Peptidomics Profile, Bioactive Peptides Identification and Biological Activities of Six Different Cheese Varieties
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Cheese Manufacturing
2.2.1. Karish Cheese
2.2.2. Feta-Type Cheese
2.2.3. Domiati Cheese
2.2.4. Ras Cheese
2.2.5. Gouda Cheese
2.2.6. Edam Cheese
2.3. Cheese Compositional Analysis
2.4. Extraction and Quantification of Low-Molecular Weight Peptides from Cheese Samples
2.5. Biological Activity Assays
2.5.1. Antioxidant Activity Determination
2.5.2. Assessment of Inhibitory Activity against α-Amylase and α-Glucosidase
2.5.3. Assessment of Inhibitory Activity against Dipeptidyl-Peptidase-IV (DPP-IV)
2.5.4. Assessment of Inhibitory Activity against Angiotensin-Converting Enzyme (ACE)
2.6. Peptidomics Analysis
2.7. Identification and Quantification of Bioactive Peptides
2.8. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition and Peptide Quantification in the Six Different Cheese Varieties
3.2. Biological Activities Assessment
3.3. General Peptidomics Profiles
3.4. Bioactive Peptide Profiles
3.4.1. Antioxidant Peptides
3.4.2. ACE-Inhibitory Peptides
3.4.3. DPP-IV-Inhibitory Peptides
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feeney, E.L.; Lamichhane, P.; Sheehan, J.J. The cheese matrix: Understanding the impact of cheese structure on aspects of cardiovascular health—A food science and a human nutrition perspective. Int. J. Dairy Technol. 2021, 74, 656–670. [Google Scholar] [CrossRef]
- McSweeney, P.L.H. Biochemistry of cheese ripening. Int. J. Dairy Technol. 2004, 57, 127–144. [Google Scholar] [CrossRef]
- Santiago-López, L.; Aguilar-Toalá, J.E.; Hernández-Mendoza, A.; Vallejo-Cordoba, B.; Liceaga, A.M.; González-Córdova, A.F. Invited review: Bioactive compounds produced during cheese ripening and health effects associated with aged cheese consumption. J. Dairy Sci. 2018, 101, 3742–3757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Expósito, I.; Miralles, B.; Amigo, L.; Hernández-Ledesma, B. Health effects of cheese components with a focus on bioactive peptides. In Fermented Foods in Health and Disease Prevention, 1st ed.; Frias, J., Martinez-Villaluenga, C., Peñas, E., Eds.; Academic Press: Cambridge, MA, USA, 2017; Volume 1, pp. 239–273. [Google Scholar] [CrossRef] [Green Version]
- Baptista, D.P.; Gigante, M.L. Bioactive peptides in ripened cheeses: Release during technological processes and resistance to the gastrointestinal tract. J. Sci. Food Agric. 2021, 101, 4010–4017. [Google Scholar] [CrossRef]
- Giosuè, A.; Calabrese, I.; Vitale, M.; Riccardi, G.; Vaccaro, O. Consumption of dairy foods and cardiovascular disease: A systematic review. Nutrients 2022, 14, 831. [Google Scholar] [CrossRef]
- Chen, Z.; Ahmed, M.; Ha, V.; Jefferson, K.; Malik, V.; Ribeiro, P.; Zuchinali, P.; Drouin-Chartier, J.P. Dairy product consumption and cardiovascular health: A systematic review and meta-analysis of prospective cohort studies. Adv. Nutr. 2021, 13, 439–454. [Google Scholar] [CrossRef]
- Sluijs, I.; Forouhi, N.G.; Beulens, J.W.; van der Schouw, Y.T.; Agnoli, C.; Arriola, L.; Balkau, B.; Barricarte, A.; Boeing, H.; Bueno-de-Mesquita, H.B.; et al. The amount and type of dairy product intake and incident type 2 diabetes: Results from the EPIC-InterAct Study. Am. J. Clin. Nutr. 2012, 96, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Firmesse, O.; Alvaro, E.; Mogenet, A.; Bresson, J.L.; Lemée, R.; Le Ruyet, P.; Bonhomme, C.; Lambert, D.; Andrieux, C.; Doré, J.; et al. Fate and effects of Camembert cheese micro-organisms in the human colonic microbiota of healthy volunteers after regular Camembert consumption. Int. J. Food Microbiol. 2008, 125, 176–181. [Google Scholar] [CrossRef]
- Aljutaily, T.; Huarte, E.; Martinez-Monteagudo, S.; Gonzalez-Hernandez, J.L.; Rovai, M.; Sergeev, I.N. Probiotic-enriched milk and dairy products increase gut microbiota diversity: A comparative study. Nutr. Res. 2020, 82, 25–33. [Google Scholar] [CrossRef]
