Predicting the Impact of Climate Change on the Habitat Distribution of Parthenium hysterophorus around the World and in South Korea
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Species-Occurrence Records
2.2. Selection of Bioclimatic Variables
2.3. Model Development, Evaluation, and Validation
2.4. Habitat Expansion of P. hysterophorus across the World and in South Korea
3. Results
3.1. Evaluation of Bioclimatic Variables
3.2. Evaluation of Model Performance Based on AUC, TSS, and Kappa Scores
3.3. Impact of Climate Change on P. hysterophorus Distribution Worldwide
3.4. Impact of Climate Change on P. hysterophorus Distribution in South Korea
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adkins, S.W.; Shabbir, A.; Dhileepan, K. Parthenium Weed: Biology, Ecology and Management; CABI: Wallingford, UK, 2018; Volume 7. [Google Scholar]
- Adkins, S.; Shabbir, A. Biology, ecology and management of the invasive parthenium weed (Parthenium hysterophorus L.). Pest Manag. Sci. 2014, 70, 1023–1029. [Google Scholar] [CrossRef]
- Al Ruheili, A.M.; Al Sariri, T.; Al Subhi, A.M. Predicting the potential habitat distribution of parthenium weed (Parthenium hysterophorus) globally and in Oman under projected climate change. J. Saudi Soc. Agric. Sci. 2022, 21, 469–478. [Google Scholar] [CrossRef]
- Mao, R.; Shabbir, A.; Adkins, S. Parthenium hysterophorus: A tale of global invasion over two centuries, spread and prevention measures. J. Environ. Manag. 2021, 279, 111751. [Google Scholar] [CrossRef] [PubMed]
- Islam, A. Nitrogen Exploitation Capacity of Parthenium Weed and Its Inhibitory Effects on Growth and Development of Rice. M.S. Thesis, Bangladesh Agricultural University, Ymensingh, Bangladesh, 2010. [Google Scholar]
- Ahmad, J.; Bashir, H.; Bagheri, R.; Baig, A.; Al-Huqail, A.; Ibrahim, M.M.; Qureshi, M.I. Drought and salinity induced changes in ecophysiology and proteomic profile of Parthenium hysterophorus. PLoS ONE 2017, 12, e0185118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, S. Current spread, impact and management of Parthenium weed in India. Int. Parthenium News. Trop. Sub-Trop. Weed Res. Unit Univ. Qld. Aust. 2012, 5, 1–13. [Google Scholar]
- Allan, S.; Shi BoYang, S.B.; Adkins, S.W. Impact of parthenium weed on human and animal health. In Parthenium Weed: Biology, Ecology and Management; CABI: Wallingford, UK, 2019; pp. 105–130. [Google Scholar]
- Wey, P. Parthenium hysterophorus (Parthenium Weed); CABI Compendium: Wallingford, UK, 2019. [Google Scholar] [CrossRef]
- Jung, S.Y.; Lee, J.W.; Shin, H.T.; Kim, S.J.; An, J.B.; Heo, T.I.; Chung, J.M.; Cho, Y.C. Invasive Alien Plants in South Korea; Korea National Arboretum: Pocheon, Republic of Korea, 2017. [Google Scholar]
- Navie, S.; McFadyen, R.; Panetta, F.; Adkins, S. The effect of CO2 enrichment on the growth of a C3 weed (Parthenium hysterophorus L.) and its competitive interaction with a C4 grass (Cenchrus ciliaris L.). Plant Prot. Q. 2005, 20, 61–66. [Google Scholar]
- Bradley, B.A.; Blumenthal, D.M.; Wilcove, D.S.; Ziska, L.H. Predicting plant invasions in an era of global change. Trends Ecol. Evol. 2010, 25, 310–318. [Google Scholar] [CrossRef]
- Guyana, P.; Paraguay, S. Parthenium hysterophorus L. Asteraceae–Parthenium weed. Bull. OEPP/EPPO Bull. 2014, 44, 474–478. [Google Scholar]
- Ahmad, R.; Khuroo, A.A.; Hamid, M.; Charles, B.; Rashid, I. Predicting invasion potential and niche dynamics of Parthenium hysterophorus (Congress grass) in India under projected climate change. Biodivers. Conserv. 2019, 28, 2319–2344. [Google Scholar] [CrossRef]
