Early Life Stress Detection Using Physiological Signals and Machine Learning Pipelines
Abstract
:Simple Summary
Abstract
1. Introduction
- An important approach in this research is on the healthy category of people that are at risk of stress during their pregnancy.
- Evaluating the early life stress based on the physiological signals using and verifying a multimodal CNN classifier based on Cont-RPs for stress classification.
- Utilizing the FGSR, HGSR, and HR signals, which are short-term (30 s or less) and have not been completely employed in other studies on stress classification.
- Focusing on non-linear physiological signals.
2. Related Work
2.1. Early Childhood Pregnancy
2.2. Stress Prediction of Drivers
2.3. Stress and Anxiety
3. Proposed Early Life Stress Detection
- Demonstrate developmental sensitivity during pregnancy and the first several years of life.
- Promotes inflammation-related illness.
- Assist in maintaining the proper balance between innate and adaptive immunity, which has an impact on immunosuppression.
3.1. Dataset
3.2. Oversampling Approach
3.3. Characteristic of Participants
3.4. Classification and Feature Extraction
4. Results
4.1. Experimental Setup
4.2. Statistical Analysis
4.3. Immune Biomarkers Adversity Associations
4.4. Performance Evaluation
5. Conclusions
6. Limitations and Strength
7. Future Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Desplats, P.; Gutierrez, A.M.; Antonelli, M.C.; Frasch, M.G. Microglial memory of early life stress and inflammation: Susceptibility to neurodegeneration in adulthood. Neurosci. Biobehav. Rev. 2020, 117, 232–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, K.; Bellis, M.A.; Hardcastle, K.A.; Sethi, D.; Butchart, A.; Mikton, C.; Jones, L.; Dunne, M.P. The effect of multiple adverse childhood experiences on health: A systematic review and meta-analysis. Lancet Public Health 2017, 2, e356–e366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jakubowski, K.P.; Cundiff, J.M.; Matthews, K.A. Cumulative childhood adversity and adult cardiometabolic disease: A meta-analysis. Health Psychol. 2018, 37, 701. [Google Scholar] [CrossRef] [PubMed]
- Danese, A.; Lewis, S.J. Psychoneuroimmunology of early-life stress: The hidden wounds of childhood trauma? Neuropsychopharmacology 2017, 42, 99–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berens, A.E.; Jensen, S.K.; Nelson, C.A. Biological embedding of childhood adversity: From physiological mechanisms to clinical implications. BMC Med. 2017, 15, 135. [Google Scholar] [CrossRef]
- Abu-Raya, B.; Michalski, C.; Sadarangani, M.; Lavoie, P.M. Maternal immunological adaptation during normal pregnancy. Front. Immunol. 2020, 2627. [Google Scholar] [CrossRef]
- Aschbacher, K.; Hagan, M.; Steine, I.M.; Rivera, L.; Cole, S.; Baccarella, A.; Epel, E.S.; Lieberman, A.; Bush, N.R. Adversity in early life and pregnancy are immunologically distinct from total life adversity: Macrophage-associated phenotypes in women exposed to interpersonal violence. Transl. Psychiatry 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Shahbazi, Z.; Byun, Y.C. Towards a secure thermal-energy aware routing protocol in wireless body area network based on blockchain technology. Sensors 2020, 20, 3604. [Google Scholar] [CrossRef]