- Rizzello, C.G.; Tagliazucchi, D.; Babini, E.; Rutella, G.S.; Taneyo Saa, D.L.; Gianotti, A. Bioactive peptides from vegetable food matrices: Research trends and novel biotechnologies for synthesis and recovery. J. Funct. Foods 2016, 27, 549–569. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Martini, S.; Solieri, L. Bioprospecting for bioactive peptide production by lactic acid bacteria isolated from fermented dairy food. Fermentation 2019, 5, 96. [Google Scholar] [CrossRef] [Green Version]
- Martini, S.; Conte, A.; Tagliazucchi, D. Effect of ripening and in vitro digestion on the evolution and fate of bioactive peptides in Parmigiano-Reggiano cheese. Int. Dairy J. 2020, 105, 104668. [Google Scholar] [CrossRef]
- Turan, N.; Durak, M.Z. The identification of antioxidant and ACE-I peptides in different turkish ripened cheeses. J. Food Sci. Technol. 2022, 59, 3274–3282. [Google Scholar] [CrossRef] [PubMed]
- Bütikofer, U.; Meyer, J.; Sieber, R.; Walther, B.; Wechsler, D. Occurrence of the angiotensin-converting enzyme inhibiting tripeptides Val-ProPro and Ile-Pro-Pro in different cheese varieties of Swiss origin. J. Dairy Sci. 2008, 91, 29–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bütikofer, U.; Meyer, J.; Sieber, R.; Wechsler, D. Quantification of the angiotensin-converting enzyme-inhibiting tripeptides Val-Pro-Pro and Ile-Pro-Pro in hard, semi-hard and soft cheeses. Int. Dairy J. 2007, 17, 968–975. [Google Scholar] [CrossRef]
- Gómez-Ruiz, J.Á.; Taborda, G.; Amigo, L.; Recio, I.; Ramos, M. Identification of ACE-inhibitory peptides in different Spanish cheeses by tandem mass spectrometry. Eur. Food Res. Technol. 2006, 223, 595–601. [Google Scholar] [CrossRef]
- Sánchez-Rivera, L.; Diezhandino, I.; Gómez-Ruiz, J.Á.; Fresno, J.M.; Miralles, B.; Recio, I. Peptidomic study of Spanish blue cheese (Valdeón) and changes after simulated gastrointestinal digestion. Electrophoresis 2014, 35, 1627–1636. [Google Scholar] [CrossRef]
- Stuknyte, M.; Cattaneo, S.; Masotti, F.; De Noni, I. Occurrence and fate of ACE-inhibitor peptides in cheeses and in their digestates following in vitro static gastrointestinal digestion. Food Chem. 2015, 168, 27–33. [Google Scholar] [CrossRef]
- Baptista, D.P.; da Araújo, F.D.S.; Eberlin, M.N.; Gigante, M.L. A survey of the peptide profile in prato cheese as measured by MALDI-MS and capillary electrophoresis. J. Food Sci. 2017, 82, 386–393. [Google Scholar] [CrossRef]
- El-Zayat, A.; Omar, M. Kareish cheese prepared from ultrafiltered milk. J. Dairy Res. 1987, 54, 545–550. [Google Scholar] [CrossRef]
- Abed El Malek, F.; Osman, S.; Younis, N. Palm kernel oil as a substitute of milk fat in Feta cheese. J. Food Dairy Sci. 2019, 10, 31–35. [Google Scholar] [CrossRef]
- Fahmi, A.H.; Sharara, H.A. Studies on Egyptian Domiati cheese. J. Dairy Res. 1950, 17, 312–328. [Google Scholar] [CrossRef]
- Hofi, A.A.; Youssef, E.H.; Ghoneim, M.A.; Tawab, G.A. Ripening changes in Cephalotyre ‘‘Ras’’ cheese manufactured from raw and pasteurised milk with special reference to flavour. J. Dairy Sci. 1970, 53, 1207–1212. [Google Scholar] [CrossRef]
- Park, W.; Yoo, J.; Oh, S.; Ham, J.S.; Jeong, S.G.; Kim, Y. Microbiological characteristics of Gouda cheese manufactured with pasteurized and raw milk during ripening using next generation sequencing. Food Sci. Anim. Resour. 2019, 39, 585–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aljewicz, M.; Cichosz, G.; Nalepa, B.; Kowalska, M. Influence of the probiotic Lactobacillus acidophilus NCFM and Lactobacillus rhamnosus HN001 on proteolysis patterns of Edam cheese. Food Technol. Biotechnol. 2014, 52, 439–447. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 17th ed.; The Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- IDF Standard 5B; Determination of Chloride Content (Cheese and Processed Cheese). International Dairy Federation: Brussels, Belgium, 1988.