- Hong, S.H.; Lee, Y.H.; Lee, G.; Lee, D.-H.; Adhikari, P. Predicting impacts of climate change on northward range expansion of invasive weeds in South Korea. Plants 2021, 10, 1604. [Google Scholar] [CrossRef]
- Adhikari, P.; Jeon, J.-Y.; Kim, H.W.; Shin, M.-S.; Adhikari, P.; Seo, C. Potential impact of climate change on plant invasion in the Republic of Korea. J. Ecol. Environ. 2019, 43, 36. [Google Scholar] [CrossRef]
- Adhikari, P.; Lee, Y.H.; Park, Y.-S.; Hong, S.H. Assessment of the spatial invasion risk of intentionally introduced alien plant species (IIAPS) under environmental change in South Korea. Biology 2021, 10, 1169. [Google Scholar] [CrossRef] [PubMed]
- Masum, S.M.; Halim, A.; Mandal, M.S.H.; Asaduzzaman, M.; Adkins, S. Predicting Current and Future Potential Distributions of Parthenium hysterophorus in Bangladesh Using Maximum Entropy Ecological Niche Modelling. Agronomy 2022, 12, 1592. [Google Scholar] [CrossRef]
- Waldock, C.; Stuart-Smith, R.D.; Albouy, C.; Cheung, W.W.; Edgar, G.J.; Mouillot, D.; Tjiputra, J.; Pellissier, L. A quantitative review of abundance-based species distribution models. Ecography 2022, 2022. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Adhikari, P.; Kim, B.-J.; Hong, S.-H.; Lee, D.-H. Climate change induced habitat expansion of nutria (Myocastor coypus) in South Korea. Sci. Rep. 2022, 12, 3300. [Google Scholar] [CrossRef]
- Williams, J.; Groves, R. The influence of temperature and photoperiod on growth and development of Parthenium hysterophorus L. Weed Res. 1980, 20, 47–52. [Google Scholar] [CrossRef]
- Cowie, B.W.; Venter, N.; Witkowski, E.T.; Byrne, M.J. Implications of elevated carbon dioxide on the susceptibility of the globally invasive weed, Parthenium hysterophorus, to glyphosate herbicide. Pest Manag. Sci. 2020, 76, 2324–2332. [Google Scholar] [CrossRef]
- KMA. Korean Climate Change Assessment Report; Korea Meteorological Administration: Sejong, Republic of Korea, 2020; p. 48. [Google Scholar]
- Adhikari, P.; Lee, Y.H.; Adhikari, P.; Hong, S.H.; Park, Y.-S. Climate change-induced invasion risk of ecosystem disturbing alien plant species: An evaluation using species distribution modeling. Front. Ecol. Evol. 2022, 10, 880987. [Google Scholar] [CrossRef]
- GBIF. GBIF.org Occurrence Download. Available online: https://www.gbif.org/occurrence/download/0201824-220831081235567 (accessed on 8 December 2022).
- Brown, J.L.; Bennett, J.R.; French, C.M. SDMtoolbox 2.0: The next generation Python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 2017, 5, e4095. [Google Scholar] [CrossRef] [Green Version]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [Google Scholar]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Gutjahr, O.; Putrasahan, D.; Lohmann, K.; Jungclaus, J.H.; von Storch, J.-S.; Brüggemann, N.; Haak, H.; Stössel, A. Max planck institute earth system model (MPI-ESM1. 2) for the high-resolution model intercomparison project (HighResMIP). Geosci. Model Dev. 2019, 12, 3241–3281. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Meinshausen, M.; Nicholls, Z.R.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N. The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, J.; Ren, G.; Zhao, K.; Wang, X. Global potential distribution prediction of Xanthium italicum based on Maxent model. Sci. Rep. 2021, 11, 16545. [Google Scholar] [CrossRef]
- Shin, M.-S.; Seo, C.; Lee, M.; Kim, J.-Y.; Jeon, J.-Y.; Adhikari, P.; Hong, S.-B. Prediction of Potential Species Richness of Plants Adaptable to Climate Change in the Korean Peninsula. J. Environ. Impact Assess. 2018, 27, 562–581. [Google Scholar] [CrossRef]
- Adhikari, P.; Kim, H.W.; Shin, M.S.; Hong, S.H.; Cho, Y. Potential distribution of the silver stripped skipper (Leptalina unicolor) and maiden silvergrass (Miscanthus sinensis) under climate change in South Korea. Entomol. Res. 2022, 52, 483–492. [Google Scholar] [CrossRef]
