Effect of a Selected Protective Culture of Lactilactobacillus sakei on the Evolution of Volatile Compounds and on the Final Sensorial Characteristics of Traditional Dry-Cured Fermented “Salchichón”
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Lactic Acid Bacterium Culture
2.2. Preparation of Iberian Dry-Cured Fermented “Salchichón” Sausages
2.3. Volatile Compound Analysis
2.4. Instrumental Texture
2.5. Instrumental Color
2.6. Sensory Evaluation
2.7. Statistical Analyses
3. Results and Discussion
3.1. Evolution of Volatile Compounds of “Salchichón” throughout the Ripening
3.2. Texture of Ripened “Salchichón”
3.3. Color of Ripened “Salchichón”
3.4. Sensory Evaluation of the Ripened “Salchichón”
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Incze, K. Mold-Ripened Sausages. In Handbook of Meat and Meat Processing, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 363–377. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Y.; Chen, C.; Xie, T.; Li, P. Effect of Lactobacillus plantarum and Staphylococcus xylosus on flavour development and bacterial communities in Chinese dry fermented sausages. Food Res. Int. 2020, 135, 109247. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, Y.; Li, X.A.; Zhang, H.; Chen, Q.; Kong, B. Application of lactic acid bacteria for improving the quality of reduced-salt dry fermented sausage: Texture, color, and flavor profiles. Lwt 2022, 154, 112723. [Google Scholar] [CrossRef]
- Khalil, N.; Kheadr, E.; El-Ziney, M.; Dabour, N. Lactobacillus plantarum protective cultures to improve safety and quality of wheyless Domiati-like cheese. J. Food Process. Preserv. 2022, 46, e16416. [Google Scholar] [CrossRef]
- Hugas, M.; Monfort, J.M. Bacterial starter cultures for meat fermentation. Food Chem. 1997, 59, 547–554. [Google Scholar] [CrossRef]
- Laranjo, M.; Potes, M.E.; Elias, M. Role of starter cultures on the safety of fermented meat products. Front. Microbiol. 2019, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Martín, I.; Rodríguez, A.; Sánchez-Montero, L.; Padilla, P.; Córdoba, J.J. Effect of the dry-cured fermented sausage “salchichón” processing with a selected Lactobacillus sakei in Listeria monocytogenes and microbial population. Foods 2021, 10, 856. [Google Scholar] [CrossRef]
- EFSA BIOHAZ Panel Updated list of QPS status recommended biological agents in support of EFSA risk assessments. EFSA J. 2021, 19, 1–5.
- Pons, M.; Fiszman, S.M. Instrumental texture profile analysis with particular reference to gelled systems. J. Texture Stud. 1996, 27, 597–624. [Google Scholar] [CrossRef]
- Clydesdale, F.M.; Ahmed, E.M. Colorimetry—methodology and applications. Food Sci. Nutr. 1978, 10, 37–41. [Google Scholar] [CrossRef]
- UNE-EN-ISO 4120:2008; Sensory Analysis-Methodology-Triangle Test (ISO 4120:2004). UNE: Madrid, Spain, 2008. Available online: https://www.une.org/encuentra-tu-norma/busca-tu-norma/norma?c=N0041930 (accessed on 26 September 2022).