- Martini, S.; Solieri, L.; Cattivelli, A.; Pizzamiglio, V.; Tagliazucchi, D. An integrated peptidomics and in silico approach to identify novel anti-diabetic peptides in Parmigiano-Reggiano cheese. Biology 2021, 10, 563. [Google Scholar] [CrossRef] [PubMed]
- Tagliazucchi, D.; Shamsia, S.; Helal, A.; Conte, A. Angiotensin-converting enzyme inhibitory peptides from goats’ milk released by in vitro gastro-intestinal digestion. Int. Dairy J. 2017, 71, 6–16. [Google Scholar] [CrossRef]
- Adler-Nissen, J. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzensulfonic acid. J. Agric. Food Chem. 1979, 27, 1256–1262. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Meth. Enzymol. 1999, 299, 15–27. [Google Scholar] [CrossRef]
- Cattivelli, A.; Conte, A.; Martini, S.; Tagliazucchi, D. Cooking and in vitro digestion modulate the anti-diabetic properties of red-skinned onion and dark purple eggplant phenolic compounds. Foods 2022, 11, 689. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Martini, S.; Shamsia, S.; Helal, A.; Conte, A. Biological activities and peptidomic profile of in vitro-digested cow, camel, goat and sheep milk. Int. Dairy J. 2018, 81, 19–27. [Google Scholar] [CrossRef] [Green Version]
- Solieri, L.; Valentini, M.; Cattivelli, A.; Sola, L.; Helal, A.; Martini, S.; Tagliazucchi, D. Fermentation of whey protein concentrate by Streptococcus thermophilus strains releases peptides with biological activities. Process Biochem. 2022, 121, 590–600. [Google Scholar] [CrossRef]
- Nielsen, S.D.; Beverly, R.L.; Qu, Y.; Dallas, D.C. Milk bioactive peptide database: A comprehensive database of milk protein-derived bioactive peptides and novel visualization. Food Chem. 2017, 232, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Mann, B.; Kumar, R.; Sangwan, R.B. Antioxidant activity of Cheddar cheeses at different stages of ripening. Int. J. Dairy Technol. 2009, 62, 339–347. [Google Scholar] [CrossRef]
- Solieri, L.; Baldaccini, A.; Martini, S.; Bianchi, A.; Pizzamiglio, V.; Tagliazucchi, D. Peptide profiling and biological activities of 12-month ripened Parmigiano Reggiano cheese. Biology 2020, 9, 170. [Google Scholar] [CrossRef]
- Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 2005, 53, 4290–4302. [Google Scholar] [CrossRef]
- Babini, E.; Tagliazucchi, D.; Martini, S.; Dei Più, L.; Gianotti, A. LC-ESI-QTOF-MS identification of novel antioxidant peptides obtained by enzymatic and microbial hydrolysis of vegetable proteins. Food Chem. 2017, 228, 186–196. [Google Scholar] [CrossRef]
- Álvarez Ramos, L.; Arrieta Baez, D.; Dávila Ortiz, G.; Carlos Ruiz, J.; Manuel Toledo López, V. Antioxidant and antihypertensive activity of Gouda cheese at different stages of ripening. Food Chem. X 2022, 14, 100284. [Google Scholar] [CrossRef]
- Taha, S.; El Abd, M.; De Gobba, C.; Abdel-Hamid, M.; Khalil, E.; Hassan, F.U.; Fathy, D. The multifunctional activity of water-soluble peptides’ extract of Domiati cheese during accelerated ripening by Neutrase. J. Food Process. Preserv. 2020, 44, e14434. [Google Scholar] [CrossRef]
