Effects of a Football Simulated Exercise on Injury Risk Factors for Anterior Cruciate Ligament (ACL) Injury in Amateur Female Players
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Baseline and Post Strength Tests
- The following variables were calculated as the average of the three best contractions, similar to the study of Zhang et al. [19]:
- Concentric peak torque of the quadriceps (Qcon, N·m)
- Eccentric peak torque of the hamstrings (Hecc, N·m)
- Peak Hecc/Qcon
- Angle-specific Hecc, Qcon and Hecc/Qcon at 10°, 20°, 30° and 40° from full knee extension. These were calculated as averages between 0°–10°, 11°–20°, 21°–30° and 31°–40° [9].
- Rate of torque development in the first 50 ms and the first 100 ms (RTD50 and RTD100, N·m·s-1) for Hecc, Qcon and Hecc/Qcon, calculated as the ratio between the change in torque and the corresponding change in time in the first 50ms and 100 ms of contraction, respectively. The onset of contraction was defined as a torque value of 1% of the peak torque produced during the same contraction [19]. The time windows of 50 ms and 100 ms were chosen as the best compromise between reliability and ecological validity. Indeed, ACL injuries usually occur in the first 50ms after initial ground contact [20]. However, Mentiplay et al. [21] showed greater reliability of RFD at 100 ms than 50 ms. The same time windows were previously used in similar research [19].
- Dominant versus non-dominant legs asymmetry for all these variables: = [(dominant-non dominant)/dominant] × 100.
2.4. Simulated Football Exercise: The 90-Minute Ball-Sport Endurance and Sprint Test (BEAST90)
- During each lap, 12- and 20-m sprint times in sec using timing gates (Brower Timing System, Draper, UT, US).
- Circuit times in sec using handheld stopwatches (Fastime, Leicestershire, UK).
- CMJ height in cm using an electronic jump mat (Probotics Inc, US).
- Heart rate (HR, beats.min−1) was continuously recorded using Polar V800 heart rate monitors (Warwick, UK).
- Rate of perceived exertion (RPE) was reported immediately after each circuit using the Borg scale [23].
2.5. Statistical Analysis
3. Results
3.1. Peak Isokinetic Data
3.2. Angle-Specific Isokinetic Data
3.3. Rate of Torque Development (RTD50 and RTD100)
3.4. Asymmetry
3.5. Correlations between ACL Risk Factors and BEAST90 Data
4. Discussion
4.1. Peak Isokinetic Data
4.2. Angle-Specific Torque
4.3. Rate of Torque Development
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sprouse, B.; Alty, J.; Kemp, S.; Cowie, C.; Mehta, R.; Tang, A.; Morris, J.; Cooper, S.; Varley, I. The Football Association Injury and Illness Surveillance Study: The Incidence, Burden and Severity of Injuries and Illness in Men’s and Women’s International Football. Sports Med. 2020, 28, 1–20. [Google Scholar]
- Junge, A.; Dvorak, J. Injuries in female football players in top- level international tournaments. Br. J. Sports Med. 2007, 41, i3–i7. [Google Scholar] [CrossRef] [Green Version]
- Herzog, M.M.; Marshall, S.W.; Lund, J.L.; Pate, V.; Mack, C.D.; Spang, J.T. Trends in incidence of ACL reconstruction and concomitant procedures among commercially insured individuals in the United States, 2002–2014. Sports Health 2018, 10, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Silvers-Granelli, H.J.; Bizzini, M.; Arundale, A.; Mandelbaum, B.R.; Snyder-Mackler, L. Does the FIFA 11+ Injury Prevention Program Reduce the Incidence of ACL Injury in Male Soccer Players? Clin. Orthop. Relat. Res. 2017, 475, 2447–2455. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; Barber Foss, K.; Liu, C.; Nick, T.G.; Hewett, T.E. The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin. J. Sport Med. 2009, 19, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Croisier, J.L.; Ganteaume, S.; Binet, J.; Genty, M.; Ferret, J.M. Strength imbalances and prevention of hamstring injury in professional soccer players: A prospective study. Am. J. Sports Med. 2008, 36, 1469–1475. [Google Scholar] [CrossRef]