- Zhang, Y.H.; He, M.; Wang, Y.; Liao, A.H. Modulators of the balance between M1 and M2 macrophages during pregnancy. Front. Immunol. 2017, 8, 120. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Lacey, R.E. Adverse childhood experiences and adult inflammation: Findings from the 1958 British birth cohort. Brain Behav. Immun. 2018, 69, 582–590. [Google Scholar] [CrossRef]
- Georgountzou, A.; Papadopoulos, N.G. Postnatal innate immune development: From birth to adulthood. Front. Immunol. 2017, 8, 957. [Google Scholar] [CrossRef] [Green Version]
- Osimo, E.F.; Baxter, L.J.; Lewis, G.; Jones, P.B.; Khandaker, G.M. Prevalence of low-grade inflammation in depression: A systematic review and meta-analysis of CRP levels. Psychol. Med. 2019, 49, 1958–1970. [Google Scholar] [CrossRef]
- Rasmussen, L.J.H.; Moffitt, T.E.; Arseneault, L.; Danese, A.; Eugen-Olsen, J.; Fisher, H.L.; Harrington, H.; Houts, R.; Matthews, T.; Sugden, K.; et al. Association of adverse experiences and exposure to violence in childhood and adolescence with inflammatory burden in young people. JAMA Pediatr. 2020, 174, 38–47. [Google Scholar] [CrossRef] [Green Version]
- Bush, N.R.; Aschbacher, K. Immune biomarkers of early-life adversity and exposure to stress and violence—searching outside the streetlight. JAMA Pediatr. 2020, 174, 17–19. [Google Scholar] [CrossRef]
- True, H.; Blanton, M.; Sureshchandra, S.; Messaoudi, I. Monocytes and macrophages in pregnancy: The good, the bad, and the ugly. Immunol. Rev. 2022, 308, 77–92. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.L.; Zhao, S.J.; Lin, X.X.; Liao, A.H. IL-10: A bridge between immune cells and metabolism during pregnancy. J. Reprod. Immunol. 2022, 154, 103750. [Google Scholar] [CrossRef]
- Wang, L.L.; Li, Z.H.; Wang, H.; Kwak-Kim, J.; Liao, A.H. Cutting edge: The regulatory mechanisms of macrophage polarization and function during pregnancy. J. Reprod. Immunol. 2022, 151, 103627. [Google Scholar] [CrossRef]
- Shahbazi, Z.; Byun, Y.C. NLP-Based Digital Forensic Analysis for Online Social Network Based on System Security. Int. J. Environ. Res. Public Health 2022, 19, 7027. [Google Scholar] [CrossRef]
- Schjenken, J.E.; Moldenhauer, L.M.; Zhang, B.; Care, A.S.; Groome, H.M.; Chan, H.Y.; Hope, C.M.; Barry, S.C.; Robertson, S.A. MicroRNA miR-155 is required for expansion of regulatory T cells to mediate robust pregnancy tolerance in mice. Mucosal Immunol. 2020, 13, 609–625. [Google Scholar] [CrossRef]
- Burugupalli, S.; Smith, A.A.T.; Oshlensky, G.; Huynh, K.; Giles, C.; Wang, T.; George, A.; Paul, S.; Nguyen, A.; Duong, T.; et al. Ontogeny of circulating lipid metabolism in pregnancy and early childhood–a longitudinal population study. Elife 2022, 11, e72779. [Google Scholar] [CrossRef]
- Urizar, G.G.; Muñoz, R.F. Role of maternal depression on child development: A prospective analysis from pregnancy to early childhood. Child Psychiatry Hum. Dev. 2022, 53, 502–514. [Google Scholar] [CrossRef]
- Yang, L.; Lacey, L.; Whyte, S.; Quenby, S.; Denison, F.C.; Dhaun, N.; Norman, J.E.; Drake, A.J.; Reynolds, R.M. Metformin in obese pregnancy has no adverse effects on cardiovascular risk in early childhood. J. Dev. Orig. Health Dis. 2022, 13, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Cohen, C.C.; Francis, E.C.; Perng, W.; Sauder, K.A.; Scherzinger, A.; Sundaram, S.S.; Shankar, K.; Dabelea, D. Exposure to maternal fuels during pregnancy and offspring hepatic fat in early childhood: The healthy start study. Pediatr. Obes. 2022, 17, e12902. [Google Scholar] [CrossRef]
