During HCV DAA Therapy Plasma Mip1B, IP10, and miRNA Profile Are Distinctly Associated with Subsequent Diagnosis of Hepatocellular Carcinoma: A Pilot Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants and Data Extraction
2.2. Markers of Immune Activation and Cirrhosis
2.3. Statistical Analysis
2.4. Computational Analysis of Small RNA-Seq
3. Results
3.1. Demographics and Laboratory Features
3.2. Small Noncoding RNA Plasma Levels Differ between Those Subsequently Diagnosed with HCC and Controls
3.3. Biomarkers of Cirrhosis and Hepatic Inflammation
3.4. Correlations between Biomarkers of Immune Activation and miRNAs
3.5. Plasma miRNA Expression Associates with PBMC mRNA Expression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Serag, H.B.; Rudolph, K.L. Hepatocellular Carcinoma: Epidemiology and Molecular Carcinogenesis. Gastroenterology 2007, 132, 2557–2576. [Google Scholar] [CrossRef] [PubMed]
- Global Burden of Disease Cancer Collaboration. Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol. 2018, 4, 1553–1568. [Google Scholar] [CrossRef]
- El-Serag, H.B. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012, 142, 1264–1273.e1. [Google Scholar] [CrossRef] [PubMed]
- Eradication of Hepatitis C Virus Infection and the Development of Hepatocellular Carcinoma. Ann. Intern. Med. 2013, 158 Pt 1, 329–337. [CrossRef] [PubMed]
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed]
- Leone, P.; Solimando, A.; Fasano, R.; Argentiero, A.; Malerba, E.; Buonavoglia, A.; Lupo, L.; De Re, V.; Silvestris, N.; Racan-elli, V. The evolving role of immune checkpoint inhibitors in hepatocellular carcinoma treatment. Vaccines 2021, 9, 532. [Google Scholar] [CrossRef] [PubMed]
- Fiorino, S.; Bacchi-Reggiani, M.L.; Visani, M.; Acquaviva, G.; Fornelli, A.; Masetti, M.; Tura, A.; Grizzi, F.; Zanello, M.; Mastrangelo, L.; et al. MicroRNAs as possible biomarkers for diagnosis and prognosis of hepatitis b-and c-related-hepatocellularcarcinoma. World J. Gastroenterol. 2016, 22, 3907–3936. [Google Scholar] [CrossRef]
- Eggert, T.; Greten, T.F. Tumor regulation of the tissue environment in the liver. Pharmacol. Ther. 2017, 173, 47–57. [Google Scholar] [CrossRef]
- Afonso, M.; Rodrigues, P.; Simão, A.; Castro, R.E. Circulating microRNAs as Potential Biomarkers in Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma. J. Clin. Med. 2016, 5, 30. [Google Scholar] [CrossRef]
- Chauhan, R.; Lahiri, N. Tissue- and Serum-Associated Biomarkers of Hepatocellular Carcinoma. Biomark. Cancer 2016, 8, S34413. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Liu, Z.; Shao, X.; Wang, D.; Dong, E.; Wang, Y.; Wu, C.I.; Yuan, Y.; Lu, X.; Li, C. The heterogeneity of plasma miRNA profiles in hepatocellular carcinoma patients and the exploration of diagnostic circulating miRNAs for hepatocellular carcinoma. PLoS ONE 2019, 14, e0211581. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, T.; Kandimalla, R.; Gao, F.; Nozawa, H.; Hata, K.; Nagata, H.; Okada, S.; Izumi, D.; Baba, H.; Fleshman, J.; et al. A MicroRNA Signature Associated with Metastasis of T1 Colorectal Cancers to Lymph Nodes. Gastroenterology 2018, 154, 844–848.e7. [Google Scholar] [CrossRef] [PubMed]