- Cohen, D.D.; Zhao, B.; Okwera, B.; Matthews, M.J.; Delextrat, A. Angle-specific eccentric hamstring fatigue after simulated soccer. Int. J. Sports Physiol. Perfor. 2015, 10, 325–331. [Google Scholar] [CrossRef]
- Renstrom, P.; Ljungqvist, A.; A Arendt, E.; Beynnon, B.D.; Fukubayashi, T.; E Garrett, W.; Georgoulis, T.; E Hewett, T.; Johnson, R.P.; Krosshaug, T.; et al. Non-contact ACL injuries in female athletes: An International Olympic Committee current concepts statement. Br. J. Sports Med. 2008, 42, 394–412. [Google Scholar] [CrossRef] [Green Version]
- De Ste Croix, M.; Priestley, A.; Lloyd, R.; Oliver, J. Age-Related Differences in Functional Hamstring/Quadriceps Ratio Following Soccer Exercise in Female Youth Players: An Injury Risk Factor. Pediatr. Exerc. Sci. 2018, 30, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Zebis, M.K.; Aagaard, P.; Andersen, L.L.; Hölmich, P.; Clausen, M.B.; Brandt, M.; Husted, R.S.; Lauridsen, H.B.; Curtis, D.J.; Bencke, J. First-time anterior cruciate ligament injury in adolescent female elite athletes: A prospective cohort study to identify modifiable risk factors. Knee Surg. Sports Traumatol. Arthrosc. 2021, 30, 1341–1351. [Google Scholar] [CrossRef]
- Delextrat, A.; Baker, J.; Cohen, D.D.; Clarke, N.D. Effect of a simulated soccer match on the functional hamstrings-to-quadriceps ratio in amateur female players. Scand. J. Med. Sci. Sports 2013, 23, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.; Hawkins, R.D.; Maltby, S.; Hulse, M.; Thomas, A.; Hodson, A. Football Association Medical Research Programme. The Football Association Medical Research Programme: An audit of injuries in professional football--analysis of hamstring injuries. Br. J. Sports Med. 2004, 38, 36–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, J.R.; Rumpf, M.C.; Hertzog, M.; Castagna, C.; Farooq, A.; Girard, O.; Hader, K. Acute and Residual Soccer Match-Related Fatigue: A Systematic Review and Meta-analysis. Sports Med. 2018, 48, 539–583. [Google Scholar] [CrossRef]
- Ansdell, P.; Thomas, K.; Hicks, K.M.; Hunter, S.K.; Howatson, G.; Goodall, S. Physiological sex differences affect the integrative response to exercise: Acute and chronic implications. Exp. Physiol. 2020, 105, 2007–2021. [Google Scholar] [CrossRef]
- Mair, S.D.; Seaber, A.V.; Glisson, R.R.; Garrett, W.E., Jr. The role of fatigue in susceptibility to acute muscle strain injury. Am. J. Sports Med. 1996, 24, 137–143. [Google Scholar] [CrossRef]
- Andersson, H.; Raastad, T.; Nilsson, J.; Paulsen, G.; Garthe, I.; Kadi, F. Neuromuscular fatigue and recovery in elite female soccer: Effects of active recovery. Med. Sci. Sports Exerc. 2008, 40, 372–380. [Google Scholar] [CrossRef] [Green Version]
- De Ste Croix, M.B.; Priestley, A.M.; Lloyd, R.S.; Oliver, J.L. ACL injury risk in elite female youth soccer: Changes in neuromuscular control of the knee following soccer-specific fatigue. Scand. J. Med. Sci. Sports 2015, 25, e531–e538. [Google Scholar] [CrossRef] [PubMed]
