Thebaud, L.; Marchandot, B.; Matsushita, K.; Sato, C.; Dagrenat, C.; Greciano, S.; De Poli, F.; Leddet, P.; Peillex, M.; Hess, S.; et al. Impact of residual inflammation on myocardial recovery and cardiovascular outcome in Takotsubo patients. ESC Heart Fail. 2021, 8, 259–269. [Google Scholar] [CrossRef]
Complication | Proportion (Absolute Count) |
---|---|
total in-hospital complications | 33.1% (n = 112) |
severe in-hospital complications | 14.5% (n = 49) |
cardiogenic shock | 9.8% (n = 33) |
in-hospital death | 3.3% (n = 11) |
respiratory failure requiring intubation | 1.2% (n = 4) |
stroke | 0.6% (n = 2) |
persistent ventricular tachycardia | 0.6% (n = 2) |
ventricular fibrillation | 0.6% (n = 2) |
symptomatic AV block | 0.3% (n = 1) |
hypoxic brain injury | 0.3% (n = 1) |
other in-hospital complications | |
respiratory failure without intubation | 7.7% (n = 26) |
new-onset atrial fibrillation | 3.6% (n = 12) |
acute kidney failure | 5.3% (n = 18) |
Bleeding | 5.0% (n = 17) |
atrial fibrillation | 3.6% (n = 12) |
urinary tract infection | 3.6% (n = 12) |
pneumonia | 2.7% (n = 9) |
sepsis (without shock) | 1.5% (n = 5) |
left-ventricular thrombus | 0.9% (n = 3) |
mitral regurgitation (conservative treatment) | 1.2% (n = 4) |
infection of unknown origin | 0.9% (n = 3) |
pericardial effusion | 0.3% (n = 1) |
enteritis | 0.3% (n = 1) |
lower limb ischemia | 0.3% (n = 1) |
aneurysma spurium | 0.3% (n = 1) |
Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|
Parameter | OR (95% CI) | p Value | OR (95% CI) | p Value |
age (per year) | 1.01 (0.98–1.04) | 0.437 | 1.00 (0.97–1.04) | 0.822 |
chronic kidney disease | 4.18 (2.03–8.41) | <0.001 | 1.84 (0.78–4.37) | 0.164 |
previous smoker | 0.11 (0.01–0.50) | 0.006 | 0.13 (0.02–1.06) | 0.056 |
emotional trigger | 0.28 (0.08–0.72) | 0.014 | 0.55 (0.17–1.76) | 0.312 |
CRP at admission | 1.01 (1.00–1.02) | 0.002 | 1.01 (1.00–1.02) | 0.076 |
NLR at admission | 1.04 (1.02–1.07) | 0.002 | 1.04 (1.01–1.08) | 0.009 * |
LVEF (per %) | 0.92 (0.90–0.95) | <0.001 | 0.93 (0.90–0.96) | <0.001 * |
apical ballooning | 0.41 (0.20–0.79) | 0.010 | 0.78 (0.08–7.50) | 0.826 |
midventricular ballooning | 2.51 (1.31–4.99) | 0.006 | 0.98 (0.10–9.84) | 0.986 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zweiker, D.; Pogran, E.; Gargiulo, L.; Abd El-Razek, A.; Lechner, I.; Vosko, I.; Rechberger, S.; Bugger, H.; Christ, G.; Bonderman, D.; et al. Neutrophile-Lymphocyte Ratio and Outcome in Takotsubo Syndrome. Biology 2022, 11, 1154. https://doi.org/10.3390/biology11081154
Zweiker D, Pogran E, Gargiulo L, Abd El-Razek A, Lechner I, Vosko I, Rechberger S, Bugger H, Christ G, Bonderman D, et al. Neutrophile-Lymphocyte Ratio and Outcome in Takotsubo Syndrome. Biology. 2022; 11(8):1154. https://doi.org/10.3390/biology11081154
Chicago/Turabian StyleZweiker, David, Edita Pogran, Laura Gargiulo, Ahmed Abd El-Razek, Ivan Lechner, Ivan Vosko, Stefan Rechberger, Heiko Bugger, Günter Christ, Diana Bonderman, and et al. 2022. "Neutrophile-Lymphocyte Ratio and Outcome in Takotsubo Syndrome" Biology 11, no. 8: 1154. https://doi.org/10.3390/biology11081154
APA StyleZweiker, D., Pogran, E., Gargiulo, L., Abd El-Razek, A., Lechner, I., Vosko, I., Rechberger, S., Bugger, H., Christ, G., Bonderman, D., Kunschitz, E., Czedik-Eysenberg, C., Roithinger, A., Weihs, V., Kaufmann, C. C., Zirlik, A., Bauer, A., Metzler, B., Lambert, T., ... Huber, K. (2022). Neutrophile-Lymphocyte Ratio and Outcome in Takotsubo Syndrome. Biology, 11(8), 1154. https://doi.org/10.3390/biology11081154