- Andrade, M.J.; Córdoba, J.J.; Casado, E.M.; Córdoba, M.G.; Rodríguez, M. Effect of selected strains of Debaryomyces hansenii on the volatile compound production of dry fermented sausage “salchichón”. Meat Sci. 2010, 85, 256–264. [Google Scholar] [CrossRef]
- Bianchi, F.; Cantoni, C.; Careri, M.; Chiesa, L.; Musci, M.; Pinna, A. Characterization of the aromatic profile for the authentication and differentiation of typical Italian dry-sausages. Talanta 2007, 72, 1552–1563. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.; Durá, M.A.; Marco, A.; Toldrá, F. Effect of Debaryomyces spp. on aroma formation and sensory quality of dry-fermented sausages. Meat Sci. 2004, 68, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Berdague, L.; Denoyer, C.; Le Quere, J.; Semon, E. Volatile components of dry-cured ham. Agric. Food Chem. 1991, 39, 1257–1261. [Google Scholar] [CrossRef]
- Vargas-Ramella, M.; Munekata, P.E.S.; Gagaoua, M.; Franco, D.; Campagnol, P.C.B.; Pateiro, M.; Barretto, A.C.d.S.; Domínguez, R.; Lorenzo, J.M. Inclusion of healthy oils for improving the nutritional characteristics of dry-fermented deer sausage. Foods 2020, 9, 1487. [Google Scholar] [CrossRef]
- De Lima Alves, L.; Donadel, J.Z.; Athayde, D.R.; da Silva, M.S.; Klein, B.; Fagundes, M.B.; de Menezes, C.R.; Barin, J.S.; Campagnol, P.C.B.; Wagner, R.; et al. Effect of ultrasound on proteolysis and the formation of volatile compounds in dry fermented sausages. Ultrason. Sonochem. 2020, 67, 105161. [Google Scholar] [CrossRef] [PubMed]
- Sidira, M.; Kandylis, P.; Kanellaki, M.; Kourkoutas, Y. Effect of immobilized Lactobacillus casei on the evolution of flavor compounds in probiotic dry-fermented sausages during ripening. Meat Sci. 2015, 100, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Martín, A.; Córdoba, J.J.; Benito, M.J.; Aranda, E.; Asensio, M.A. Effect of Penicillium chrysogenum and Debaryomyces hansenii on the volatile compounds during controlled ripening of pork loins. Int. J. Food Microbiol. 2003, 84, 327–338. [Google Scholar] [CrossRef]
- Pinna, A.; Quintavalla, S.; Simoncini, N.; Toscani, T.; Virgili, R. Composti organici volatili di un sistema modello simil- prosciutto inoculato con lieviti autoctoni isolati da prosciutti tipici. Ind. Cons. 2009, 2, 93–105. [Google Scholar]
- Iacumin, L.; Osualdini, M.; Bovolenta, S.; Boscolo, D.; Chiesa, L.; Panseri, S.; Comi, G. Microbial, chemico-physical and volatile aromatic compounds characterization of Pitina PGI, a peculiar sausage-like product of North East Italy. Meat Sci. 2020, 163, 108081. [Google Scholar] [CrossRef]