- Parrot, S.; Degraeve, P.; Curia, C.; Martial-Gros, A. In vitro study on digestion of peptides in Emmental cheese: Analytical evaluation and influence on angiotensin I converting enzyme inhibitory peptides. Nahrung 2003, 47, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Ben Henda, Y.; Labidi, A.; Arnaudin, I.; Bridiau, N.; Delatouche, R.; Maugard, T.; Piot, J.M.; Sannier, F.; Thiéry, V.; Bordenave-Juchereau, S. Measuring angiotensin-I converting enzyme inhibitory activity by micro plate assays: Comparison using marine cryptides and tentative threshold determinations with captopril and losartan. J. Agric. Food Chem. 2013, 61, 10685–10690. [Google Scholar] [CrossRef] [PubMed]
- Bunning, P.; Holmquist, B.; Riordan, J.F. Substrate specificity and kinetic characteristics of angiotensin converting enzyme. Biochemistry 1983, 22, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Uenishi, H.; Kabuki, T.; Seto, Y.; Serizawa, A.; Nakajima, H. Isolation and identification of casein-derived dipeptidyl-peptidase 4 (DPP-4)-inhibitory peptide LPQNIPPL from gouda-type cheese and its effect on plasma glucose in rats. Int. Dairy J. 2012, 22, 24–30. [Google Scholar] [CrossRef]
- Martini, S.; Conte, A.; Tagliazucchi, D. Comparative peptidomic profile and bioactivities of cooked beef, pork, chicken and turkey meat after in vitro gastro-intestinal digestion. J. Proteom. 2019, 208, 103500. [Google Scholar] [CrossRef]
- Zou, T.B.; He, T.P.; Li, H.B.; Tang, H.W.; Xia, E.Q. The structure-activity relationship of the antioxidant peptides from natural proteins. Molecules 2016, 21, 72. [Google Scholar] [CrossRef]
- Amigo, L.; Martínez-Maqueda, D.; Hernández-Ledesma, B. In silico and in vitro analysis of multifunctionality of animal food-derived peptides. Foods 2020, 9, 991. [Google Scholar] [CrossRef]
- Hernández-Ledesma, B.; Quirós, A.; Amigo, L.; Recio, I. Identification of bioactive peptides after digestion of human milk and infant formula with pepsin and pancreatin. Int. Dairy J. 2007, 17, 42–49. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Helal, A.; Verzelloni, E.; Conte, A. Bovine milk antioxidant properties: Effect of in vitro digestion and identification of antioxidant compounds. Dairy Sci. Technol. 2016, 96, 657–676. [Google Scholar] [CrossRef]
- Sowmya, K.; Mala, D.; Bhat, M.I.; Kumar, N.; Bajaj, R.K.; Kapila, S.; Kapila, R. Bio-accessible milk casein derived tripeptide (LLY) mediates overlapping anti- inflammatory and anti-oxidative effects under cellular (Caco-2) and in vivo milieu. J. Nutr. Biochem. 2018, 62, 167–180. [Google Scholar] [CrossRef]
- Fekete, A.A.; Givens, D.I.; Lovegrove, J.A. Casein-derived lactotripeptides reduce systolic and diastolic blood pressure in a meta-analysis of randomised clinical trials. Nutrients 2015, 7, 659–681. [Google Scholar] [CrossRef] [Green Version]