- Osaki, M.; Takeshita, F.; Ochiya, T. MicroRNAs as biomarkers and therapeutic drugs in human cancer. Biomarkers 2008, 13, 658–670. [Google Scholar] [CrossRef] [PubMed]
- Rinn, J.L.; Chang, H.Y. Long Noncoding RNAs: Molecular Modalities to Organismal Functions. Annu. Rev. Biochem. 2020, 89, 283–308. [Google Scholar] [CrossRef] [PubMed]
- Bánfai, B.; Jia, H.; Khatun, J.; Wood, E.; Risk, B.; Gundling, W.E.; Kundaje, A.; Gunawardena, H.P.; Yu, Y.; Xie, L.; et al. Long noncoding RNAs are rarely translated in two human cell lines. Genome Res. 2012, 22, 1646–1657. [Google Scholar] [CrossRef]
- Mattick, J.S.; Rinn, J.L. Discovery and annotation of long noncoding RNAs. Nat. Struct. Mol. Biol. 2015, 22, 5–7. [Google Scholar] [CrossRef]
- Derrien, T.; Johnson, R.; Bussotti, G.; Tanzer, A.; Djebali, S.; Tilgner, H.; Guernec, G.; Martin, D.; Merkel, A.; Knowles, D.G.; et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 2012, 22, 1775–1789. [Google Scholar] [CrossRef]
- Quinn, J.J.; Chang, H.Y. Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 2016, 17, 47–62. [Google Scholar] [CrossRef]
- McDonel, P.; Guttman, M. Approaches for understanding the mechanisms of long noncoding RNA regulation of gene expression. Cold Spring Harb. Perspect. Biol. 2019, 11, a032151. [Google Scholar] [CrossRef]
- Gibb, E.A.; Brown, C.J.; Lam, W.L. The functional role of long non-coding RNA in human carcinomas. Mol. Cancer 2011, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, A.M.; Chang, H.Y. Long Noncoding RNAs in Cancer Pathways. Cancer Cell 2016, 29, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Hewson, C.; Morris, K.V. Form and Function of Exosome-Associated Long Non-coding RNAs in Cancer. In Long Non-Coding RNAs in Human Disease; Morris, K.V., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 41–56. [Google Scholar] [CrossRef]
- Unfried, J.P.; Fortes, P. Lncrnas in hcv infection and hcv-related liver disease. Int. J. Mol. Sci. 2020, 21, 2255. [Google Scholar] [CrossRef] [PubMed]
- Moschos, S.; Varanasi, S.; Kirkwood, J.M. Interferons in the treatment of solid tumors. In Cytokines and Cancer. Cancer Treatment and Research; Platanias, L.C., Ed.; Springer: Boston, MA, USA, 2005; Volume 126, pp. 207–241. [Google Scholar]
- Dunn, G.P.; Koebel, C.M.; Schreiber, R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 2006, 6, 836–848. [Google Scholar] [CrossRef] [PubMed]
- Patzwahl, R.; Meier, V.; Ramadori, G.; Mihm, S. Enhanced expression of interferon-regulated genes in the liver of patients with chronic hepatitis C virus infection: Detection by suppression-subtractive hybridization. J. Virol. 2001, 75, 1332–1338. [Google Scholar] [CrossRef]