- Elith, J.; H. Graham, C.; P. Anderson, R.; Dudík, M.; Ferrier, S.; Guisan, A.; J. Hijmans, R.; Huettmann, F.; R. Leathwick, J.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Valverde, A.; Peterson, A.T.; Soberón, J.; Overton, J.M.; Aragón, P.; Lobo, J.M. Use of niche models in invasive species risk assessments. Biol. Invasions 2011, 13, 2785–2797. [Google Scholar] [CrossRef]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Araujo, M.B.; Guisan, A. Five (or so) challenges for species distribution modelling. J. Biogeogr. 2006, 33, 1677–1688. [Google Scholar]
- Pearson, R.G. Species’ distribution modeling for conservation educators and practitioners. Lessons Conserv. 2010, 3, 54–89. [Google Scholar]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Thuiller, W.; Lavorel, S.; Araújo, M.B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 2005, 14, 347–357. [Google Scholar] [CrossRef]
- Fielding, A.H.; Haworth, P.F. Testing the generality of bird-habitat models. Conserv. Biol. 1995, 9, 1466–1481. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jiménez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Shabani, F.; Kumar, L.; Ahmadi, M. Assessing accuracy methods of species distribution models: AUC, specificity, sensitivity and the true skill statistic. Glob. J. Hum.-Soc. Sci. Res. 2018, 18, 6–18. [Google Scholar]
- Liu, C.; Newell, G.; White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 2016, 6, 337–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Barougy, R.F.; Dakhil, M.A.; Halmy, M.W.; Gray, S.M.; Abdelaal, M.; Khedr, A.-H.A.; Bersier, L.-F. Invasion risk assessment using trait-environment and species distribution modelling techniques in an arid protected area: Towards conservation prioritization. Ecol. Indic. 2021, 129, 107951. [Google Scholar] [CrossRef]
- Vale, C.G.; Tarroso, P.; Brito, J.C. Predicting species distribution at range margins: Testing the effects of study area extent, resolution and threshold selection in the Sahara–Sahel transition zone. Divers. Distrib. 2014, 20, 20–33. [Google Scholar] [CrossRef]
- Guisan, A.; Graham, C.H.; Elith, J.; Huettmann, F.; Group, N.S.D.M. Sensitivity of predictive species distribution models to change in grain size. Divers. Distrib. 2007, 13, 332–340. [Google Scholar] [CrossRef]
- Stankowski, P.A.; Parker, W.H. Species distribution modelling: Does one size fit all? A phytogeographic analysis of Salix in Ontario. Ecol. Model. 2010, 221, 1655–1664. [Google Scholar] [CrossRef]
- Kaky, E.; Nolan, V.; Alatawi, A.; Gilbert, F. A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol. Inform. 2020, 60, 101150. [Google Scholar] [CrossRef]
- Steen, V.; Sofaer, H.R.; Skagen, S.K.; Ray, A.J.; Noon, B.R. Projecting species’ vulnerability to climate change: Which uncertainty sources matter most and extrapolate best? Ecol. Evol. 2017, 7, 8841–8851. [Google Scholar] [CrossRef]
- Liu, C.; White, M.; Newell, G. Selecting thresholds for the prediction of species occurrence with presence-only data. J. Biogeogr. 2013, 40, 778–789. [Google Scholar] [CrossRef]
- Khaeim, H.; Kende, Z.; Jolánkai, M.; Kovács, G.P.; Gyuricza, C.; Tarnawa, Á. Impact of temperature and water on seed germination and seedling growth of maize (Zea mays L.). Agronomy 2022, 12, 397. [Google Scholar] [CrossRef]
- Dhileepan, K. Reproductive variation in naturally occurring populations of the weed Parthenium hysterophorus (Asteraceae) in Australia. Weed Sci. 2012, 60, 571–576. [Google Scholar] [CrossRef]