- Huang, Y.D.; Luo, Y.R.; Lee, M.C.; Yeh, C.J. Effect of maternal hypertensive disorders during pregnancy on offspring’s early childhood body weight: A population-based cohort study. Taiwan. J. Obstet. Gynecol. 2022, 61, 761–767. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Leão, O.A.; Domingues, M.R.; Bertoldi, A.D.; Ricardo, L.I.C.; de Andrade Müller, W.; Tornquist, L.; Martins, R.C.; Murray, J.; Silveira, M.F.; Crochemore-Silva, I.; et al. Effects of Regular Exercise During Pregnancy on Early Childhood Neurodevelopment: The Physical Activity for Mothers Enrolled in Longitudinal Analysis Randomized Controlled Trial. J. Phys. Act. Health 2022, 19, 203–210. [Google Scholar] [CrossRef] [PubMed]
- von Hinke, S.; Rice, N.; Tominey, E. Mental health around pregnancy and child development from early childhood to adolescence. Labour Econ. 2022, 78, 102245. [Google Scholar] [CrossRef]
- Kivimäki, M.; Steptoe, A. Effects of stress on the development and progression of cardiovascular disease. Nat. Rev. Cardiol. 2018, 15, 215–229. [Google Scholar] [CrossRef]
- Rodríguez-Arce, J.; Lara-Flores, L.; Portillo-Rodríguez, O.; Martínez-Méndez, R. Towards an anxiety and stress recognition system for academic environments based on physiological features. Comput. Methods Programs Biomed. 2020, 190, 105408. [Google Scholar] [CrossRef]
- Celka, P.; Charlton, P.H.; Farukh, B.; Chowienczyk, P.; Alastruey, J. Influence of mental stress on the pulse wave features of photoplethysmograms. Healthc. Technol. Lett. 2020, 7, 7–12. [Google Scholar] [CrossRef]
- Shah, P.; Khaleel, M.; Thuptimdang, W.; Sunwoo, J.; Veluswamy, S.; Chalacheva, P.; Kato, R.M.; Detterich, J.; Wood, J.C.; Zeltzer, L.; et al. Mental stress causes vasoconstriction in subjects with sickle cell disease and in normal controls. Haematologica 2020, 105, 83. [Google Scholar] [CrossRef]
- Flaskerud, J.H. Stress in the Age of COVID-19. Issues Ment. Health Nurs. 2020, 42, 99–102. [Google Scholar] [CrossRef]
- Victoria, C. Navigating the Messy Swamp of Qualitative Research: Are Generic Reporting Standards the Answer? A Review Essay of the Book Reporting Qualitative Research in Psychology: How to Meet APA Style Journal Article Reporting Standards, Revised Edition; Levitt, H.M., Ed.; American Psychological Association: Washington, DC, USA; Taylor & Francis: Abingdon, UK, 2020; 29.99 (paperback); p. 173. ISBN 978-1-4338-3343-4. [Google Scholar]
- Rastgoo, M.N.; Nakisa, B.; Rakotonirainy, A.; Chandran, V.; Tjondronegoro, D. A critical review of proactive detection of driver stress levels based on multimodal measurements. ACM Comput. Surv. (CSUR) 2018, 51, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Munla, N.; Khalil, M.; Shahin, A.; Mourad, A. Driver stress level detection using HRV analysis. In Proceedings of the 2015 International Conference on Advances in Biomedical Engineering (ICABME), Beirut, Lebanon, 16–18 September 2015; IEEE: New York, NY, USA, 2015; pp. 61–64. [Google Scholar]