- Harvey, C.E.; Post, J.; Palladinetti, P.; Freeman, A.J.; Ffrench, R.A.; Kumar, R.; Marinos, G.; Lloyd, A.R. Expression of the chemokine IP-10 (CXCL10) by hepatocytes in chronic hepatitis C virus infection correlates with histological severity and lobular inflammation. J. Leukoc. Biol. 2003, 74, 360–369. [Google Scholar] [CrossRef]
- Farci, P.; Wollenberg, K.; Diaz, G.; Engle, R.E.; Lai, M.E.; Klenerman, P.; Purcell, R.H.; Pybus, O.G.; Alter, H.J. Profibrogenic chemokines and viral evolution predict rapid progression of hepatitis C to cirrhosis. Proc. Natl. Acad. Sci. USA 2012, 109, 14562–14567. [Google Scholar] [CrossRef]
- Nakagawa, H.; Maeda, S.; Yoshida, H.; Tateishi, R.; Masuzaki, R.; Ohki, T.; Hayakawa, Y.; Kinoshita, H.; Yamakado, M.; Kato, N.; et al. Serum IL-6 levels and the risk for hepatocarcinogenesis in chronic hepatitis C patients: An analysis based on gender differences. Int. J. Cancer 2009, 125, 2264–2269. [Google Scholar] [CrossRef]
- Saeidipour, B.; Bakhshi, S. The relationship between organizational culture and knowledge management & their simultaneous effects on customer relation management. Adv. Environ. Biol. 2013, 7, 2803–2809. [Google Scholar]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. EdgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Patterson, D.G.; Roberts, J.T.; King, V.M.; Houserova, D.; Barnhill, E.C.; Crucello, A.; Polska, C.J.; Brantley, L.W.; Kaufman, G.C.; Nguyen, M.; et al. Human snoRNA-93 is processed into a microRNA-like RNA that promotes breast cancer cell invasion. NPJ Breast Cancer 2017, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Dhir, A.; Dhir, S.; Proudfoot, N.J.; Jopling, C.L. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat. Struct. Mol. Biol. 2015, 22, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al. Landscape of transcription in human cells. Nature 2012, 489, 101–108. [Google Scholar] [CrossRef]
- Sun, Z.; Li, A.; Yu, Z.; Li, X.; Guo, X.; Chen, R. MicroRNA-497-5p Suppresses Tumor Cell Growth of Osteosarcoma by Targeting ADP Ribosylation Factor-Like Protein 2. Cancer Biother Radiopharm. 2017, 32, 371–378. [Google Scholar] [CrossRef]
- Liu, Z.; Wei, X.; Zhang, A.; Li, C.; Bai, J.; Dong, J. Long non-coding RNA HNF1A-AS1 functioned as an oncogene and autophagy promoter in hepatocellular carcinoma through sponging hsa-miR-30b-5p. Biochem. Biophys Res. Commun. 2016, 473, 1268–1275. [Google Scholar] [CrossRef]
- Ren, X.; Wang, C.; Xie, B.; Hu, L.; Chai, H.; Ding, L.; Tang, L.; Xia, Y.; Dou, X. Tanshinone IIA induced cell death via miR30b-p53-PTPN11/SHP2 signaling pathway in human hepatocellular carcinoma cells. Eur. J. Pharmacol. 2017, 796, 233–241. [Google Scholar] [CrossRef]
- Sun, Q.; Yu, R.; Wang, C.; Yao, J.; Zhang, L. Circular RNA circ-CSPP1 regulates CCNE2 to facilitate hepatocellular carcinoma cell growth via sponging miR-577. Cancer Cell Int. 2020, 20, 202. [Google Scholar] [CrossRef]