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, J.J.; Byers, J.E.; Bierwagen, B.G.; Dukes, J.S. Five potential consequences of climate change for invasive species. Conserv. Biol. 2008, 22, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Kriticos, D.J.; Brunel, S.; Ota, N.; Fried, G.; Oude Lansink, A.G.; Panetta, F.D.; Prasad, T.R.; Shabbir, A.; Yaacoby, T. Downscaling pest risk analyses: Identifying current and future potentially suitable habitats for Parthenium hysterophorus with particular reference to Europe and North Africa. PLoS ONE 2015, 10, e0132807. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Bajwa, A.A.; Navie, S.; O’donnell, C.; Adkins, S. Parthenium weed (Parthenium hysterophorus L.) and climate change: The effect of CO2 concentration, temperature, and water deficit on growth and reproduction of two biotypes. Environ. Sci. Pollut. Res. 2017, 24, 10727–10739. [Google Scholar] [CrossRef]
- Dorji, S.; Lakey, L.; Wangchen, T.; Adkins, S. Predicting the distribution of parthenium weed (Parthenium hysterophorus) under current and future climatic conditions in Bhutan. J. Environ. Occuo. Health. 2021, 12, 169–181. [Google Scholar]
- Maharjan, S.; Shrestha, B.B.; Joshi, M.D.; Devkota, A.; Muniappan, R.; Adiga, A.; Jha, P.K. Predicting suitable habitat of an invasive weed Parthenium hysterophorus under future climate scenarios in Chitwan Annapurna Landscape, Nepal. J. Mt. Sci. 2019, 16, 2243–2256. [Google Scholar] [CrossRef]
- Catriona, E.; Rogers, J.P.M. Climate change and ecosystems of the Mid-Atlantic Region. Clim. Res. 2000, 14, 235–244. [Google Scholar]
- Bradley, B.A.; Wilcove, D.S.; Oppenheimer, M. Climate change increases risk of plant invasion in the Eastern United States. Biol. Invasions 2010, 12, 1855–1872. [Google Scholar] [CrossRef]
- Bradley, B.A.; Blumenthal, D.M.; Early, R.; Grosholz, E.D.; Lawler, J.J.; Miller, L.P.; Sorte, C.J.; D’Antonio, C.M.; Diez, J.M.; Dukes, J.S. Global change, global trade, and the next wave of plant invasions. Front. Ecol. Environ. 2012, 10, 20–28. [Google Scholar] [CrossRef] [Green Version]
- McDougall, K.L.; Lembrechts, J.; Rew, L.J.; Haider, S.; Cavieres, L.A.; Kueffer, C.; Milbau, A.; Naylor, B.J.; Nuñez, M.A.; Pauchard, A. Running off the road: Roadside non-native plants invading mountain vegetation. Biol. Invasions 2018, 20, 3461–3473. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, P.; Park, S.-M.; Kim, T.-W.; Lee, J.-W.; Kim, G.-R.; Han, S.-H.; Oh, H.-S. Seasonal and altitudinal variation in roe deer (Capreolus pygargus tianschanicus) diet on Jeju Island, South Korea. J. Asia-Pac. Biodivers. 2016, 9, 422–428. [Google Scholar] [CrossRef] [Green Version]
- Wardle, D.A.; Peltzer, D.A. Impacts of invasive biota in forest ecosystems in an aboveground–belowground context. Biol. Invasions 2017, 19, 3301–3316. [Google Scholar] [CrossRef]
Code | Description | Unit | Model Contribution (%) 1 |
---|---|---|---|
Bio1 | Annual mean temperature | °C | 40.48 |
Bio2 | Mean diurnal temperature range | °C | 0.40 |
Bio3 | Isothermality (BIO2/BIO7) (×100) | % | 23.75 |
Bio12 | Annual precipitation | mm | 2.00 |
Bio13 | Precipitation in the wettest month | mm | 27.19 |
Bio14 | Precipitation in the driest month | mm | 5.85 |
Evaluation Parameter | Before Rarifying | After Rarifying |
---|---|---|
Species occurrence points | 16,353 | 9234 |
AUC | 0.612 | 0.776 |
TSS | 0.624 | 0.788 |
Kappa | 0.513 | 0.685 |
Continent | 1973–2000 (km2) | SSP2-4.5 1 | SSP5-8.5 2 | ||||||
---|---|---|---|---|---|---|---|---|---|
2021–2040 | 2041–2060 | 2061–2080 | 2081–2100 | 2021–2040 | 2041–2060 | 2061–2080 | 2081–2100 | ||
Africa | 4,063,351.5 | −0.28 | −16.59 | 7.92 | 8.75 | 1.11 | 0.13 | 10.04 | 10.94 |