- Shahidi, F.; Rubin, L.; D´Souza, L.; Teranishi, R.; Buttery, R. Meat flavor volatiles: A review of the composition, techniques of analysis, and sensory evaluation. Crit. Rev. Food Sci. Nutr. 2009, 24, 1986. [Google Scholar] [CrossRef]
- Stahnke, L.H. Aroma components from dried sausages fermented with Staphylococcus xylosus. Meat Sci. 1994, 38, 39–53. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, G.; Bolzoni, L.; Parolari, G.; Virgili, R.; Buttini, R.; Careri, M.; Mangia, A. Flavor compounds of dry-cured ham. J. Agric. Food Chem. 1992, 40, 2389–2394. [Google Scholar] [CrossRef]
- Durá, M.A.; Flores, M.; Toldrá, F. Effect of growth phase and dry-cured sausage processing conditions on Debaryomyces spp. generation of volatile compounds from branched-chain amino acids. Food Chem. 2004, 86, 391–399. [Google Scholar] [CrossRef]
- Martín, A.; Córdoba, J.J.; Aranda, E.; Córdoba, M.G.; Asensio, M.A. Contribution of a selected fungal population to the volatile compounds on dry-cured ham. Int. J. Food Microbiol. 2006, 110, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Purriños, L.; Pérez-Santaescolástica, C.; Pateiro, M.; Barba, F.J.; Tomasevic, I.; Campagnol, P.C.B.; Lorenzo, J.M. Characterization of volatile compounds of dry-cured meat products using HS-SPME-GC/MS technique. Food Anal. Methods 2019, 12, 1263–1284. [Google Scholar] [CrossRef]
- Ansorena, D.; Gimeno, O.; Astiasarán, I.; Bello, J. Analysis of volatile compounds by GC-MS of a dry fermented sausage: Chorizo de Pamplona. Food Res. Int. 2001, 34, 67–75. [Google Scholar] [CrossRef]
- Mateo, J.; Zumalacárregui, J.M. Taste compounds in chorizo and their changes during ripening. Meat Sci. 1996, 44, 245–254. [Google Scholar] [CrossRef]
- Meynier, A.; Novelli, E.; Chizzolini, R.; Zanardi, E.; Gandemer, G. Volatile compounds of commercial Milano salami. Meat Sci. 1999, 51, 175–183. [Google Scholar] [CrossRef]
- Bis-Souza, C.V.; Pateiro, M.; Domínguez, R.; Lorenzo, J.M.; Penna, A.L.B.; da Silva Barretto, A.C. Volatile profile of fermented sausages with commercial probiotic strains and fructooligosaccharides. J. Food Sci. Technol. 2019, 56, 5465–5473. [Google Scholar] [CrossRef]
- Herrero, A.M.; Ordóñez, J.A.; de Avila, R.; Herranz, B.; de la Hoz, L.; Cambero, M.I. Breaking strength of dry fermented sausages and their correlation with texture profile analysis (TPA) and physico-chemical characteristics. Meat Sci. 2007, 77, 331–338. [Google Scholar] [CrossRef]
- Álvarez, M.; Andrade, M.J.; García, C.; Rondán, J.J.; Núñez, F. Effects of preservative agents on quality attributes of dry-cured fermented sausages. Foods 2020, 9, 1505. [Google Scholar] [CrossRef] [PubMed]