- Cicero, A.F.G.; Gerocarni, B.; Laghi, L.; Borghi, C. Blood pressure lowering effect of lactotripeptides assumed as functional foods: A meta-analysis of current available clinical trials. J. Hum. Hypertens. 2011, 25, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Bu, T.; Zheng, J.; Liu, L.; He, G.; Wu, J. Preparation, bioavailability, and mechanism of emerging activities of Ile-Pro-Pro and Val-Pro-Pro. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1097–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrán-Barrientos, L.M.; Hernández-Mendoza, A.; Torres-Llanez, M.J.; González-Córdova, A.F.; Vallejo-Córdoba, B. Fermented milk as anti-hypertensive functional food. J. Dairy Sci. 2016, 99, 4099–4110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nongonierma, A.B.; FitzGerald, R.J. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides 2016, 79, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Xu, Q.; Lin, L.; Zeng, X.A.; Sun, B.; Zhao, M. In vitro metabolic stability of a casein-derived dipeptidyl peptidase-IV (DPP-IV) inhibitory peptide VPYPQ and its controlled release from casein by enzymatic hydrolysis. J. Agric. Food Chem. 2019, 67, 10604–10613. [Google Scholar] [CrossRef] [PubMed]
Cheese Variety | Milk 1 | Starter 2 | Rennet | Cooking | Ripening (Days) |
---|---|---|---|---|---|
Karish | B, P | F | N | - | - |
Feta-type | C, P | N | Yes | - | - |
Domiati | C, R | N | Yes | - | 90 |
Ras | C, R | N | Yes | 45 °C/45 min | 90 |
Gouda | C, P | F | Yes | 38 °C/45 min | 90 |
Edam | C, P | F | Yes | 36 °C/40 min | 90 |
Cheese Variety | Moisture (%) | Fat (%) | Protein (%) | Salt (%) |
---|---|---|---|---|
Karish | 69.04 ± 3.35 a | 0.55 ± 0.05 e | 17.59 ± 1.01 b | 2.47 ± 0.14 c |
Feta-type | 59.32 ± 2.11 b | 20.34 ± 0.98 d | 9.11 ± 0.88 c | 3.23 ± 0.29 b |
Domiati | 53.60 ± 2.28 c | 23.98 ± 0.77 c | 16.37 ± 0.53 b | 4.02 ± 0.17 a |
Ras | 34.90 ± 2.09 e | 34.30 ± 1.95 a | 25.90 ± 1.67 a | 3.21 ± 0.19 b |
Gouda | 38.20 ± 2.18 e | 33.18 ± 1.66 a | 26.10 ± 1.34 a | 2.00 ± 0.17 d |
Edam | 44.15 ± 2.23 d | 27.22 ± 1.84 b | 25.17 ± 1.75 a | 1.82 ± 0.15 d |
Peptide Sequence | Protein Fragment | Bioactivity | Sample |
---|---|---|---|
RPKHPI | αS1-casein (1–6) | ACE-inhibitor | D, R, G and E |
RPKHPIK | αS1-casein (1–7) | Anti-microbial | G |
RPKHPIKHQ | αS1-casein (1–9) | ACE-inhibitor, anti-hypertensive in vivo | G and E |
VLNENLLR | αS1-casein (15–22) | Anti-microbial | D, R, G and E |
ENLLRF | αS1-casein (18–23) | ACE-inhibitor | K, F, D, R, G and E |
LRFF | αS1-casein (19–24) | ACE-inhibitor | F |
FVAPFPEVFG | αS1-casein (24–33) | ACE-inhibitor | D and R |
APFPE | αS1-casein (26–30) | DPP-IV-inhibitor | D, R, G and E |
PFP | αS1-casein (27–29) β-casein (61–63) | ACE-inhibitor | R |
FPEVFGK | αS1-casein (28–34) | ACE-inhibitor | D, R, G and E |
RYLGY | αS1-casein (90–94) | ACE-inhibitor, anti-hypertensive in vivo, antioxidant, opioid | F and E |
RYLGYLE | αS1-casein (90–96) | Antioxidant, anti-cancer | D and E |