Antarctica | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Asia | 2,225,502 | 2.82 | 8.33 | 28.24 | 30.92 | 8.27 | 11.89 | 32.29 | 38.12 |
Australia | 1,641,442.5 | 5.52 | −1.41 | 9.03 | 9.29 | 0.24 | −3.37 | 8.88 | 9.29 |
Europe | 463,756.5 | −13.55 | 34.49 | 53.18 | 61.05 | −8.59 | −26.40 | 71.78 | 56.65 |
North America | 1,416,852 | 1.58 | 0.96 | 17.73 | 20.14 | −0.29 | 0.64 | 17.86 | 22.05 |
Oceania | 55,350 | 7.13 | 10.82 | 32.21 | 34.30 | −0.78 | −7.79 | 28.15 | 26.76 |
South America | 3,309,093 | −0.89 | −6.05 | 5.15 | 5.68 | 1.80 | 1.83 | 5.24 | 5.66 |
Habitat Suitability 1 | SSP2-4.5 | SSP5-8.5 |
---|---|---|
Moderate | Brunei, Chile, China, Georgia, Iran, Japan, Liechtenstein, Montenegro, Niger, Syria, Yemen | Belgium, China, Georgia, Iran, Japan, Niger, Syria, Yemen |
High | Belgium, Bulgaria, Djibouti, Slovenia, South Korea | Brunei, Bulgaria, Liechtenstein, Macedonia, Montenegro, Slovenia |
Very high | Monaco, Netherlands, Tokelau (New Zealand) | Djibouti, Monaco, Netherlands, South Korea, Tokelau (New Zealand) |
AD | Total Area (km2) | 1973–2000 | SSP2-4.5 | SSP5-8.5 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
2021–2040 | 2041–2060 | 2061–2080 | 2081–2100 | 2021–2040 | 2041–2060 | 2061–2080 | 2081–2100 | |||
Busan | 193.5 | 0 | 0 | 0 | 162 | 180 | 0 | 0 | 184.5 | 189 |
North Chungcheong | 1926 | 0 | 0 | 0 | 1161 | 1453.5 | 0 | 22.5 | 1624.5 | 1773 |
South Chungcheong | 2115 | 18 | 45 | 81 | 1264.5 | 1458 | 99 | 225 | 1593 | 1993.5 |
Daegu | 220.5 | 31.5 | 85.5 | 108 | 198 | 207 | 112.5 | 130.5 | 207 | 216 |
Daejeon | 144 | 0 | 0 | 4.5 | 144 | 144 | 18 | 54 | 144 | 144 |
Gangwon | 4392 | 0 | 0 | 13.5 | 283.5 | 418.5 | 0 | 0 | 504 | 886.5 |
Gwangju | 130.5 | 54 | 63 | 117 | 130.5 | 130.5 | 94.5 | 117 | 130.5 | 130.5 |
Gyeonggi | 2695.5 | 0 | 0 | 0 | 193.5 | 306 | 0 | 0 | 378 | 1057.5 |
North Gyeongsang | 4963.5 | 193.5 | 333 | 1152 | 3838.5 | 4140 | 972 | 1381.5 | 4351.5 | 4599 |
South Gyeongsang | 2709 | 0 | 18 | 135 | 2178 | 2358 | 144 | 378 | 2331 | 2524.5 |
Incheon | 261 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Jeju | 459 | 0 | 0 | 4.5 | 292.5 | 310.5 | 0 | 0 | 301.5 | 337.5 |
North Jeolla | 2052 | 220.5 | 369 | 648 | 1737 | 1813.5 | 594 | 796.5 | 1836 | 1944 |
South Jeolla | 3055.5 | 40.5 | 157.5 | 504 | 2484 | 2664 | 306 | 580.5 | 2637 | 2907 |
Sejong | 117 | 0 | 0 | 0 | 99 | 117 | 0 | 0 | 117 | 117 |
Seoul | 148.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36 |
Ulsan | 274.5 | 0 | 13.5 | 45 | 234 | 243 | 27 | 27 | 243 | 256.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhikari, P.; Lee, Y.-H.; Poudel, A.; Lee, G.; Hong, S.-H.; Park, Y.-S. Predicting the Impact of Climate Change on the Habitat Distribution of Parthenium hysterophorus around the World and in South Korea. Biology 2023, 12, 84. https://doi.org/10.3390/biology12010084
Adhikari P, Lee Y-H, Poudel A, Lee G, Hong S-H, Park Y-S. Predicting the Impact of Climate Change on the Habitat Distribution of Parthenium hysterophorus around the World and in South Korea. Biology. 2023; 12(1):84. https://doi.org/10.3390/biology12010084
Chicago/Turabian StyleAdhikari, Pradeep, Yong-Ho Lee, Anil Poudel, Gaeun Lee, Sun-Hee Hong, and Yong-Soon Park. 2023. "Predicting the Impact of Climate Change on the Habitat Distribution of Parthenium hysterophorus around the World and in South Korea" Biology 12, no. 1: 84. https://doi.org/10.3390/biology12010084
APA StyleAdhikari, P., Lee, Y. -H., Poudel, A., Lee, G., Hong, S. -H., & Park, Y. -S. (2023). Predicting the Impact of Climate Change on the Habitat Distribution of Parthenium hysterophorus around the World and in South Korea. Biology, 12(1), 84. https://doi.org/10.3390/biology12010084