- Song, K.-W.; Zhang, Q.-G.; Tan, W.-B.; Fang, Y.-N. Diagnostic significance of serum miR-26b and miR-21 expressions in ovarian cancer and their associations with clinicopathological characteristics and prognosis of patients. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1697–1703. [Google Scholar]
- Grønbæk, H.; Sandahl, T.D.; Mortensen, C.; Vilstrup, H.; Møller, H.J.; Møller, S. Soluble CD163, a marker of Kupffer cell activation, is related to portal hypertension in patients with liver cirrhosis. Aliment. Pharmacol. Ther. 2012, 36, 173–180. [Google Scholar] [CrossRef]
- Yang, X.; Liang, L.; Zhang, X.-F.; Jia, H.L.; Qin, Y.; Zhu, X.C.; Gao, X.M.; Qiao, P.; Zheng, Y.; Sheng, Y.Y.; et al. MicroRNA-26a suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting interleukin-6-Stat3 pathway. Hepatology 2013, 58, 158–170. [Google Scholar] [CrossRef]
- Kuno, A.; Ikehara, Y.; Tanaka, Y.; Ito, K.; Matsuda, A.; Sekiya, S.; Hige, S.; Sakamoto, M.; Kage, M.; Mizokami, M.; et al. A serum “sweet-doughnut” protein facilitates fibrosis evaluation and therapy assessment in patients with viral hepatitis. Sci. Rep. 2013, 3, 1065. [Google Scholar] [CrossRef] [PubMed]
- Kuno, A.; Sato, T.; Shimazaki, H.; Unno, S.; Saitou, K.; Kiyohara, K.; Sogabe, M.; Tsuruno, C.; Takahama, Y.; Ikehara, Y.; et al. Reconstruction of a robust glycodiagnostic agent supported by multiple lectin-assisted glycan profiling. Proteom.—Clin. Appl. 2013, 7, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.W.; Clair, T.; Kim, Y.S.; McMarlin, A.; Schiffmann, E.; A Liotta, L.; Stracke, M.L. Autotaxin (NPP-2), a Metastasis-enhancing Motogen, Is an Angiogenic Factor. Cancer Res. 2001, 61, 6938–6944. [Google Scholar]
- Nakao, K.; Miyaaki, H.; Ichikawa, T. Antitumor function of microRNA-122 against hepatocellular carcinoma. J. Gastroenterol. 2014, 49, 589–593. [Google Scholar] [CrossRef]
- Fu, X.; Calin, G.A. miR-122 and hepatocellular carcinoma: From molecular biology to therapeutics. EBioMedicine 2018, 37, 17–18. [Google Scholar] [CrossRef] [PubMed]
- Clément, S.; Sobolewski, C.; Gomes, D.; Rojas, A.; Goossens, N.; Conzelmann, S.; Calo, N.; Negro, F.; Foti, M. Activation of the oncogenic miR-21-5p promotes HCV replication and steatosis induced by the viral core 3a protein. Liver Int. 2019, 39, 1226–1236. [Google Scholar] [CrossRef]
- Dai, C.Y.; Tsai, Y.S.; Chou, W.W.; Liu, T.; Huang, C.F.; Wang, S.C.; Tsai, P.C.; Yeh, M.L.; Hsieh, M.Y.; Huang, C.I.; et al. The IL-6/STAT3 pathway upregulates microRNA-125b expression in hepatitis C virus infection. Oncotarget 2018, 9, 11291–11302. [Google Scholar] [CrossRef]
- Hyrina, A.; Olmstead, A.D.; Steven, P.; Krajden, M.; Tam, E.; Jean, F. Treatment-Induced Viral Cure of Hepatitis C Virus-Infected Patients Involves a Dynamic Interplay among three Important Molecular Players in Lipid Homeostasis: Circulating microRNA (miR)-24, miR-223, and Proprotein Convertase Subtilisin/Kexin Type 9. EBioMedicine 2017, 23, 68–78. [Google Scholar] [CrossRef]