- El Adab, S.; Essid, I.; Hassouna, M. Microbiological, biochemical and textural characteristics of a tunisian dry fermented poultry meat sausage inoculated with selected starter cultures. J. Food Saf. 2015, 35, 75–85. [Google Scholar] [CrossRef]
- Olivares, A.; Navarro, J.L.; Salvador, A.; Flores, M. Sensory acceptability of slow fermented sausages based on fat content and ripening time. Meat Sci. 2010, 86, 251–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pipek, P.; Šikulová, M.; Jeleniíková, J.; Izumimoto, M. Colour changes after carcasses decontamination by steam and lactic acid. Meat Sci. 2005, 69, 673–680. [Google Scholar] [CrossRef]
- Kaban, G.; Sallan, S.; Çinar Topçu, K.; Sayın Börekçi, B.; Kaya, M. Assessment of technological attributes of autochthonous starter cultures in Turkish dry fermented sausage (sucuk). Int. J. Food Sci. Technol. 2022, 57, 4392–4399. [Google Scholar] [CrossRef]
- Harry, L.T.; Heymann, H. Sensory Evaluation of Food, 2nd ed.; Heldman, D.R., Ed.; Springer: New York, NY, USA, 2010; Volume 6, ISBN 978-1-4419-6487-8. [Google Scholar]
- Amézquita, A.; Brashears, M.M. Competitive inhibition of Listeria monocytogenes in ready-to-eat meat products by lactic acid bacteria. J. Food Prot. 2002, 65, 316–325. [Google Scholar] [CrossRef]
- Wang, J.; Hou, J.; Zhang, X.; Hu, J.; Yu, Z.; Zhu, Y. Improving the flavor of fermented sausage by increasing its bacterial quality via inoculation with Lactobacillus plantarum MSZ2 and Staphylococcus xylosus YCC3. Foods 2022, 11, 736. [Google Scholar] [CrossRef]
- Cai, Z.; Ruan, Y.; He, J.; Dang, Y.; Cao, J.; Sun, Y.; Pan, D.; Tian, H. Effects of microbial fermentation on the flavor of cured duck legs. Poult. Sci. 2020, 99, 4642–4652. [Google Scholar] [CrossRef]
Origin/Compound | Control Batch | Ls Batch | ||||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 0 | 30 | 60 | 90 | |
Lipid Oxidation | ||||||||
Tridecane | 0.49 ± 0.10 | 0.35 ± 0.13 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Dodecane | 0.48 ± 0.07 | 0.34 ± 0.12 | n.d. | n.d. | n.d. | n.d. | n.d. | 0.11 ± 0.16 |
1-Pentanol | 0.79 ± 0.20 a | 0.59 ± 0.24 a | 0.13 ± 0.01 b | 0.16 ± 0.15 b | 0.79 ± 0.04 a | 0.71 ± 0.26 ab | 0.13 ± 0.01 c | 0.34 ± 0.24 bc |
1-Hexanol | 0.14 ± 0.13 b2 | 0.08 ± 0.17 b2 | 0.52 ± 0.19 ab | 1.06 ± 0.65 a | 2.94 ± 0.47 a1 | 2.32 ± 1.16 a1 | 0.41 ± 0.06 b | 1.66 ± 1.30 ab |
1-Heptanol | 0.05 ± 0.11 2 | 0.09 ± 0.12 2 | n.d. | 0.07 ± 0.13 | 0.25 ± 0.04 a1 | 0.07 ± 0.15 ab | 0.04 ± 0.09 ab | 0.20 ± 0.21 b |
1-Octanol | 0.25 ± 0.05 | 0.11 ± 0.15 | 0.21 ± 0.07 | 0.08 ± 0.17 | 0.18 ± 0.10 | 0.16 ± 0.15 | 0.17 ± 0.06 | 0.39 ± 0.34 |