- Impellizzeri, F.M.; Bizzini, M.; Rampinini, E.; Cereda, F.; Maffiuletti, N.A. Reliability of isokinetic strength imbalance ratios measured using the Cybex NORM dynamometer. Clin. Physiol. Funct. Imaging 2008, 28, 113–119. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Morel, B.; Trama, R.; Hautier, C. Influence of Fatigue on the Rapid Hamstring/Quadriceps Force Capacity in Soccer Players. Front. Physiol. 2021, 12, 627674. [Google Scholar] [CrossRef]
- Krosshaug, T.; Nakamae, A.; Boden, B.P.; Engebretsen, L.; Smith, G.; Slauterbeck, J.R.; Hewett, T.E.; Bahr, R. Mechanisms of anterior cruciate ligament injury in basketball: Video analysis of 39 cases. Am. J. Sports Med. 2007, 35, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Mentiplay, B.F.; Perraton, L.G.; Bower, K.J.; Adair, B.; Pua, Y.H.; Williams, G.P.; McGaw, R.; Clark, R.A. Assessment of Lower Limb Muscle Strength and Power Using Hand-Held and Fixed Dynamometry: A Reliability and Validity Study. PLoS One 2015, 10, e0140822. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.D.; Abt, G.; Kilding, A.E. Ball-Sport Endurance and Sprint Test (BEAST90): Validity and reliability of a 90-minute soccer performance test. J. Strength Cond. Res. 2010, 24, 3209–3218. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Psychophysical bases of perceived exertion. Med. Sci. Sports Exerc. 1982, 14, 377–381. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Earlbaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Higashihara, A.; Nagano, Y.; Ono, T.; Fukubayashi, T. Relationship between the peak time of hamstring stretch and activation during sprinting. Eur. J. Sport Sci. 2016, 16, 36–41. [Google Scholar] [CrossRef]
- Garrett, W.E., Jr.; Califf, J.C.; Bassett, F.H. Histochemical correlates of hamstrings injuries. Am. J. Sports Med. 1984, 12, 98–103. [Google Scholar] [CrossRef]
- Delextrat, A.; Gregory, J.; Cohen, D. The use of the functional H:Q ratio to assess fatigue in soccer. Int. J. Sports Med. 2010, 31, 192–197. [Google Scholar] [CrossRef]
- Grazioli, R.; Lopez, P.; Andersen, L.L.; Machado, C.L.F.; Pinto, M.D.; Cadore, E.L.; Pinto, R.S. Hamstring rate of torque development is more affected than maximal voluntary contraction after a professional soccer match. Eur. J. Sport Sci. 2019, 19, 1336–1341. [Google Scholar] [CrossRef]
- Thorlund, J.B.; Aagaard, P.; Madsen, K. Rapid muscle force capacity changes after soccer match play. Int. J. Sports Med. 2009, 30, 273–278. [Google Scholar] [CrossRef]
- El-Ashker, S.; Allardyce, J.M.; Carson, B.P. Sex-related differences in joint-angle-specific hamstring-to-quadriceps function following fatigue. Eur. J. Sports Sci. 2019, 19, 1053–1061. [Google Scholar] [CrossRef]
- Dal Pupo, J.; Detanico, D.; Santos, S.G. The fatigue effect of a simulated futsal match protocol on isokinetic knee torque production. Sports Biomech. 2014, 13, 332–340. [Google Scholar] [CrossRef]
- Morgan, D.L.; Proske, U. Popping sarcomere hypothesis explains stretch-induced muscle damage. Clin. Exp. Pharmacol. Physiol. 2004, 31, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Small, K.; McNaughton, L.; Greig, M.; Lovell, R. The effects of multidirectional soccer-specific fatigue on markers of hamstrings injury risk. J. Sci. Med. Sport 2010, 13, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Hass, C.; Schick, E.; Tillman, M.; Chow, J.; Brunt, D.; Cauraugh, J. Knee biomechanics during landings: Comparison of pre and post-pubescent females. Med. Sci. Sports Exerc. 2005, 37, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Mckay, D.; Broderick, C.; Steinbeck, K. The adolescent athlete: A developmental approach to injury risk. Pediat. Exerc. Sci. 2016, 28, 488–500. [Google Scholar] [CrossRef]