- Muñoz-Organero, M.; Corcoba-Magaña, V. Predicting upcoming values of stress while driving. IEEE Trans. Intell. Transp. Syst. 2016, 18, 1802–1811. [Google Scholar] [CrossRef]
- Jiao, Y.; Sun, Z.; Fu, L.; Yu, X.; Jiang, C.; Zhang, X.; Liu, K.; Chen, X. Physiological responses and stress levels of high-speed rail train drivers under various operating conditions-a simulator study in China. Int. J. Rail Transp. 2022, 1–16. [Google Scholar] [CrossRef]
- Rastgoo, M.N.; Nakisa, B.; Maire, F.; Rakotonirainy, A.; Chandran, V. Automatic driver stress level classification using multimodal deep learning. Expert Syst. Appl. 2019, 138, 112793. [Google Scholar] [CrossRef]
- Lim, S.; Yang, J.H. Driver state estimation by convolutional neural network using multimodal sensor data. Electron. Lett. 2016, 52, 1495–1497. [Google Scholar] [CrossRef] [Green Version]
- Zontone, P.; Affanni, A.; Piras, A.; Rinaldo, R. Exploring physiological signal responses to traffic-related stress in simulated driving. Sensors 2022, 22, 939. [Google Scholar] [CrossRef]
- Elgendi, M.; Menon, C. Machine learning ranks ECG as an optimal wearable biosignal for assessing driving stress. IEEE Access 2020, 8, 34362–34374. [Google Scholar] [CrossRef]
- Zalabarria, U.; Irigoyen, E.; Martinez, R.; Larrea, M.; Salazar-Ramirez, A. A low-cost, portable solution for stress and relaxation estimation based on a real-time fuzzy algorithm. IEEE Access 2020, 8, 74118–74128. [Google Scholar] [CrossRef]
- Mishra, V.; Pope, G.; Lord, S.; Lewia, S.; Lowens, B.; Caine, K.; Sen, S.; Halter, R.; Kotz, D. Continuous detection of physiological stress with commodity hardware. ACM Trans. Comput. Healthc. 2020, 1, 1–30. [Google Scholar] [CrossRef]
- Zontone, P.; Affanni, A.; Bernardini, R.; Piras, A.; Rinaldo, R. Stress detection through electrodermal activity (EDA) and electrocardiogram (ECG) analysis in car drivers. In Proceedings of the 2019 27th European Signal Processing Conference (EUSIPCO), Coruña, Spain, 2–6 September 2019; IEEE: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Seo, W.; Kim, N.; Kim, S.; Lee, C.; Park, S.M. Deep ECG-respiration network (DeepER net) for recognizing mental stress. Sensors 2019, 19, 3021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Šalkevicius, J.; Damaševičius, R.; Maskeliunas, R.; Laukienė, I. Anxiety level recognition for virtual reality therapy system using physiological signals. Electronics 2019, 8, 1039. [Google Scholar] [CrossRef] [Green Version]
- Ramteke, R.B.; Thool, V.R. Heart Rate Variability-Based Mental Stress Detection Using Deep Learning Approach. In Applied Information Processing Systems; Springer: Berlin/Heidelberg, Germany, 2022; pp. 51–61. [Google Scholar]
- Dash, D.P.; Kolekar, M.H.; Chakraborty, C.; Khosravi, M.R. Review of Machine and Deep Learning Techniques in Epileptic Seizure Detection using Physiological Signals and Sentiment Analysis. Trans. Asian -Low-Resour. Lang. Inf. Process. 2022. [Google Scholar] [CrossRef]
- Khowaja, S.A.; Prabono, A.G.; Setiawan, F.; Yahya, B.N.; Lee, S.L. Toward soft real-time stress detection using wrist-worn devices for human workspaces. Soft Comput. 2021, 25, 2793–2820. [Google Scholar] [CrossRef]
- Vaitheeshwari, R.; Yeh, S.C.; Wu, E.H.K.; Chen, J.Y.; Chung, C.R. Stress Recognition Based on Multiphysiological Data in High-Pressure Driving VR Scene. IEEE Sensors J. 2022, 22, 19897–19907. [Google Scholar] [CrossRef]
