Middle Miocene lotus (Nelumbonaceae, Nelumbo) from the Qaidam Basin, Northern Tibet Plateau
Abstract
:Simple Summary
Abstract
1. Introduction
2. Geological Background
3. Materials and Methods
4. Results
5. Discussion
5.1. Comparisons
5.2. Paleoenvironmental Significance
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dupont-Nivet, G.; Hoorn, C.; Konert, M. Tibetan Uplift Prior to the Eocene-Oligocene Climate Transition: Evidence from Pollen Analysis of the Xining Basin. Geology 2008, 36, 987–990. [Google Scholar] [CrossRef]
- Miao, Y.-F.; Fang, X.-M.; Wu, F.-L.; Cai, M.-T.; Song, C.-H.; Meng, Q.-Q.; Xu, L. Late Cenozoic Continuous Aridification in the Western Qaidam Basin: Evidence from Sporopollen Records. Clim. Past 2013, 9, 1863–1877. [Google Scholar] [CrossRef]
- Heller, F. Magnetostratigraphical Dating of Loess Deposits in China. Nature 1982, 300, 431–433. [Google Scholar] [CrossRef]
- Guo, Z.-T.; Ruddiman, W.F.; Hao, Q.-Z.; Wu, H.-B.; Qiao, Y.-S.; Zhu, R.-X.; Peng, S.-Z.; Wei, J.-J.; Yuan, B.-Y.; Liu, T.-S. Onset of Asian Desertification by 22 Myr Ago Inferred from Loess Deposits in China. Nature 2002, 416, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.-T.; Sun, B.-N.; Zhang, Z.-S.; Peng, S.-Z.; Xiao, G.-Q.; Ge, J.-Y.; Hao, Q.-Z.; Qiao, Y.-S.; Liang, M.-M.; Liu, J.-Q.; et al. A Major Reorganization of Asian Climate Regime by the Early Miocene. Clim. Past 2008, 4, 153–174. [Google Scholar] [CrossRef]
- Lu, H.; Wang, X.; Li, L. Aeolian Sediment Evidence That Global Cooling Has Driven Late Cenozoic Stepwise Aridification in Central Asia. Geol. Soc. Lond. Spec. Publ. 2010, 342, 29–44. [Google Scholar] [CrossRef]
- Ke, X.; Ji, J.-L.; Song, B.-W.; Wang, C.-W.; Zhang, J.-Y.; Sun, Z.-B.; Zhang, Z.-Y. The Cenozoic rock magnetic characteristics of the Dahonggou section in Qaidam Basin and the climate change. Geol. Bull. China 2013, 32, 111–119. [Google Scholar]
- Garzione, C.N.; Ikari, M.J.; Basu, A.R. Source of Oligocene to Pliocene Sedimentary Rocks in the Linxia Basin in Northeastern Tibet from Nd Isotopes: Implications for Tectonic Forcing of Climate. GSA Bull. 2005, 117, 1156–1166. [Google Scholar] [CrossRef]
- Hong, H.-L.; Xue, H.-J.; Zhang, K.; Zhu, Y.-H.; Xiang, S.-Y.; Fang, J. Occurrence of Palygorskite in Late Oligocene in Linxia Basin and Its Geological and Climatic Indicator. Earth Sci. 2007, 32, 598–604. [Google Scholar]
- Sun, B.; Wang, Y.-F.; Li, C.-S.; Yang, J.; Li, J.-F.; Li, Y.-L.; Deng, T.; Wang, S.-Q.; Zhao, M.; Spicer, R.A.; et al. Early Miocene Elevation in Northern Tibet Estimated by Palaeobotanical Evidence. Sci. Rep. 2015, 5, 10379. [Google Scholar] [CrossRef]
- Qiang, X.-K.; An, Z.-S.; Song, Y.-G.; Chang, H.; Sun, Y.-B.; Liu, W.-G.; Ao, H.; Dong, J.-B.; Fu, C.-F.; Wu, F.; et al. New Eolian Red Clay Sequence on the Western Chinese Loess Plateau Linked to Onset of Asian Desertification about 25 Ma Ago. Sci. China Earth Sci. 2011, 54, 136–144. [Google Scholar] [CrossRef]
- Licht, A.; van Cappelle, M.; Abels, H.A.; Ladant, J.-B.; Trabucho-Alexandre, J.; France-Lanord, C.; Donnadieu, Y.; Vandenberghe, J.; Rigaudier, T.; Lécuyer, C.; et al. Asian Monsoons in a Late Eocene Greenhouse World. Nature 2014, 513, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Caves, J.K.; Winnick, M.J.; Graham, S.A.; Sjostrom, D.J.; Mulch, A.; Chamberlain, C.P. Role of the Westerlies in Central Asia Climate over the Cenozoic. Earth Planet. Sci. Lett. 2015, 428, 33–43. [Google Scholar] [CrossRef]