- Li, X.; Zhang, W.; Xu, K.; Lu, J. miR-34a promotes liver fibrosis in patients with chronic hepatitis via mediating Sirt1/p53 signaling pathway. Pathol. Res. Pract. 2020, 216, 152876. [Google Scholar] [CrossRef]
- Shehata, R.H.; Abdelmoneim, S.S.; Osman, O.A.; Hasanain, A.F.; Osama, A.; Abdelmoneim, S.S.; Toraih, E.A. Deregulation of miR-34a and its chaperon Hsp70 in hepatitis C virus-induced liver cirrhosis and hepatocellular carcinoma patients. Asian Pac. J. Cancer Prev. 2017, 18, 2395–2401. [Google Scholar] [PubMed]
- Bharali, D.; Jebur, H.B.; Baishya, D.; Kumar, S.; Sarma, M.P.; Masroor, M.; Akhter, J.; A Husain, S.; Kar, P. Expression analysis of serum microRNA-34a and microRNA-183 in hepatocellular carcinoma. Asian Pac. J. Cancer Prev. 2018, 19, 2561–2568. [Google Scholar] [PubMed]
- Blaya, D.; Pose, E.; Coll, M.; Lozano, J.J.; Graupera, I.; Schierwagen, R.; Jansen, C.; Castro, P.; Fernandez, S.; Sidorova, J.; et al. Profiling circulating microRNAs in patients with cirrhosis and acute-on-chronic liver failure. JHEP Rep. 2021, 3, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Fan, J.; Zhou, C.; Qi, Y. miR-363-5p as potential prognostic marker for hepatocellular carcinoma indicated by weighted co-expression network analysis of miRNAs and mRNA. BMC Gastroenterol. 2017, 17, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
HCC | Controls | p < 0.05 | |
---|---|---|---|
Number | 9 | 7 | |
Age (years) Median (IQR) | 67 (64–70) | 68 (61–70) | |
Race African American | 67% | 86% | |
Race Caucasian | 33% | 14% | |
Sex Male | 100% | 100% | |
BMI | 28 (24, 29) | 26 (24, 31) | |
DM n (%) | 6 (67%) | 4 (57%) | |
HTN n (%) | 8 (89%) | 5 (71%) | |
Smoking | current 67%; former 33% | current 86%; former 14% | |
Time to HCC diagnosis (month) | 19 (6–28) | NA | |
Fibroscan Score (kPa) | |||
<12.5 | 3 | 2 | |
≥12.5 | 3 | 3 | |
Not done | 3 1 | 2 1 | |
Viral load (log10) | 6.3 (6, 6.8) | 6.2 (5.9, 6.4) | |
AFP (ng/mL) | 13.6 (6.5, 28.5) | 13.8 (6.7, 13.9) | |
AST (U/L) | 75 (67, 116) | 42 (35, 98) | |
ALT (U/L) | 110 (44, 129) | 49 (34, 99) | |
Albumin (g/dL) | 3.4 (3.1, 3.5) | 3.8 (3.5, 3.9) | |
PLT (×103/mm3) | 118 (115, 171) | 179 (144, 266) | |
APRI | 0.62 (0.5, 0.66) | 0.5 (0.39, 1.1) | |
Fibrosis on Radiology Exam | |||
US (nothing pertinent) | 3 | 2 | |
US (nodularity) | 2 | 0 | |
CT and/or MRI (no nodularity) | 2 | 2 | |
CT and/or MRI (nodularity) | 4 | 3 | |
HAPE 2 on Radiology Exam | |||
CT and/or MRI (no HAPE) | 1 | 5 | |
CT and/or MRI (HAPE) | 5 | 0 | |
Follow-up (years, median IQR) | 4 (2, 4) | 4 (4, 4) | p = 0.015 Fisher’s exact |
n of DEGs with p ≤ 0.05 | Adjusted p ≤ 0.10 | |
---|---|---|
Week 8 vs. Start Controls | 29 | 0 |
Week 12 vs. Week 8 Controls | 9 | 0 |
Week 12 vs. Start Controls | 30 | 5 |
Week 8 vs. Start HCC | 64 | 15 |
Week 12 vs. Week 8 HCC | 66 | 13 |
Week 12 vs. Start HCC | 58 | 25 |
HCC vs. Controls Start | 69 | 7 |
HCC vs. Controls Week 8 | 62 | 7 |
HCC vs. Controls Week 12 | 63 | 1 |
Inflammatory Marker | sCD163 | ATX | sCD14 | IL6 | Mac2BP | IP10 | MCP−1 | ALT | AST | Alb | FIB−4 | viral load | Age | AFP |