YLG | αS1-casein (91–93) | Antioxidant | K, D, R, G and E |
YLGY | αS1-casein (91–94) | ACE-inhibitor, antioxidant | R and E |
YLGYLE | αS1-casein (91–96) | ACE-inhibitor, antioxidant, opioid | D, R and E |
LGY | αS1-casein (92–94) | ACE-inhibitor, antioxidant | K, F and D |
YLEQLLR | αS1-casein (94–100) | Anti-microbial | R |
LRLKKYKVPQL | αS1-casein (99–109) | Anti-microbial | F |
YFYPE | αS1-casein (144–148) | Opioid | E |
FYPEL | αS1-casein (145–149) | ACE-inhibitor, antioxidant | F |
PEL | αS1-casein (147–149) | Antioxidant | F and R |
APSFSDIPNPIGSENSE | αS1-casein (176–192) | Antioxidant | F |
YQKFPQY | αS2-casein (89–95) | ACE-inhibitor, antioxidant | F |
FPQY | αS2-casein (92–95) | ACE-inhibitor, antioxidant | G |
VPITPT | αS2-casein (117–122) | DPP-IV-inhibitor | R and G |
VPITPTL | αS2-casein (117–123) | DPP-IV-inhibitor | G |
ITP | αS2-casein (119–121) | ACE-inhibitor | R |
LKKISQ | αS2-casein (164–169) | Anti-microbial | F |
VYQHQKAMKPWIQPKTKVIPYVRYL | αS2-casein (183–207) | Anti-microbial | G |
IQPKTKVIPYVR | αS2-casein (194–205) | Anti-microbial | D and G |
TKVIP | αS2-casein (198–202) | ACE-inhibitor, anti-hypertensive in vivo | G |
TKVIPYVRYL | αS2-casein (198–207) | Anti-microbial | G and E |
VRYL | αS2-casein (204–207) | ACE-inhibitor | E |
RELEEL | β-casein (1–6) | Antioxidant | F, G and E |
VPGEIVE | β-casein (8–14) | DPP-IV-inhibitor | D, R, G and E |
YPFPGP | β-casein (60–65) | DPP-IV-inhibitor, opioid | G |
YPFPGPI | β-casein (60–66) | DPP-IV-inhibitor, antioxidant, opioid, immunomodulator, anxiolytic, anti-cancer | G |
YPFPGPIPN | β-casein (60–68) | ACE-inhibitor, anti-hypertensive in vivo, DPP-IV-inhibitor, antioxidant | G |
FPGPIPN | β-casein (62–68) | DPP-IV-inhibitor | G |
SLPQ | β-casein (69–72) | ACE-inhibitor | R |
LPQNIPP | β-casein (70–76) | DPP-IV-inhibitor | G |
PQNIPPL | β-casein (71–77) | DPP-IV-inhibitor | G |
IPP | β-casein (74–76) κ-casein (108–110) | ACE-inhibitor, anti-hypertensive in vivo, DPP-IV-inhibitor, antioxidant, anti-inflammatory | K, D, R, G and E |
TPVVVPPFLQP | β-casein (80–90) | ACE-inhibitor, anti-hypertensive in vivo | G |
PVVVPPFLQPE | β-casein (81–91) | Anti-microbial | F |
VVPP | β-casein (83–86) | ACE-inhibitor | R and G |
VPP | β-casein (84–86) | ACE-inhibitor, anti-hypertensive in vivo, antioxidant, anti-inflammatory | K, D, R, G and E |
FPKYPVEPF | β-casein (111–119) | Antioxidant | D and R |
NLHLPLP | β-casein (132–138) | ACE-inhibitor | K |
NLHLPLPLL | β-casein (132–140) | ACE-inhibitor | K |
LHLPLP | β-casein (133–138) | ACE-inhibitor, anti-hypertensive in vivo | K |
LHLPLPL | β-casein (133–139) | ACE-inhibitor | F |
LPLP | β-casein (135–138) | ACE-inhibitor, anti-hypertensive in vivo | R, G and E |
LPLPL | β-casein (135–139) | DPP-IV-inhibitor | G |
LPLPLL | β-casein (135–140) | ACE-inhibitor | G |
SQSKVLPVPQ | β-casein (166–175) | ACE-inhibitor | K |
SQSKVLPVPQKAVPYPQ | β-casein (166–182) | Antioxidant | F |