- Bond, W.J.; Midgley, G.F. Carbon Dioxide and the Uneasy Interactions of Trees and Savannah Grasses. Philos. Trans. R. Soc. B Biol. Sci. 2012, 367, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Ruddiman, W.F.; Kutzbach, J.E. Forcing of Late Cenozoic Northern Hemisphere Climate by Plateau Uplift in Southern Asia and the American West. J. Geophys. Res. Atmos. 1989, 94, 18409–18427. [Google Scholar] [CrossRef]
- Miao, Y.-F.; Herrmann, M.; Wu, F.-L.; Yan, X.-L.; Yang, S.-L. What Controlled Mid–Late Miocene Long-Term Aridification in Central Asia?—Global Cooling or Tibetan Plateau Uplift: A Review. Earth-Sci. Rev. 2012, 112, 155–172. [Google Scholar] [CrossRef]
- Li, J.-X.; Yue, L.-P.; Roberts, A.P.; Hirt, A.M.; Pan, F.; Guo, L.; Xu, Y.; Xi, R.-G.; Guo, L.; Qiang, X.-K.; et al. Global Cooling and Enhanced Eocene Asian Mid-Latitude Interior Aridity. Nat. Commun. 2018, 9, 3026. [Google Scholar] [CrossRef]
- Kutzbach, J.E.; Guetter, P.J.; Ruddiman, W.F.; Prell, W.L. Sensitivity of Climate to Late Cenozoic Uplift in Southern Asia and the American West: Numerical Experiments. J. Geophys. Res. 1989, 94, 18393. [Google Scholar] [CrossRef]
- Kutzbach, J.E.; Prell, W.L.; Ruddiman, W.F. Sensitivity of Eurasian Climate to Surface Uplift of the Tibetan Plateau. J. Geol. 1993, 101, 177–190. [Google Scholar] [CrossRef]
- An, Z.-S.; Kutzbach, J.E.; Prell, W.L.; Porter, S.C. Evolution of Asian Monsoons and Phased Uplift of the Himalaya–Tibetan Plateau since Late Miocene Times. Nature 2001, 411, 62–66. [Google Scholar] [CrossRef]
- Zhang, R.; Jiang, D.-B.; Ramstein, G.; Zhang, Z.-S.; Lippert, P.C.; Yu, E.-T. Changes in Tibetan Plateau Latitude as an Important Factor for Understanding East Asian Climate since the Eocene: A Modeling Study. Earth Planet. Sci. Lett. 2018, 484, 295–308. [Google Scholar] [CrossRef]
- Bosboom, R.; Dupont-Nivet, G.; Grothe, A.; Brinkhuis, H.; Villa, G.; Mandic, O.; Stoica, M.; Kouwenhoven, T.; Huang, W.-T.; Yang, W.; et al. Timing, Cause and Impact of the Late Eocene Stepwise Sea Retreat from the Tarim Basin (West China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 403, 101–118. [Google Scholar] [CrossRef]
- Jia, Y.; Wu, H.; Zhang, W.; Li, Q.; Yu, Y.; Zhang, C.; Sun, A. Quantitative Cenozoic Climatic Reconstruction and Its Implications for Aridification of the Northeastern Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 567, 110244. [Google Scholar] [CrossRef]
- Ramstein, G.; Fluteau, F.; Besse, J.; Joussaume, S. Effect of Orogeny, Plate Motion and Land–Sea Distribution on Eurasian Climate Change over the Past 30 Million Years. Nature 1997, 386, 788–795. [Google Scholar] [CrossRef]
- Bougeois, L.; Dupont-Nivet, G.; de Rafélis, M.; Tindall, J.C.; Proust, J.-N.; Reichart, G.-J.; de Nooijer, L.J.; Guo, Z.-J.; Ormukov, C. Asian Monsoons and Aridification Response to Paleogene Sea Retreat and Neogene Westerly Shielding Indicated by Seasonality in Paratethys Oysters. Earth Planet. Sci. Lett. 2018, 485, 99–110. [Google Scholar] [CrossRef]
- Kaya, M.Y.; Dupont-Nivet, G.; Proust, J.-N.; Roperch, P.; Bougeois, L.; Meijer, N.; Frieling, J.; Fioroni, C.; Özkan Altıner, S.; Vardar, E.; et al. Paleogene Evolution and Demise of the Proto-Paratethys Sea in Central Asia (Tarim and Tajik Basins): Role of Intensified Tectonic Activity at ca. 41 Ma. Basin Res. 2019, 31, 461–486. [Google Scholar] [CrossRef]
- Yin, A.; Dang, Y.-Q.; Wang, L.-C.; Jiang, W.-M.; Zhou, S.-P.; Chen, X.-H.; Gehrels, G.E.; McRivette, M.W. Cenozoic Tectonic Evolution of Qaidam Basin and Its Surrounding Regions (Part 1): The Southern Qilian Shan-Nan Shan Thrust Belt and Northern Qaidam Basin. GSA Bull. 2008, 120, 813–846. [Google Scholar] [CrossRef]