- Iga, J.; George, K.; Lees, A.; Reilly, T. Cross-sectional investigation of indices of isokinetic leg strength in youth soccer players and untrained individuals. Scand. J. Med. Sci. Sports 2009, 19, 714–719. [Google Scholar] [CrossRef]
- Brophy, R.; Silvers, H.J.; Gonzales, T.; Mandelbaum, B.R. Gender influences: The role of leg dominance in ACL injury among soccer players. Br. J. Sports Med. 2010, 44, 694–697. [Google Scholar] [CrossRef]
- Faude, O.; Junge, A.; Kindermann, W.; Dvorak, J. Injuries in female soccer players: A prospective study in the German national league. Am. J. Sports Med. 2005, 33, 1694–1700. [Google Scholar] [CrossRef]
- Inoue, K.; Nunome, H.; Sterzing, T.; Shinkai, H.; Ikegami, Y. Dynamics of the support leg in soccer instep kicking. J. Sports Sci. 2014, 32, 1023–1032. [Google Scholar] [CrossRef]
- Nakahira, Y.; Taketomi, S.; Kawaguchi, K.; Mizutani, Y.; Hasegawa, M.; Ito, C.; Uchiyama, E.; Ikegami, Y.; Fujiwara, S.; Yamamoto, K.; et al. Kinematic Differences Between the Dominant and Nondominant Legs During a Single-Leg Drop Vertical Jump in Female Soccer Players. Am. J. Sports Med. 2022, 50, 2817–2823. [Google Scholar] [CrossRef]
- Ford, K.R.; Myer, G.D.; Hewett, T.E. Valgus knee motion during landing in high school female and male basketball players. Med. Sci. Sports Exerc. 2003, 35, 1745–1750. [Google Scholar] [CrossRef] [Green Version]
- Gehring, D.; Melnyk, M.; Gollhofer, A. Gender and fatigue have influence on knee joint control strategies during landing. Clin. Biomech. 2009, 24, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Zebis, M.K.; Andersen, L.L.; Ellingsgaard, H.; Aagaard, P. Rapid hamstring/quadriceps force capacity in male vs. female elite soccer players. J. Strength Cond. Res. 2011, 25, 1989–1993. [Google Scholar] [CrossRef] [PubMed]
- Ishøi, L.; Aagaard, P.; Nielsen, M.F.; Thornton, K.B.; Krommes, K.K.; Hölmich, P.; Thorborg, K. The influence of hamstring muscle peak torque and rate of torque development for sprinting performance in football players: A cross-sectional study. Int. J. Sports Physiol. Perform. 2019, 14, 665–673. [Google Scholar] [CrossRef] [PubMed]
- Edman, K.A.; Josephson, R.K. Determinants of force rise time during isometric contraction of frog muscle fibres. J. Physiol. 2007, 580, 1007–1019. [Google Scholar] [CrossRef]
- Mohamed, E.E.; Useh, U.; Mtshali, B.F. Q-angle, Pelvic width, and Intercondylar notch width as predictors of knee injuries in women soccer players in South Africa. Afr. Health Sci. 2012, 12, 174–180. [Google Scholar] [CrossRef]
12-m (s) | 20-m (s) | Circuit (s) | CMJ (cm) | RPE | HR (%HRmax) | |
---|---|---|---|---|---|---|
0–90 min | 2.59 ± 0.23 | 4.29 ± 0.51 | 202 ± 11 | 14.2 ± 1.7 | 14 ± 2 | 84.6 ± 6.6 |
0–15 min | 2.49 ± 0.21 | 4.09 ± 0.51 | 203 ± 13 | 14.7 ± 1.9 | 12 ± 2 | 82.4 ± 5.9 |
75–90 min | 2.62 ± 0.27 | 4.29 ± 0.51 | 201 ± 9 | 13.8 ± 1.5 | 15 ± 1 | 85.4 ±7.4 |
% change | +5.2% | +4.9% | −1.0% | −6.1% | +25% | +3.6% |
Variables | PRE Torque (N·m) | POST Torque (N·m) | 95% CI for the Difference | Cohen’s d |
---|---|---|---|---|
Hecc D | 126 ± 53 | 107 ± 47 * | 13 to 25 | 0.38 |
Hecc ND | 124 ± 51 | 105 ± 45 * | 11 to 28 | 0.40 |
Qcon D | 159 ± 46 | 147 ± 45 * | 6 to 17 | 0.25 |
Qcon ND | 147 ± 45 | 143 ± 48 | −3 to 12 | 0.09 |