1-Octen-3-ol | 1.60 ± 0.21 a | 1.20 ± 0.40 a | 0.57 ± 0.02 b1 | 0.42 ± 0.34 b | 1.47 ± 0.11 a | 1.37 ± 0.26 a | 0.49 ± 0.07 b2 | 0.76 ± 0.56 b |
2-Octen-1-ol, (E)- | 0.33 ± 0.06 1 | 0.27 ± 0.03 | n.d. | n.d. | 0.24 ± 0.02 2 | 0.25 ± 0.03 | n.d. | n.d. |
Terpinen-4-ol | 1.50 ± 0.02 | 1.33 ± 0.14 | n.d. | n.d. | 1.17 ± 0.04 | n.d. | n.d. | n.d. |
Pentanal | 0.53 ± 0.12 a1 | 0.38 ± 0.23 ab | 0.13 ± 0.01 b | 0.25 ± 0.01 b | 0.35 ± 0.07 2 | 0.35 ± 0.07 | 0.18 ± 0.06 | 0.29 ± 0.28 |
Hexanal | 12.36 ± 2.45 a1 | 9.88 ± 3.05 a | 2.40 ± 0.10 b | 1.91 ± 2.24 b | 8.06 ± 1.40 a2 | 8.00 ± 1.34 a | 1.94 ± 0.66 b | 5.14 ± 3.76 ab |
Heptanal | 0.76 ± 0.10 a2 | 0.66 ± 0.19 ab | 0.30 ± 0.10 bc | 0.40 ± 0.33 c | 0.93 ± 0.07 a1 | 0.83 ± 0.20 a | 0.23 ± 0.06 b | 0.74 ± 0.58 ab |
2-Heptenal, (Z)- | 0.39 ± 0.05 a | 0.36 ± 0.13 a | 0.21 ± 0.03 b | n.d. | 0.37 ± 0.04 b | 0.55 ± 0.09 a | 0.19 ± 0.05 c | n.d. |
2-Undecenal | 0.31 ± 0.06 b | 0.26 ± 0.04 b | 0.46 ± 0.10 a2 | 0.23 ± 0.02 b | 0.29 ± 0.02 b | 0.27 ± 0.04 b | 0.63 ± 0.07 a1 | 0.93 ± 0.99 ab |
2-Nonenal, (E)- | 0.80 ± 0.15 | 0.60 ± 0.24 | n.d. | n.d. | 0.86 ± 0.06 | 0.79 ± 0.21 | n.d. | n.d. |
Piperonal | 0.31 ± 0.08 a | 0.25 ± 0.03 ab | 0.16 ± 0.03 b | n.d. | 0.31 ± 0.08 | 0.24 ± 0.03 | 0.23 ± 0.09 | 2.00 ± 1.78 |
2-Decenal,(Z)- | 0.43 ± 0.04 | 0.36 ± 0.09 | 0.36 ± 0.11 | n.d. | 0.41 ± 0.02 | 0.31 ± 0.18 | 0.45 ± 0.08 | 0.30 ± 0.13 |
2-Octenal (E)- | 1.01 ± 0.28 a | 0.71 ± 0.35 ab | 0.22 ± 0.04 b | 0.39 ± 0.02 b | 0.68 ± 0.06 a | 0.62 ± 0.16 a | 0.24 ± 0.06 b | 0.52 ± 0.60 ab |
2,4- Decadienal, (E,E)- | 0.24 ± 0.02 | 0.21 ± 0.02 | 0.32 ± 0.22 | n.d. | 0.23 ± 0.02 | 0.23 ± 0.02 | 0.35 ± 0.06 | 0.22 ± 0.02 |
2-Heptanone | n.d. | n.d. | 0.56 ± 0.03 | 0.55 ± 0.06 | 0.87 ± 0.14 a | 0.53 ± 0.36 b | 0.48 ± 0.06 b | 0.52 ± 0.01 b |
2-Octanone | n.d. | n.d. | 0.17 ± 0.03 b | 0.32 ± 0.10 a | 0.30 ± 0.07 a | 0.25 ± 0.02 a | 0.14 ± 0.01 b | 0.28 ± 0.01 a |
2-Nonanone | n.d. | n.d. | 0.30 ± 0.07 | 0.28 ± 0.01 | 0.31 ± 0.08 a | 0.19 ± 0.11 b | 0.20 ± 0.12 b | 0.28 ± 0.01 b |
Hexanoic acid | 1.89 ± 0.56 a | 1.73 ± 0.71 a | 0.59 ± 0.10 b | 0.68 ± 0.17 b | 1.96 ± 0.21 a | 1.96 ± 0.55 a | 0.60 ± 0.11 b | 1.52 ± 0.85 ab |
Octanoic acid | n.d. | n.d. | 0.50 ± 0.49 | 0.31 ± 0.17 a | n.d. | n.d. | 0.50 ± 0.46 | 0.19 ± 0.26 a |
Butanoic acid | 0.19 ± 0.11 b2 | 0.28 ± 0.02 a2 | 0.13 ± 0.01 b | 0.13 ± 0.12 b | 0.57 ± 0.04 a1 | 0.64 ± 0.08 a1 | 0.13 ± 0.01 b | 0.23 ± 0.15 b |
Microbial esterification | ||||||||
Hexanoic acid, ethyl ester | n.d. | n.d. | n.d. | 0.34 ± 0.40 1 | 0.44 ± 0.11 a | 0.41 ± 0.06 a | n.d. | 0.26 ± 0.05 b2 |