- Wei, M.-J.; Wang, C.-S.; Wan, X.-Q.; Yin, H.-S. Variation history of height and vegetation of the Tibet Plateau in Tertiary. Geoscience 1998, 12, 25–33. [Google Scholar]
- Wang, Y.-D.; Zheng, J.-L.; Zhang, W.-L.; Li, S.-Y.; Liu, X.-W.; Yang, X.; Liu, Y.-H. Cenozoic Uplift of the Tibetan Plateau: Evidence from the Tectonic–Sedimentary Evolution of the Western Qaidam Basin. Geosci. Front. 2012, 3, 175–187. [Google Scholar] [CrossRef]
- Wang, X.-M.; Qiu, Z.-D.; Li, Q.; Wang, B.-Y.; Qiu, Z.-X.; Downs, W.R.; Xie, G.-P.; Xie, J.-Y.; Deng, T.; Takeuchi, G.T.; et al. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2007, 254, 363–385. [Google Scholar] [CrossRef]
- Bush, M.A.; Saylor, J.E.; Horton, B.K.; Nie, J.-S. Growth of the Qaidam Basin during Cenozoic Exhumation in the Northern Tibetan Plateau: Inferences from Depositional Patterns and Multiproxy Detrital Provenance Signatures. Lithosphere 2016, 8, 58–82. [Google Scholar] [CrossRef]
- Xia, G.-Q.; Wu, C.-H.; Li, G.-J.; Li, G.-W.; Yi, H.-S.; Wagreich, M. Cenozoic Growth of the Eastern Kunlun Range (Northern Tibetan Plateau): Evidence from Sedimentary Records in the Southwest Qaidam Basin. Int. Geol. Rev. 2021, 63, 769–786. [Google Scholar] [CrossRef]
- Yang, F.; Qiao, Z.-Z.; Zhang, H.-Q.; Zhang, Y.-H.; Sun, Z.-C. Features of the Cenozoic ostracod fauna and environmental significance in Qaidam Basin. J. Palaeogeogr. 2006, 8, 143–156. [Google Scholar]
- Chen, S.-K.; Li, Q.; Wang, X.-M. Chalicothere fossils from the early Late Miocene of the Qaidam Basin, and their paleoenvironmental implications. Quat. Sci. 2015, 35, 528–538. [Google Scholar] [CrossRef]
- Song, B.-W.; Zhang, K.-X.; Ji, J.-L.; Han, F.; Wang, C.-W.; Wang, J.-X.; Ai, K.-K. Occurrence of Middle Miocene Fossil Cyprinid fish in the northern Qaidam Basin and its paleoenvironmental implications. Acta Geol. Sin. Ed. 2017, 91, 1530–1541. [Google Scholar] [CrossRef]
- Koutsodendris, A.; Allstädt, F.J.; Kern, O.A.; Kousis, I.; Schwarz, F.; Vannacci, M.; Woutersen, A.; Appel, E.; Berke, M.A.; Fang, X.; et al. Late Pliocene Vegetation Turnover on the NE Tibetan Plateau (Central Asia) Triggered by Early Northern Hemisphere Glaciation. Glob. Planet. Chang. 2019, 180, 117–125. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Huang, L.; Song, S.; Chen, Y.; Liu, C.-Y.; Zhou, F.; Zhang, Q.; Wu, Z.-X.; Lei, W.-L. Characteristics of Neogene palynology and palaeoenvironment significance in Yiliping Sag, Qaidam Basin. Geol. Rev. 2021, 67, 1586–1604. [Google Scholar] [CrossRef]
- Li, Q.-J.; Deng, W.; Wappler, T.; Utescher, T.; Maslova, N.; Liu, Y.-S.; Jia, H.; Song, C.-Y.; Su, T.; Quan, C. High Frequency of Arthropod Herbivore Damage in the Miocene Huaitoutala Flora from the Qaidam Basin, Northern Tibetan Plateau. Rev. Palaeobot. Palynol. 2022, 297, 104569. [Google Scholar] [CrossRef]
- Zhuang, G.-S.; Hourigan, J.K.; Koch, P.L.; Ritts, B.D.; Kent-Corson, M.L. Isotopic constraints on intensified aridity in Central Asia around 12Ma. Earth Planet. Sci. Lett. 2011, 312, 152–163. [Google Scholar] [CrossRef]
- Zhang, C.-F.; Wang, Y.; Li, Q.; Wang, X.-M.; Deng, T.; Tseng, Z.J.; Takeuchi, G.T.; Xie, G.-P.; Xu, Y.-F. Diets and environments of Late Cenozoic mammals in the Qaidam Basin, Tibetan Plateau: Evidence from stable isotopes. Earth Planet. Sci. Lett. 2012, 333–334, 70–82. [Google Scholar] [CrossRef]
- Zhuang, G.-S.; Brandon, M.T.; Pagani, M.; Krishnan, S. Leaf wax stable isotopes from Northern Tibetan Plateau: Implications for uplift and climate since 15 Ma. Earth Planet. Sci. Lett. 2014, 390, 186–198. [Google Scholar] [CrossRef]