sCD163 | r = 0.6 p = 0.06 | r = 0.3 p = 0.4 | r = 0.6 p = 0.04 | r = 0.8 p = 0.008 | r = 0.3 p = 0.3 | r = 0.3 p = 0.2 | r = 0.2 p = 0.3 | r = 0.4 p = 0.09 | r = −0.1 p = 0.6 | r = 0.3 p = 0.2 | r = 0.2 p = 0.4 | r = −0.4 p = 0.1 | r = −0.3 p = 0.3 | |
ATX | r = 0.4 p = 0.3 | r = 0.2 p = 0.5 | r = 0.5 p = 0.2 | r= −0.2 p = 0.6 | r = 0.2 p = 0.5 | r = 0.5 p = 0.1 | r = 0.6 p = 0.02 | r = −0.5 p = 0.1 | r = 0.6 p = 0.03 | r= −0.3 p = 0.4 | r = −0.3 p = 0.3 | r = 0.6 p = 0.05 | ||
sCD14 | r = 0.3 p = 0.3 | r = 0.3 p = 0.5 | r = 0.5 p = 0.1 | r = 0.4 p = 0.2 | r = 0.4 p = 0.2 | r = 0.4 p = 0.1 | r = −0.5 p = 0.09 | r = 0.2 p = 0.5 | r = 0.3 p = 0.3 | r = 0.1 p = 0.2 | r = 0.2 p = 0.5 | |||
IL6 | r = 0.6 p = 0.06 | r = 0.05 p = 0.9 | r = 0.5 p = 0.1 | r = 0.01 p = 1 | r = 0.3 p = 0.3 | r = −0.6 p = 0.03 | r = 0.2 p = 0.4 | r = −0.09 p = 0.8 | r = −0.4 p = 0.1 | r = 0.3 p = 0.3 | ||||
Mac2BP | r = 0.4 p = 0.3 | r = 0.6 p = 0.1 | r = 0.1 p = 0.6 | r = 0.2 p = 0.4 | r = −0.6 p = 0.05 | r = 0.2 p = 0.6 | r= −0.2 p = 0.5 | r = −0.3 p = 0.2 | r = −0.03 p = 0.9 | |||||
IP10 | r = 0.4 p = 0.1 | r = 0.3 p = 0.2 | r = 0.3 p = 0.3 | r = −0.2 p = 0.5 | r = 0.1 p = 0.6 | r = 0.7 p = 0.004 | r = −0.2 p = 0.4 | r = −0.2 p = 0.5 | ||||||
MCP−1 | r = 0.1 p = 0.6 | r = 0.2 p = 0.4 | r = −0.6 p = 0.05 | r = 0.2 p = 0.6 | r= −0.2 p = 0.5 | r = −0.03 p = 0.2 | r = −0.03 p = 0.9 | |||||||
ALT | r = 0.8 p < 0.001 | r = −0.2 p = 0.4 | r = 0.4 p = 0.1 | r = 0.4 p = 0.09 | r = −0.5 p = 0.04 | r = 0.08 p = 0.7 | ||||||||
AST | r = −0.5 p = 0.06 | r = 0.8 p = 0.001 | r = 0.4 p = 0.1 | r = −0.4 p = 0.1 | r = 0.4 p = 0.1 | |||||||||
Alb | r = −0.7 p = 0.005 | r = 0.3 p = 0.7 | r = 0.06 p = 0.8 | r = −0.6 p = 0.03 | ||||||||||
FIB−4 | r = 0.2 p = 0.4 | r = −0.08 p = 0.7 | r = 0.5 p = 0.05 | |||||||||||
viral load | r = −0.3 p = 0.2 | r = −0.04 p = 0.8 | ||||||||||||
Age | r = −0.07 p = 0.7 | |||||||||||||
AFP | ||||||||||||||
SVR12 | ||||||||||||||
Inflammatory Marker | sCD163 | ATX | sCD14 | IL6 | Mac2BP | IP10 | MCP−1 | ALT | AST | Alb | FIB−4 | viral load | Age | AFP |
sCD163 | r = 0.2 p = 0.6 | r = 0.6 p = 0.04 | r = 0.3 p = 0.3 | r = 0.5 p = 0.1 | r = 0.3 p = 0.3 | r = −0.04 p = 0.9 | r = 0.8 p = 0.003 | r = 0.8 p = 0.004 | r = 0.06 p = 0.8 | r = 0.3 p = 0.3 | r = 0.6 p = 0.04 | r = −0.5 p = 0.08 | r = −0.2 p = 0.4 | |
ATX | r = 0.06 p = 0.9 | r = 0.4 p = 0.2 | r = 0.8 p = 0.008 | r= −0.07 p = 0.8 | r = 0.3 p = 0.3 | r = −0.03 p = 0.9 | r = 0.2 p = 0.4 | r = −0.2 p = 0.5 | r = 0.5 p = 0.1 | r = 0.3 p = 0.3 | r = −0.04 p = 0.8 | r = 0.6 p = 0.04 | ||
sCD14 | r = −0.006 p = 0.9 | r = 0.3 p = 0.4 | r = 0.4 p = 0.2 | r = −0.1 p = 0.7 | r = 0.5 p = 0.08 | r = 0.6 p = 0.03 | r = −0.2 p = 0.4 | r = 0.4 p = 0.1 | r = 0.6 p = 0.05 | r = 0.2 p = 0.4 | r = −0.3 p = 0.2 | |||
IL6 | r = 0.6 p = 0.07 | r = 0.4 p = 0.2 | r = 0.4 p = 0.2 | r = 0.2 p = 0.6 | r = 0.2 p = 0.4 | r = −0.6 p = 0.05 | r = 0.6 p = 0.05 | r = 0.3 p = 0.3 | r = −0.3 p = 0.4 | r = 0.6 p = 0.04 | ||||