Hecc/Qcon D | 0.80 ± 0.18 | 0.73 ± 0.17 * | 0.02 to 0.12 | 0.40 |
Hecc/Qcon ND | 0.85 ± 0.17 | 0.74 ± 0.21 * | 0.01 to 0.20 | 0.56 |
Variables | PRE Torque (N·m) | POST Torque (N·m) | 95% CI for the Difference | Cohen’s d | |
---|---|---|---|---|---|
Hecc D | 10 | 72 ± 34 | 56 ± 27 * | −24 to −7 | 0.52 |
20 | 72 ± 31 | 59 ± 25 * | −20 to −6 | 0.46 | |
30 | 72 ± 28 | 59 ± 24 * | −18 to −7 | 0.50 | |
40 | 71 ± 25 | 61 ± 22 * | −15 to −6 | 0.42 | |
Hecc ND | 10 | 63 ± 31 | 53 ± 31 * | −20 to −1 | 0.32 |
20 | 64 ± 29 | 55 ± 27 * | −17 to −1 | 0.32 | |
30 | 65 ± 26 | 58 ± 25 * | −14 to −1 | 0.27 | |
40 | 66 ± 25 | 59 ± 24 * | −12 to −1 | 0.29 | |
Qcon D | 10 | 38 ± 13 | 35 ± 15 | −1 to 7 | 0.21 |
20 | 49 ± 15 | 44 ± 17 * | 1 to 9 | 0.31 | |
30 | 61 ± 17 | 54±18* | 3 to 11 | 0.40 | |
40 | 74 ± 19 | 65 ± 21 * | 4 to 13 | 0.45 | |
Qcon ND | 10 | 31 ± 13 | 34 ± 11 | −6 to 1 | −0.25 |
20 | 49 ± 22 | 45 ± 13 | −11 to 18 | 0.22 | |
30 | 55 ± 20 | 59 ± 16 | −6 to 1 | −0.22 | |
40 | 68 ± 22 | 67 ± 21 | −3 to 7 | 0.05 | |
Hecc/Qcon D | 10 | 2.13 ± 1.23 | 1.80 ± 1.19 * | −0.69 to −0.04 | 0.27 |
20 | 1.60 ± 0.77 | 1.44 ± 0.78 | −0.37 to 0.04 | 0.21 | |
30 | 1.23 ± 0.48 | 1.15 ± 0.53 | −0.21 to 0.05 | 0.16 | |
40 | 1.00 ± 0.33 | 0.98 ± 0.37 | −0.12 to 0.08 | 0.06 | |
Hecc/Qcon ND | 10 | 2.11 ± 1.02 | 1.65 ± 1.19 * | 6 to 17 | 0.42 |
20 | 1.57 ± 0.71 | 1.30 ± 0.75 * | −3 to 12 | 0.37 | |
30 | 1.19 ± 0.37 | 1.01 ± 0.42 * | 0.02 to 0.12 | 0.45 | |
40 | 0.97 ± 0.27 | 0.91 ± 0.33 | 0.01 to 0.20 | 0.20 |
Variables | PRE RTD (N·m.s−1) | POST RTD (N·m.s−1) | 95% CI for the Difference | Cohen’s d |
---|---|---|---|---|
RTD50 Hecc D | 312 ± 130 | 265 ± 89 * | 3 to 92 | 0.39 |
RTD100 Hecc D | 347 ± 144 | 288 ± 97 * | 10 to 108 | 0.44 |
RTD50 Hecc ND | 319 ± 148 | 274 ± 100 * | −6 to 94 | 0.33 |
RTD100 Hecc ND | 350 ± 163 | 301 ± 110 * | −6 to 108 | 0.33 |
RTD50 Qcon D | 515 ± 197 | 502 ± 200 | −23 to 49 | 0.13 |
RTD100 Qcon D | 591 ± 194 | 570 ± 198 | −20 to 62 | 0.19 |
RTD50 Qcon ND | 516 ± 208 | 482 ± 170 | −20 to 90 | 0.23 |
RTD100 Qcon ND | 580 ± 204 | 553 ± 164 | −35 to 89 | 0.16 |
RTD50 Hecc/Qcon D | 0.66 ± 0.32 | 0.63 ± 0.44 | −0.07 to 0.12 | 0.10 |
RTD100 Hecc/Qcon D | 0.66 ± 0.30 | 0.62 ± 0.43 | −0.06 to 0.13 | 0.13 |
RTD50 Hecc/Qcon ND | 0.73 ± 0.75 | 0.59 ± 0.26 | −0.11 to 0.38 | 0.21 |
RTD100 Hecc/Qcon ND | 0.74 ± 0.76 | 0.58 ± 0.27 | −0.10 to 0.40 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferguson, H.; Piquet, J.; Jemni, M.; Delextrat, A. Effects of a Football Simulated Exercise on Injury Risk Factors for Anterior Cruciate Ligament (ACL) Injury in Amateur Female Players. Biology 2023, 12, 124. https://doi.org/10.3390/biology12010124
Ferguson H, Piquet J, Jemni M, Delextrat A. Effects of a Football Simulated Exercise on Injury Risk Factors for Anterior Cruciate Ligament (ACL) Injury in Amateur Female Players. Biology. 2023; 12(1):124. https://doi.org/10.3390/biology12010124
Chicago/Turabian StyleFerguson, Harriet, Jessica Piquet, Monèm Jemni, and Anne Delextrat. 2023. "Effects of a Football Simulated Exercise on Injury Risk Factors for Anterior Cruciate Ligament (ACL) Injury in Amateur Female Players" Biology 12, no. 1: 124. https://doi.org/10.3390/biology12010124
APA StyleFerguson, H., Piquet, J., Jemni, M., & Delextrat, A. (2023). Effects of a Football Simulated Exercise on Injury Risk Factors for Anterior Cruciate Ligament (ACL) Injury in Amateur Female Players. Biology, 12(1), 124. https://doi.org/10.3390/biology12010124