KVLPVPQ | β-casein (169–175) | ACE-inhibitor, anti-hypertensive in vivo, anti-inflammatory | F and E |
LPVPQ | β-casein (171–175) | DPP-IV-inhibitor | D, R, G and E |
AVPYPQR | β-casein (177–183) | ACE-inhibitor, anti-hypertensive in vivo, antioxidant, anti-microbial | R |
VPYPQ | β-casein (178–182) | DPP-IV-inhibitor, antioxidant | F, G and E |
VPYPQR | β-casein (178–183) | Antioxidant | E |
PYPQ | β-casein (179–182) | Antioxidant | K and E |
RDMPIQAF | β-casein (183–190) | ACE-inhibitor | K and D |
IQA | β-casein (187–189) | ACE-inhibitor | K, F and D |
LLY | β-casein (191–193) | Antioxidant, anti-inflammatory, immunomodulator | K, G and E |
YQEP | β-casein (193–196) | ACE-inhibitor, antioxidant | K |
YQEPVLGP | β-casein (193–200) | ACE-inhibitor, antioxidant | K |
YQEPVLGPVRGPFPIIV | β-casein (193–209) | ACE-inhibitor, anti-microbial, immunomodulator | R and E |
EPVLGPVRGPFP | β-casein (195–206) | ACE-inhibitor | G and E |
VLGP | β-casein (197–200) | ACE-inhibitor, DPP-IV-inhibitor | K, D, G and E |
VRGPFP | β-casein (201–206) | ACE-inhibitor | R, G and E |
VRGPFPIIV | β-casein (201–209) | ACE-inhibitor, anti-hypertensive in vivo | R, G and E |
DERF | κ-casein (14–17) | ACE-inhibitor | D and E |
IPI | κ-casein (26–28) | DPP-IV-inhibitor | E |
YVL | κ-casein (30–32) | Antioxidant, anti-microbial | K, F and D |
YGL | κ-casein (38–40) | ACE-inhibitor | K and D |
AIPPKKNQD | κ-casein (107–115) | ACE-inhibitor | F |
EIPT | κ-casein (118–121) | Anti-microbial | D |
LDAQSAPLR | β-lactoglobulin (32–40) | ACE-inhibitor | F |
DAQSAPLRVY | β-lactoglobulin (33–42) | ACE-inhibitor | F |
HIRL | β-lactoglobulin (146–149) | Anxiolytic | F |
Sequence | Karish | Feta-Type | Domiati | Ras | Gouda | Edam |
---|---|---|---|---|---|---|
VPP a | 0.94 ± 0.05 e | n.d. | 3.03 ± 0.11 c | 0.68 ± 0.03 d | 39.19 ± 1.26 a | 3.73 ± 0.17 b |
IPP a | 0.83 ± 0.05 e | n.d. | 8.37 ± 0.48 b | 2.50 ± 0.10 d | 17.72 ± 0.89 a | 3.29 ± 0.18 c |
APFPE b | n.d. | n.d. | 17.20 ± 0.94 c | 3.27 ± 0.29 d | 298.02 ± 15.36 b | 509.13 ± 20.44 a |
IPI b | n.d. | n.d. | n.d. | n.d. | n.d. | 1.38 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Helal, A.; Tagliazucchi, D. Peptidomics Profile, Bioactive Peptides Identification and Biological Activities of Six Different Cheese Varieties. Biology 2023, 12, 78. https://doi.org/10.3390/biology12010078
Helal A, Tagliazucchi D. Peptidomics Profile, Bioactive Peptides Identification and Biological Activities of Six Different Cheese Varieties. Biology. 2023; 12(1):78. https://doi.org/10.3390/biology12010078
Chicago/Turabian StyleHelal, Ahmed, and Davide Tagliazucchi. 2023. "Peptidomics Profile, Bioactive Peptides Identification and Biological Activities of Six Different Cheese Varieties" Biology 12, no. 1: 78. https://doi.org/10.3390/biology12010078
APA StyleHelal, A., & Tagliazucchi, D. (2023). Peptidomics Profile, Bioactive Peptides Identification and Biological Activities of Six Different Cheese Varieties. Biology, 12(1), 78. https://doi.org/10.3390/biology12010078