- Jian, X.; Guan, P.; Fu, S.-T.; Zhang, D.-W.; Zhang, W.; Zhang, Y.-S. Miocene Sedimentary Environment and Climate Change in the Northwestern Qaidam Basin, Northeastern Tibetan Plateau: Facies, Biomarker and Stable Isotopic Evidences. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 414, 320–331. [Google Scholar] [CrossRef]
- Caves, J.K.; Sjostrom, D.J.; Mix, H.T.; Winnick, M.J.; Chamberlain, C.P. Aridification of Central Asia and Uplift of the Altai and Hangay Mountains, Mongolia: Stable Isotope Evidence. Am. J. Sci. 2014, 314, 1171–1201. [Google Scholar] [CrossRef]
- Song, B.; Spicer, R.A.; Zhang, K.; Ji, J.-L.; Farnsworth, A.; Hughes, A.C.; Yang, Y.-B.; Han, F.; Xu, Y.-D.; Spicer, T.; et al. Qaidam Basin Leaf Fossils Show Northeastern Tibet Was High, Wet and Cool in the Early Oligocene. Earth Planet. Sci. Lett. 2020, 537, 116175. [Google Scholar] [CrossRef]
- Bao, J.; Song, C.-H.; Yang, Y.-B.; Fang, X.-M.; Meng, Q.-Q.; Feng, Y.; He, P.-J. Reduced chemical weathering intensity in the Qaidam Basin (NE Tibetan Plateau) during the Late Cenozoic. J. Asian Earth Sci. 2019, 170, 155–165. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, F.-L.; Zheng, X.-W.; Hu, M.-L.; Dong, C.; Diao, Y.; Wang, Y.-W.; Xie, K.-Q.; Hu, Z.-L. Comparative Population Genomics Reveals Genetic Divergence and Selection in Lotus, Nelumbo nucifera. BMC Genom. 2020, 21, 146. [Google Scholar] [CrossRef]
- Lin, H.-H.; Hsu, J.-Y.; Tseng, C.-Y.; Huang, X.-Y.; Tseng, H.-C.; Chen, J.-H. Hepatoprotective Activity of Nelumbo nucifera Gaertn. Seedpod Extract Attenuated Acetaminophen-Induced Hepatotoxicity. Molecules 2022, 27, 4030. [Google Scholar] [CrossRef]
- F., J.B. Physiological Plant Anatomy. Nature 1914, 93, 477. [Google Scholar] [CrossRef]
- Gupta, S.C.; Paliwal, G.S.; Ahuja, R. The Stomata of Nelumbo nucifera: Formation, Distribution and Degeneration. Am. J. Bot. 1968, 55, 295–301. [Google Scholar] [CrossRef]
- Mathews, S.; Donoghue, M.J. Basal Angiosperm Phylogeny Inferred from Duplicate Phytochromes A and C. Int. J. Plant Sci. 2000, 161, S41–S55. [Google Scholar] [CrossRef]
- Li, Y.; Svetlana, P.; Yao, J.-X.; Li, C.-S. A Review on the Taxonomic, Evolutionary and Phytogeographic Studies of the Lotus Plant (Nelumbonaceae: Nelumbo). Acta Geol. Sin.-Engl. Ed. 2014, 88, 1252–1261. [Google Scholar] [CrossRef]
- Parkinson, C.L.; Adams, K.L.; Palmer, J.D. Multigene Analyses Identify the Three Earliest Lineages of Extant Flowering Plants. Curr. Biol. 1999, 9, 1485–1491. [Google Scholar] [CrossRef]
- Borsch, T.; Hilu, K.W.; Quandt, D.; Wilde, V.; Neinhuis, C.; Barthlott, W. Noncoding Plastid TrnT-TrnF Sequences Reveal a Well Resolved Phylogeny of Basal Angiosperms. J. Evol. Biol. 2003, 16, 558–576. [Google Scholar] [CrossRef] [PubMed]
- Löhne, C.; Borsch, T. Molecular Evolution and Phylogenetic Utility of the PetD Group II Intron: A Case Study in Basal Angiosperms. Mol. Biol. Evol. 2005, 22, 317–332. [Google Scholar] [CrossRef]
- Cao, Z.-L.; Sun, X.-J.; Wu, W.-J.; Tian, G.; Zhang, S.-M.; Li, H.-B.; Sun, Z.-M.; Xu, L.; Wang, R.-J. Formation and evolution of thrusted paleo-uplift at the margin of Qaidam Basin and its influences on hydrocarbon accumulation. Shiyou Xuebao Acta Pet. Sin. 2018, 39, 980–989. [Google Scholar] [CrossRef]
- Feng, Y.-N.; Du, S.-H.; Fraedrich, K.; Zhang, X.-Y. Fine-Grained Climate Classification for the Qaidam Basin. Atmosphere 2022, 13, 913. [Google Scholar] [CrossRef]