Mac2BP | r = 0.1 p = 0.8 | r = 0.3 p = 0.3 | r = 0.009 p = 1 | r = 0.4 p = 0.1 | r = −0.5 p = 0.1 | r = 0.6 p = 0.06 | r = 0.4 p = 0.1 | r = −0.0 p = 1 | r = 0.7 p = 0.02 | |||||
IP10 | r = 0.8 p = 0.003 | r = 0.7 p = 0.01 | r = 0.6 p = 0.04 | r = −0.5 p = 0.09 | r = 0.4 p = 0.1 | r = 0.5 p = 0.1 | r = −0.09 p = 0.7 | r = 0 p = 1 | ||||||
MCP−1 | r = 0.09 p = 0.7 | r = 0.1 p = 0.6 | r = −0.6 p = 0.03 | r = 0.2 p = 0.4 | r = 0.3 p = 0.4 | r = 0.1 p = 0.6 | r = 0.4 p = 0.2 | |||||||
ALT | r = 0.8 p < 0.0001 | r = −0.2 p = 0.4 | r = 0.4 p = 0.1 | r = 0.4 p = 0.09 | r = −0.5 p = 0.04 | r = 0.08 p = 0.7 | ||||||||
AST | r = −0.5 p = 0.06 | r = 0.8 p = 0.001 | r = 0.4 p = 0.1 | r = −0.4 p = 0.1 | r = 0.4 p = 0.1 | |||||||||
Alb | r = −0.7 p = 0.005 | r = 0.3 p = 0.7 | r = 0.06 p = 0.8 | r = −0.6 p = 0.03 | ||||||||||
FIB−4 | r = 0.2 p = 0.4 | r = −0.08 p = 0.7 | r = 0.5 p = 0.05 | |||||||||||
viral load | r = −0.3 p = 0.2 | r = −0.04 p = 0.8 | ||||||||||||
Age | r = −0.07 p = 0.7 | |||||||||||||
AFP |
# of DEGs | with p Value ≤ 0.05 | Adjusted p Value ≤ 0.10 |
---|---|---|
MIR576 | 1833 | 172 |
MIR7849 | 1848 | 4 |
MIR1292 | 1138 | 0 |
MIR15A | 1111 | 0 |
MIR651 | 1273 | 1 |
MIR150 | 1606 | 0 |
MIR766 | 1441 | 4 |
MIR5189 | 1619 | 85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Damjanovska, S.; Alao, H.; Zebrowski, E.; Kowal, C.; Kostadinova, L.; Davitkov, P.; Falck-Ytter, Y.; Shive, C.L.; Cartwright, M.; Richardson, B.; et al. During HCV DAA Therapy Plasma Mip1B, IP10, and miRNA Profile Are Distinctly Associated with Subsequent Diagnosis of Hepatocellular Carcinoma: A Pilot Study. Biology 2022, 11, 1262. https://doi.org/10.3390/biology11091262
Damjanovska S, Alao H, Zebrowski E, Kowal C, Kostadinova L, Davitkov P, Falck-Ytter Y, Shive CL, Cartwright M, Richardson B, et al. During HCV DAA Therapy Plasma Mip1B, IP10, and miRNA Profile Are Distinctly Associated with Subsequent Diagnosis of Hepatocellular Carcinoma: A Pilot Study. Biology. 2022; 11(9):1262. https://doi.org/10.3390/biology11091262
Chicago/Turabian StyleDamjanovska, Sofi, Hawwa Alao, Elizabeth Zebrowski, Corinne Kowal, Lenche Kostadinova, Perica Davitkov, Yngve Falck-Ytter, Carey L. Shive, Michael Cartwright, Brian Richardson, and et al. 2022. "During HCV DAA Therapy Plasma Mip1B, IP10, and miRNA Profile Are Distinctly Associated with Subsequent Diagnosis of Hepatocellular Carcinoma: A Pilot Study" Biology 11, no. 9: 1262. https://doi.org/10.3390/biology11091262
APA StyleDamjanovska, S., Alao, H., Zebrowski, E., Kowal, C., Kostadinova, L., Davitkov, P., Falck-Ytter, Y., Shive, C. L., Cartwright, M., Richardson, B., Wald, D., Cameron, M., Valadkhan, S., & Anthony, D. D. (2022). During HCV DAA Therapy Plasma Mip1B, IP10, and miRNA Profile Are Distinctly Associated with Subsequent Diagnosis of Hepatocellular Carcinoma: A Pilot Study. Biology, 11(9), 1262. https://doi.org/10.3390/biology11091262