- Leventhal, H. Don’t Hit My Mommy! A Manual for Child-Parent Psychotherapy with Young Witnesses of Family Violence, by Alicia F. Lieberman and. Attach. New Dir. Relat. Psychoanal. Psychother. 2019, 13, 127–129. [Google Scholar] [CrossRef]
- Bolandi, H.; Li, X.; Salem, T.; Boddeti, V.N.; Lajnef, N. Bridging finite element and deep learning: High-resolution stress distribution prediction in structural components. Front. Struct. Civ. Eng. 2022, 1–13. [Google Scholar] [CrossRef]
- Aschbacher, K.; Cole, S.; Hagan, M.; Rivera, L.; Baccarella, A.; Wolkowitz, O.M.; Lieberman, A.F.; Bush, N.R. An immunogenomic phenotype predicting behavioral treatment response: Toward precision psychiatry for mothers and children with trauma exposure. Brain Behav. Immun. 2022, 99, 350–362. [Google Scholar] [CrossRef]
Domain Features | Physiological Signals | Examples of Features |
---|---|---|
Time | ECG, BVP, BR, HR, GSR, SpO2, ST | - Number of peaks - Adjacent elements means between various elements - Rise time - Mean - Median - Sum -RMS - Skewness - Kurtosis - Amplitude - Max & Min - Interquartile range - SD |
Nonlinear [48] | ECG | - RQA - RP - Poincare plot |
Frequency | ECG, RSP, GSR | - Power sum - Entropy - Power Spectrum density - The average power of LF/HF ratio - Spectral peak features |
Domain Dependent | ECG, RSP, EMG, GSR | - Feature generation based on trends - Mean/Variant HP - GSR variation - RMS and SDCC between product - GSR variation & interpolation of first order |
Samples of Characteristics | n = 53 | n = 42 |
---|---|---|
Symptoms of depressive (CESD-R) | 24.98 | 24.60 |
Body mass index | 27.57 | 27.53 |
Pregnancy adversity | 0.91 | 0.88 |
Current antidepressant use | 6 | 4 |
Age of mother | 32.10 | 31.84 |
Age of child | 50.38 | 49.53 |
Poverty of family | 35 | 29 |
Diversity of early life | 0.81 | 0.81 |
Adversity Exposure Tunning | Phenotype of M1/M2 | ||
---|---|---|---|
df | p | ||
Pregnancy | |||
Unadjusted | 0.332 | 2.226 (36) | 0.032 |
M1 adjusted | 0.404 | 2.764 (36) | 0.009 |
M2 adjusted | 0.324 | 2.049 (37) | 0.048 |
Earlylife | |||
Unadjusted | 0.337 | 2.265 (40) | 0.029 |
M1 adjusted | 0.308 | 2.094 (36) | 0.043 |
M2 adjusted | 0.311 | 2.114 (37) | 0.042 |
General Lifespan | |||
Unadjusted | 0.173 | 1.025 (38) | 0.420 |
M1 adjusted | 0.054 | 0.315 (34) | 0.755 |
M2 adjusted | 0.051 | 0.301 (35) | 0.765 |
# | M1/M2 Phenotype | ||
---|---|---|---|
t-Test | p-Value | ||
State of Mind | |||
PTST (PSSI (df = 40)) | 0.180 | 1.157 | 0.254 |
Depression | 0.074 | 0.470 | 0.641 |
M1 df = 39 | |||
Pregnancy adversity | 0.291 | 2.008 | 0.052 |
Difficulties of Early life | 0.320 | 2.160 | 0.050 |
M2 diversity + state of mind | |||
pregnancy adversity | 0.312 | 1.916 | 0.063 |
Difficulties of Early life | 0.440 | 2.282 | 0.027 |
PTSD (PSSI) | 0.213 | 0.627 | 0.470 |
Depression (CESD-R) | −0.155 | −1.052 | 0.208 |
# | Phenotype of Endotoxin Tolerance | ||
---|---|---|---|
t-Test | p-Value | ||
State of Mind | |||
PTST (PSSI (df = 40)) | 0.115 | 0.730 | 0.470 |
Depression (df = 40) | 0.291 | 1.327 | 0.342 |
M1 Multivariate (df = 36) | |||
Pregnancy Adversity | 0.213 | 1.375 | 0.178 |
Difficulties of Early life | 0.229 | 0.852 | 0.575 |