- Yin, A.; Rumelhart, P.E.; Butler, R.; Cowgill, E.; Harrison, T.M.; Foster, D.A.; Ingersoll, R.V.; Zhang, Q.; Zhou, X.-Q.; Wang, X.-F.; et al. Tectonic History of the Altyn Tagh Fault System in Northern Tibet Inferred from Cenozoic Sedimentation. Geol. Soc. Am. Bull. 2002, 114, 1257–1295. [Google Scholar] [CrossRef]
- Sun, Z.-M.; Yang, Z.-Y.; Pei, J.-L.; Ge, X.-H.; Wang, X.-S.; Yang, T.-S.; Li, W.-M.; Yuan, S.-H. Magnetostratigraphy of Paleogene Sediments from Northern Qaidam Basin, China: Implications for Tectonic Uplift and Block Rotation in Northern Tibetan Plateau. Earth Planet. Sci. Lett. 2005, 237, 635–646. [Google Scholar] [CrossRef]
- Fang, X.-M.; Zhang, W.-L.; Meng, Q.-Q.; Gao, J.-P.; Wang, X.-M.; King, J.; Song, C.-H.; Dai, S.; Miao, Y.-F. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth Planet. Sci. Lett. 2007, 258, 293–306. [Google Scholar] [CrossRef]
- Cande, S.C.; Kent, D.V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res. Solid Earth 1995, 100, 6093–6095. [Google Scholar] [CrossRef]
- Ellis, B.; Daly, D.; Hickey, L.; Johnson, K.; Mitchell, J.; Wilf, P.; Wing, S. Manual of Leaf Architecture; Comstock Publishing Associates: New York, NY, USA, 2009; ISBN 978-0-8014-7518-4. [Google Scholar]
- Samylina, V.A. Early Cretaceous angiosperms of the Soviet Union based on leaf and fruit remains. J. Linn. Soc. Lond. Bot. 1968, 61, 207–218. [Google Scholar] [CrossRef]
- Upchurch, G.R.; Crane, P.R.; Drinnan, A.N. The Megaflora from the Quantico Locality (Upper Albian), Lower Cretaceous Potomac Group of Virginia; Virginia Museum of Natural History Memoir; Virginia Museum of Natural History: Martinsville, VA, USA, 1994; ISBN 978-0-9625801-9-2. [Google Scholar]
- Crabtree, D.R. Angiosperms of the Northern Rocky Mountains: Albian to Campanian (Cretaceous) megafossil floras. Ann. Mo. Bot. Gard. 1987, 74, 707. [Google Scholar] [CrossRef]
- Xue, J.-H.; Dong, W.-P.; Cheng, T.; Zhou, S.-L. Nelumbonaceae: Systematic position and species diversification revealed by the complete chloroplast genome. J. Syst. Evol. 2012, 50, 477–487. [Google Scholar] [CrossRef]
- Li, Y.; Smith, T.; Svetlana, P.; Yang, J.; Jin, J.-H.; Li, C.-S. Paleobiogeography of the lotus plant (Nelumbonaceae: Nelumbo) and its bearing on the paleoclimatic changes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 399, 284–293. [Google Scholar] [CrossRef]
- Tao, J.-R.; Zhou, Z.-K.; Liu, Y. (Eds.) The Evolution of the Late Cretaceous-Cenozoic floras in China; Science Press: Beijing, China, 2000; pp. 54–196. ISBN 978-7-03-007520-8. [Google Scholar]
- Liang, F.; Sun, G.; Yang, T.; Bai, S.-C. Nelumbo jiayinensis Sp. Nov. from the Upper Cretaceous Yong’ancun Formation in Jiayin, Heilongjiang, Northeast China. Cretac. Res. 2018, 84, 134–140. [Google Scholar] [CrossRef]
- Guo, S.-X. Late Cretaceous and Early Tertiary Floras from the Southern Guangdong and Guangxi with Their Stratigraphic Significance; Mesozoic and Cenozoic red beds of South China; Science Press: Beijing, China, 1979; pp. 223–230. [Google Scholar]
- He, X.-Y.; Shen, R.-Y.; Jin, J.-H. A New Species of Nelumbo from South China and its palaeoecological implications. Rev. Palaeobot. Palynol. 2010, 162, 159–167. [Google Scholar] [CrossRef]
- Dong, J.-L.; Gao, J.-X.; Li, Z.; Sun, B.-N. A Tropical Lotus from the Middle Miocene tropical rainforest flora of South China. Rev. Palaeobot. Palynol. 2022, 299, 104611. [Google Scholar] [CrossRef]
- Berry, E.W. Systematic Paleontology, Lower Cretaceous: Fossil Plants. In Lower Cretaceous; Clark, W.B., Ed.; Maryland Geological Survey: Baltimore, MD, USA; pp. 214–508.