n-Caproic acid vinyl ester | 0.45 ± 0.09 a1 | 0.41 ± 0.09 ab | 0.17 ± 0.02 c | 0.24 ± 0.01 bc | 0.31 ± 0.02 a2 | 0.34 ± 0.06 a | 0.19 ± 0.07 b | 0.27 ± 0.03 ab |
Octanoic acid, ethyl ester | n.d. | n.d. | 0.69 ± 0.14 | 0.91 ± 0.27 1 | 0.21 ± 0.01 b | 0.21 ± 0.01 b | 0.66 ± 0.28 a | 0.56 ± 0.12 ab2 |
Origin/Compound | Control | Inoculated Ls 205 | ||||||
---|---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 0 | 30 | 60 | 90 | |
Carbohydrate Fermentation | ||||||||
Acetic acid | 0.04 ± 0.09 b2 | n.d. | 0.27 ± 0.03 a | n.d. | 0.42 ± 0.04 a1 | 0.43 ± 0.10 a | 0.22 ± 0.04 b | 0.12 ± 0.17 b |
Amino Acid Catabolism | ||||||||
2-methyl-1-propanol | n.d. | n.d. | 1.99 ± 0.15 a | 0.98 ± 0.11 b1 | 0.27 ± 0.04 b | 0.09 ± 0.13 b | 1.99 ± 0.44 a | 0.55 ± 0.17 b2 |
3-methyl-butanal | n.d. | n.d. | 1.40 ± 0.72 a | 0.10 ± 0.21 b | 0.83 ± 0.16 b | n.d. | 0.88 ± 0.85 a | n.d. |
3-methyl-1-butanol | n.d. | n.d. | 1.03 ± 0.10 | 1.35 ± 0.57 | n.d. | 0.84 ± 0.15 b | 1.25 ± 0.20 a | 1.18 ± 0.28 a |
2-methyl-propanoic acid | n.d. | n.d. | 0.13 ± 0.01 | 0.10 ± 0.15 | n.d. | n.d. | 0.52 ± 0.30 | 0.51 ± 0.38 |
3-methyl-butanoic acid | n.d. | n.d. | 0.18 ± 0.05 | 0.28 ± 0.39 | n.d. | n.d. | 0.71 ± 0.63 | 0.74 ± 0.45 |
2-methyl-1-butanol | n.d. | n.d. | 0.31 ± 0.05 a2 | 0.24 ± 0.02 b | n.d. | n.d. | 0.40 ± 0.03 a1 | 0.09 ± 0.13 b |
Spices | ||||||||
α-pinene | 0.22 ± 0.21 | 0.17 ± 0.20 | 0.53 ± 0.12 | 0.56 ± 0.09 | 0.18 ± 0.21 | 0.27 ± 0.196 | 0.24 ± 0.33 | 0.25 ± 0.10 |
β-pinene | 1.04 ± 0.09 b | 1.01 ± 0.25 b | 1.87 ± 0.26 a | 2.12 ± 0.65 a | 1.07 ± 0.10 b | 1.10 ± 0.28 b | 2.18 ± 0.46 a | 1.75 ± 0.20 a |
α-terpineol | 0.34 ± 0.02 a1 | 0.28 ± 0.02 b | 0.25 ± 0.08 b | 0.28 ± 0.04 b | 0.25 ± 0.03 2 | 0.20 ± 0.11 | 0.26 ± 0.03 | 0.31 ± 0.07 |
Safrole | 0.58 ± 0.07 1 | 0.55 ± 0.08 | 0.58 ± 0.08 | 0.57 ± 0.03 | 0.48 ± 0.04 b2 | 0.47 ± 0.05 b | 0.56 ± 0.02 a | 0.51 ± 0.03 ab |
D-limonene | 2.28 ± 0.13 b | 2.19 ± 0.43 b | 4.45 ± 0.97 b | 5.94 ± 2.37 a | 2.20 ± 0.30 b | 2.30 ± 0.72 b | 4.44 ± 1.12 b | 12.67 ± 8.63 a |
o-Cymene | 0.55 ± 0.03 2 | 0.45 ± 0.05 2 | 0.76 ± 0.21 | 0.76 ± 0.68 | 1.39 ± 0.34 ab1 | 1.33 ± 0.39 ab1 | 0.60 ± 0.17 b | 3.37 ± 2.75 a |
3-carene | 1.85 ± 0.10 b | 1.72 ± 0.33 b | 2.65 ± 0.34 a | 2.73 ± 0.10 a | 1.66 ± 0.32 b | 1.65 ± 0.62 b | 2.68 ± 0.24 a | 1.86 ± 1.13 ab |
(+)-4-Carene | n.d. | 0.24 ± 0.01 b | 0.19 ± 0.03 c | 0.32 ± 0.01 a | n.d. | 0.24 ± 0.01 b | 0.20 ± 0.01 c | 0.32 ± 0.01 a |
α-phellandrene | n.d. | 0.04 ± 0.10 b | 0.40 ± 0.09 a | 0.39 ± 0.11 a | n.d. | 0.05 ± 0.11 b | 0.48 ± 0.08 a | 0.43 ± 0.27 a |
β-phellandrene | 0.33 ± 0.21 ab | 0.21 ± 0.14 b | 0.53 ± 0.16 a | 0.63 ± 0.39 a | 0.26 ± 0.03 bc | 0.25 ± 0.06 c | 0.55 ± 0.02 ab | 0.55 ± 0.19 a |