General life difficulties | −0.442 | −2.607 | 0.031 |
M2 Multivariate (df = 36) | |||
Depression (CESD-R) | 1.182 | 0.805 | 0.426 |
PTSD (PSSI) | 0.034 | 0.143 | 0.426 |
General life difficulties | −0.485 | −2.432 | 0.037 |
Length of Input | Classes | Precision | Recall | F1 | Accuracy | AUC |
---|---|---|---|---|---|---|
30 s | Relaxed | 96.1% | 96% | 95.9% | ||
95.91% | 95.69% | 95.69% | 95.69% | 0.9872 | ||
Stressed | 95.9% | 96.02% | 96% | |||
10 s | Relaxed | 92.6% | 91.9% | 92.1% | ||
91.69% | 92.80% | 92.35% | 92.35% | 0.9621 | ||
Stress | 91.9% | 93% | 92.5% |
Signal Length | Input Type | Stressed | Relaxed | Overall Accuracy | ||
---|---|---|---|---|---|---|
P | R | P | R | AUC | ||
30 s | HR | 67.47% | 59.97% | 64.47% | 66.02% | 0.6296 |
HGSR | 82.93% | 79.70% | 82.98% | 77.02% | 0.7847 | |
FGSR | 92.89% | 87.72% | 89.89% | 92.72% | 0.9093 | |
3 types | 95.89% | 98.02% | 95.91% | 95.90% | 0.9882 | |
10 s | HR | 63.98% | 61.98% | 55.79% | 57.65% | 0.5985 |
HGSR | 83.78% | 82.89% | 83.79% | 79.02% | 0.5985 | |
FGSR | 92.90% | 88.72% | 89.85% | 92.60% | 0.9123 | |
3 types | 91.9% | 93.00% | 92.6% | 91.9% | 0.9621 |
Without Sampling | |||||||
---|---|---|---|---|---|---|---|
Length of Signal | Input Type | Model for Classification | Stressed | Relaxed | Total Accuracy | ||
P | R | P | R | ||||
30 s | Cont-RP | Multimodal CNN | 95.89% | 96.02% | 96.12% | 96.00% | 95.89% |
1-D sequence | Multimodal 1-D CNN | 81.78% | 85.81% | 86.91% | 81.22% | 82.55% | |
Cont-RP | Multimodal VGG16 | 88.00% | 82.00% | 85.33% | 86.22% | 84.22% | |
10 s | Cont-RP | Multimodal CNN | 91.09% | 93.00% | 92.06% | 92.00% | 92.44% |
1-D sequence | Multimodal 1-D CNN | 82.22% | 83.44% | 85.44% | 81.55% | 82.44% | |
Cont-RP | Multimodal VGG16 | 83.66% | 80.44% | 83.66% | 85.55% | 84.00% | |
Oversampling | |||||||
30 s | Multimodal CNN | 96.90% | 97.20% | 97.40% | 97.85% | 97.98% | |
XGBoost | 96.70% | 96.93% | 97.15% | 97.00% | 97.02% | ||
Random Forest | 95.60% | 96.01% | 96.00% | 95.30% | 95.83% | ||
SVM | 82.10% | 82.93% | 84.40% | 83.90% | 83.01% | ||
Logistic Regression | 80.03% | 81.00% | 82.25% | 81.50% | 81.20% | ||
10 s | Multimodal CNN | 93.08% | 94.05% | 94.02% | 93.09% | 94.01% | |
XGBoost | 92.03% | 91.07% | 92.08% | 91.09% | 92.05% | ||
Random Forest | 91.08% | 92.00% | 92.04% | 91.09% | 92.00% | ||
SVM | 79.07% | 79.01% | 79.09% | 80.03% | 80.00% | ||
Logistic Regression | 76.08% | 77.03% | 77.06% | 77.09% | 77.05% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahbazi, Z.; Byun, Y.-C. Early Life Stress Detection Using Physiological Signals and Machine Learning Pipelines. Biology 2023, 12, 91. https://doi.org/10.3390/biology12010091
Shahbazi Z, Byun Y-C. Early Life Stress Detection Using Physiological Signals and Machine Learning Pipelines. Biology. 2023; 12(1):91. https://doi.org/10.3390/biology12010091
Chicago/Turabian StyleShahbazi, Zeinab, and Yung-Cheol Byun. 2023. "Early Life Stress Detection Using Physiological Signals and Machine Learning Pipelines" Biology 12, no. 1: 91. https://doi.org/10.3390/biology12010091
APA StyleShahbazi, Z., & Byun, Y. -C. (2023). Early Life Stress Detection Using Physiological Signals and Machine Learning Pipelines. Biology, 12(1), 91. https://doi.org/10.3390/biology12010091