- Knowlton, F.H. The Flora of the Denver and Associated Formations of Colorado; U.S. Government Printing Office: Washington, DC, USA, 1930; pp. 1–142. [Google Scholar] [CrossRef]
- McIver, E.E.; Basinger, J.F. Fossil Flora of the Paleocene Ravenscrag Formation, Southwestern Saskatchewan, Canada; University of Saskatchewan: Saskatoon, SK, Canada, 1989. [Google Scholar]
- Estrada-Ruiz, E.; Upchurch, G.R., Jr. Comparative morphology of fossil and extant leaves of Nelumbonaceae, including a new genus from the Late Cretaceous of Western North America. Syst. Bot. 2011, 36, 337–351. [Google Scholar] [CrossRef]
- Li, Y.; Awasthi, N.; Nosova, N.; Yao, J.-X. Comparative Study of Leaf Architecture and Cuticles of Nelumbo changchangensis from the Eocene of Hainan Island, China, and the Two Extant Species of Nelumbo (Nelumbonaceae): Comparative Study of the Leaves of Nelumbo. Bot. J. Linn. Soc. 2016, 180, 123–137. [Google Scholar] [CrossRef]
- Fu, D.; Wiersema, J.H. Nelumbonaceae. In Flora of China; Wu, Z.Y., Hong, D.Y., Eds.; Science Press: Beijing, China, 2001; Volume 6, p. 114. [Google Scholar]
- Hall, T.F.; Penfound, W.T. The biology of the American lotus, Nelumbo lutea (Wild.) Pers. Am. Midl. Nat. 1944, 31, 744–758. [Google Scholar] [CrossRef]
- Gandolfo, M.A.; Cuneo, R.N. Fossil Nelumbonaceae from the La Colonia Formation (Campanian–Maastrichtian, Upper Cretaceous), Chubut, Patagonia, Argentina. Rev. Palaeobot. Palynol. 2005, 133, 169–178. [Google Scholar] [CrossRef]
- Matsuo, F. Discovery of Nelumbo from the Asuwa flora (Upper Cretaceous) in Fukui Prefecture in the inner side of central Japan. In Transactions and Proceedings of the Palaeontological Society of Japan, New Series; Palaeontological Society of Japan: Tokyo, Japan, 1954; Volume 14, pp. 155–158_1. [Google Scholar]
- Borsch, T.; Barthlott, W. Classification and Distribution of the Genus Nelumbo Adans. (Nelumbonaceae). Beitr. Biol. Pflanz. 1994, 68, 421–450. [Google Scholar]
- Saporta, G. de Nouveaus Détails Concernant Les Nymphéinées. Nymphéinées Infracrétacées. Comptes Rendus Séances Acad. Sci. Paris 1894, 119, 837–853. [Google Scholar]
- Brown, R.W. Fossil plants from the Aspen Shale of Southwestern Wyoming. Proc. U. S. Natl. Mus. 1933, 82, 1–10. [Google Scholar] [CrossRef]
- Li, H.-M.; Chen, Q.-S. Palibinia from the Eocene of Jiangxi, China with remarks on the climate mechanism of northern hemisphere in Paleogene. Acta Palaeontol. Sin. 2002, 41, 119–129. [Google Scholar]
- de Saporta, G. Recherches Sur La Végétation Du Niveau Aquitanien de Manosque; Librairie polytechnique Baudry et Cie, Ed.; Bibliothèque Géosciences: Paris, France, 1891; pp. 1–22. [Google Scholar]
- Deng, T.; Wang, X.-M. New material of the Neogene rhinocerotids from the Qaidam Basin in Qinghai, China. Vertebr. Palasiat. 2004, 42, 216–229. [Google Scholar] [CrossRef]
- Deng, T.; Wang, X.-M. Late Miocene Hipparion (Equidae, Mammalia) of Eastern Qaidam Basin in Qinghai, China. Vertebr. Palasiat. 2004, 42, 316–333. [Google Scholar] [CrossRef]
- Qiu, Z.-D.; Li, Q. Late Miocene micromammals from the Qaidam Basin in the Qinghai-Xizang Plateau. Vertebr. Palasiat. 2008, 46, 284–306. [Google Scholar] [CrossRef]