α-copaene | 0.31 ± 0.03 1 | 0.28 ± 0.04 | 0.27 ± 0.04 | 0.27 ± 0.02 | 0.24 ± 0.03 2 | 0.24 ± 0.03 | 0.26 ± 0.01 | 0.24 ± 0.02 |
Caryophyllene | 3.58 ± 0.48 1 | 3.56 ± 0.65 | 4.12 ± 0.57 | 4.15 ± 0.31 1 | 2.92 ± 0.34 b2 | 2.96 ± 0.35 b | 4.07 ± 0.13 a | 3.15 ± 0.53 b2 |
Humulene | 0.24 ± 0.02 | 0.25 ± 0.05 | 0.26 ± 0.04 | 0.23 ± 0.02 1 | 0.20 ± 0.01 | 0.20 ± 0.01 | n.d. | 0.21 ± 0.01 2 |
Others | ||||||||
Caryophyllene oxide | 0.69 ± 0.03 a1 | 0.40 ± 0.04 b | n.d. | n.d. | 0.41 ± 0.07 2 | 0.39 ± 0.10 | n.d. | 0.41 ± 0.13 |
Cyclohexene, 4-ethenyl-4-methyl-3-(1-methylethenyl)-1-(1-methylethyl)-, (3R-trans)- | 0.29 ± 0.03 b | 0.25 ± 0.03 b | 0.54 ± 0.04 a | 0.29 ± 0.02 b | 0.22 ± 0.02 b | 0.25 ± 0.01 b | 0.49 ± 0.05 a | 0.24 ± 0.01 b |
1,3-Benzodioxole, 4-methoxy-6-(2-propenyl)- | 0.97 ± 0.12 b | 0.93 ± 0.11 b | 1.08 ± 0.45 a | 0.96 ± 0.08 b | 0.84 ± 0.04 b | 0.80 ± 0.08 b | 0.93 ± 0.05 a | n.d. |
Parameters | Batches | |
---|---|---|
Control | Ls | |
Hardness (N) | 214.78 ± 45.43 | 220.32 ± 29.13 |
Adhesiveness (N/s) | −7.77 ± 1.41 | −8.43 ± 2.05 |
Springiness | 0.67 ± 0.09 | 0.63 ± 0.07 |
Cohesiveness | 0.61 ± 0.02 | 0.60 ± 0.01 |
Chewiness (N) | 89.44 ± 26.75 | 82.82 ± 16.57 |
L* | 36.62 ± 0.62 | 37.83 ± 0.79 * |
a* | 12.38 ± 1.14 | 11.63 ± 0.28 |
b* | 4.23 ± 0.49 | 4.55 ± 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín, I.; García, C.; Rodríguez, A.; Córdoba, J.J. Effect of a Selected Protective Culture of Lactilactobacillus sakei on the Evolution of Volatile Compounds and on the Final Sensorial Characteristics of Traditional Dry-Cured Fermented “Salchichón”. Biology 2023, 12, 88. https://doi.org/10.3390/biology12010088
Martín I, García C, Rodríguez A, Córdoba JJ. Effect of a Selected Protective Culture of Lactilactobacillus sakei on the Evolution of Volatile Compounds and on the Final Sensorial Characteristics of Traditional Dry-Cured Fermented “Salchichón”. Biology. 2023; 12(1):88. https://doi.org/10.3390/biology12010088
Chicago/Turabian StyleMartín, Irene, Carmen García, Alicia Rodríguez, and Juan J. Córdoba. 2023. "Effect of a Selected Protective Culture of Lactilactobacillus sakei on the Evolution of Volatile Compounds and on the Final Sensorial Characteristics of Traditional Dry-Cured Fermented “Salchichón”" Biology 12, no. 1: 88. https://doi.org/10.3390/biology12010088
APA StyleMartín, I., García, C., Rodríguez, A., & Córdoba, J. J. (2023). Effect of a Selected Protective Culture of Lactilactobacillus sakei on the Evolution of Volatile Compounds and on the Final Sensorial Characteristics of Traditional Dry-Cured Fermented “Salchichón”. Biology, 12(1), 88. https://doi.org/10.3390/biology12010088