- Li, H. Studies on Insect Fossils from the Miocene of Northwestern Qaidam Basin and Its Geological Significance. Master’s Thesis, Master, Lanzou University, Lanzou, China, 2010. [Google Scholar]
- Chang, M.; Wang, X.-M.; Liu, H.-Z.; Miao, D.; Zhao, Q.-H.; Wu, G.-X.; Liu, J.; Li, Q.; Sun, Z.-C.; Wang, N. Extraordinarily thick-boned fish linked to the aridification of the Qaidam Basin (Northern Tibetan Plateau). Proc. Natl. Acad. Sci. USA 2008, 105, 13246–13251. [Google Scholar] [CrossRef]
- Liu, Y.-J.; Li, Y.-X.; Li, H.; Niu, Y.-Z.; Liu, F.; Dong, Y.-K. The new discovery of Oligocene cyprinidae fossil in Qaidam basin, Northwest China. Acta Geol. Sin. Ed. 2017, 91, 136–137. [Google Scholar] [CrossRef]
- Yang, F.; Sun, Z.-C.; Ma, Z.-Q.; Zhang, Y.-H. Quaternary ostracode zones and magnetostratigraphic profile in the Qaidam Basin. Acta Micropalaeontolog. Sin. 1997, 14, 26–33+35–38. [Google Scholar]
- Yang, P.; Sun, Z.-C.; Li, D.-M.; Jing, M.-C.; Xu, F.-T.; Liu, H.-M. Ostracoda extinction and explosion events of the Mesozoic-Cenozoic in Qaidam Basin, Northwest China. J. Palaeogeogr. 2000, 2, 69–74. [Google Scholar]
- Miao, Y.-F.; Fang, X.-M.; Herrmann, M.; Wu, F.-L.; Zhang, Y.-Z.; Liu, D.-L. Miocene pollen Record of KC-1 Core in the Qaidam Basin, NE Tibetan Plateau and Implications for Evolution of the East Asian Monsoon. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 299, 30–38. [Google Scholar] [CrossRef]
- Liu, Y.-S.; Guo, S.-X.; Ferguson, D.K. Catalogue of Cenozoic Megafossil Plants in China. Palaeontogr. B 1996, 238, 141–179. [Google Scholar]
- Cheng, Y.-M.; Yang, X.-N. Miocene Woods from the Qaidam Basin on Northern Qinghai-Tibet Plateau with Implications for Paleoenvironmental Change. J. Asian Earth Sci. 2016, 116, 198–207. [Google Scholar] [CrossRef]
- Niu, Y.-B.; Zhong, J.; Zhong, F.-P.; Gao, Y.-F.; Zhuo, Y.-J. Discovery and fossil of Chondrites in carboniferous in southern Qaidam Basin. J. Palaeogeogr. 2008, 10, 529–535. [Google Scholar]
- Gao, Z.-H.; Li, R.-Y.; Wang, Q.-J.; Dong, C.; Yan, D.; Sun, B.-N. Trace Fossil Assemblages in the Miocene from Northeast Margin of Qaidam Basin and Its Sedimentary Environment. Acta Sedimentol. Sin. 2013, 31, 413–420. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Zhang, K.-X.; Sun, Y.-Y.; Liu, W.-G.; Liu, Y.-S.; Quan, C. Cenozoic Environmental Changes in the Northern Qaidam Basin Inferred from n-alkane Records. Acta Geol. Sin. Ed. 2014, 88, 1547–1555. [Google Scholar] [CrossRef]
- Miao, Y.-F.; Fang, X.-M.; Liu, Y.-S.; Yan, X.-L.; Li, S.-Y.; Xia, W.-M. Late Cenozoic Pollen Concentration in the Western Qaidam Basin, Northern Tibetan Plateau, and Its Significance for Paleoclimate and Tectonics. Rev. Palaeobot. Palynol. 2016, 231, 14–22. [Google Scholar] [CrossRef]
- Fu, H.; Jian, X.; Liang, H.; Zhang, W.; Shen, X.; Wang, L. Tectonic and Climatic Forcing of Chemical Weathering Intensity in the Northeastern Tibetan Plateau since the Middle Miocene. Catena 2022, 208, 105785. [Google Scholar] [CrossRef]
- Guo, S.-X. Miocene flora in Zekog Country of Qinghai. Acta Palaeontol. Sin. 1980, 19, 406–411. [Google Scholar] [CrossRef]
Character | N. delinghaensis | Nelumbo (Extant) | Nelumbites | Paleonelumbo | Nelumbago | Exnelumbites | |
---|---|---|---|---|---|---|---|
Taxon | |||||||
Leaf margin | Entire | Entire | Entire to crenate or crenulate | Toothed or lobed with gland | Entire | Toothed with gland | |
Central disc | Present | Present | Absent | Absent | Absent | Absent | |
Position of petiole | Centrally peltate | Centrally peltate | Eccentrically peltate | Centrally peltate | Centrally peltate | Centrally peltate | |
Primary venation | Bifurcated, 12–15 | Bifurcated, over 18 | Distinct midvein No bifurcation, fewer than 10 | No bifurcation, 10–15 | Bifurcated, over 20 | No bifurcation, 12–13 | |
Secondary venation | Present | Absent | Present | Present | No data | Present | |
Tertiary venation | Irregular, mixed percurrent | Regular, opposite percurrent | Irregular, reticulate | Orthogonal reticulate | Irregular, orthogonal reticulate | Irregular, alternate percurrent to reticulate | |
Quaternary venation | Regular reticulate | mixed percurrent | Reticulate | Percurrent | Orthogonal reticulate | Reticulate | |
Areoles | Predominantly Hexagonal | Predominantly Hexagonal | Polygonal | No data | Commonly quadrilateral | Polygonal | |
Size | Mesophyll to macrophyll | Mesophyll to macrophyll | Notophyll to microphyll | Mesophyll | Notophyll to mesophyll | Mesophyll |
Organ | Character | N. delinghaensis | N. nucifera | N. lutea |
---|---|---|---|---|
Leaf | Number of primary veins | 12–15 | 20–25 | 20–25 |
Diameter | 8–30 cm | 7–85 cm | 60 cm | |
Shape of areoles | 4- to 7-sided | 4- to 7-sided | 4- to 7-sided | |
Size of areoles | 150–550 μm | 129–661 μm | 148–634 μm | |
Central disc | Present | Present, shallowly lobed | Present, deeply lobed | |
Highest order venation | 4° | 4° | 4° | |
Fruit | Size | 2.8–3.3 mm × 2.2–3 mm | 18 × 10 mm | No data |
Number of fruits | 15–30 | 1–40 | 12–25 | |
Receptacle | Size | 2–2.5 cm × 1.8–2.3 cm | 3.8–4.5 cm × 7.5–9.6 cm | No data |
Shape | Obconical | Obconical | Obconical | |
Reference | (Li et al., 2016 [46]; Fu&Wiersema, 2001 [77]) | (Li et al., 2016 [46]; Hall & Penfound, 1944 [78]; Gan-dolfo & Cúneo, 2005 [79]) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, M.; Jia, H.; Li, Q.; Meng, X.; Ferguson, D.K.; Liu, P.; Han, Z.; Wang, J.; Quan, C. Middle Miocene lotus (Nelumbonaceae, Nelumbo) from the Qaidam Basin, Northern Tibet Plateau. Biology 2022, 11, 1261. https://doi.org/10.3390/biology11091261
Luo M, Jia H, Li Q, Meng X, Ferguson DK, Liu P, Han Z, Wang J, Quan C. Middle Miocene lotus (Nelumbonaceae, Nelumbo) from the Qaidam Basin, Northern Tibet Plateau. Biology. 2022; 11(9):1261. https://doi.org/10.3390/biology11091261
Chicago/Turabian StyleLuo, Mingyue, Hui Jia, Qijia Li, Xiangning Meng, David K. Ferguson, Ping Liu, Zhuochen Han, Junjie Wang, and Cheng Quan. 2022. "Middle Miocene lotus (Nelumbonaceae, Nelumbo) from the Qaidam Basin, Northern Tibet Plateau" Biology 11, no. 9: 1261. https://doi.org/10.3390/biology11091261
APA StyleLuo, M., Jia, H., Li, Q., Meng, X., Ferguson, D. K., Liu, P., Han, Z., Wang, J., & Quan, C. (2022). Middle Miocene lotus (Nelumbonaceae, Nelumbo) from the Qaidam Basin, Northern Tibet Plateau. Biology, 11(9), 1261. https://doi.org/10.3390/biology11091261