Complementary Role of Fishers’ Experiential Knowledge to Conventional Science in Terms of Species-Specific Biological Traits and Population Changes in Azorean Waters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO Guidelines for the Routine Collection of Capture Fishery Data. FAO Fish. Tech. Pap. 1999, 382, 150.
- Hendriks, S.L. Sustainable Small-Scale Fisheries Can Help People and the Planet. Nature 2022, 606, 650–652. [Google Scholar] [CrossRef]
- Béné, C.; Arthur, R.; Norbury, H.; Allison, E.H.; Beveridge, M.; Bush, S.; Campling, L.; Leschen, W.; Little, D.; Squires, D.; et al. Contribution of Fisheries and Aquaculture to Food Security and Poverty Reduction: Assessing the Current Evidence. World Dev. 2016, 79, 177–196. [Google Scholar] [CrossRef]
- Smith, H.; Garcia Lozano, A.; Baker, D.; Blondin, H.; Hamilton, J.; Choi, J.; Basurto, X.; Silliman, B. Ecology and the Science of Small-Scale Fisheries: A Synthetic Review of Research Effort for the Anthropocene. Biol. Conserv. 2021, 254, 108895. [Google Scholar] [CrossRef]
- Chuenpagdee, R. Global Partnership for Small-Scale Fisheries Research: Too Big to Ignore. SPC Tradit. Mar. Resour. Manag. Knowl. Inf. Bull. 2012, 29, 22–25. [Google Scholar]
- Kolding, J.; van Zwieten, P.A.M. The Tragedy of Our Legacy: How Do Global Management Discourses Affect Small Scale Fisheries in the South? Forum Dev. Stud. 2011, 38, 267–297. [Google Scholar] [CrossRef]
- Costello, C.; Ovando, D.; Hilborn, R.; Gaines, S.D.; Deschenes, O.; Lester, S.E. Status and Solutions for the World’s Unassessed Fisheries. Science 2012, 338, 517–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, R.M. Análise Da Evolução Recente Do Setor Das Pescas Nos Açores. Master’s Thesis, Universidade dos Acores, Ponta Delgada, Portugal, 2017; 194p. [Google Scholar]
- Santos, R.; Medeiros-Leal, W.; Pinho, M. Stock Assessment Prioritization in the Azores: Procedures, Current Challenges and Recommendations. Arquipelago. Life Mar. Sci. 2020, 37, 20–45. [Google Scholar]
- Instituto Nacional de Estatística Sustainable Development Goals—2030 Agenda. Indicators for Portugal: 2015-2021.; Lisbon, 2022. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_publicacoes&PUBLICACOESpub_boui=563353598&PUBLICACOESmodo=2 (accessed on 20 November 2022).
- EC Regulation (EU) No 1380/2013 of the European Parliament and of the Council of 11 December 2013 on the Common Fisheries Policy. Off. J. Eur. Union 2013, L354, 22–61.
- Barston, R. United Nations Conference on Straddling and Highly Migratory Fish Stocks. Mar. Policy 1995, 19, 159–166. [Google Scholar] [CrossRef]
- ICES. Blue Jack Mackerel (Trachurus Picturatus) in Subdivision 10.a.2 (Azores Grounds). In Report of the ICES Advisory Committee, 2018. ICES Advice 2018, jaa.27.10a2. Available online: https://ices-library.figshare.com/articles/report/Blue_jack_mackerel_Trachurus_picturatus_in_Subdivision_10_a_2_Azores_grounds_/18632873?backTo=/collections/ICES_Advice_2018/5796923 (accessed on 20 November 2022). [CrossRef]
- ICES. Alfonsinos (Beryx Spp.) in Subareas 1–10, 12, and 14 (Northeast Atlantic and Adjacent Waters). In Report of the ICES Advisory Committee, 2022. ICES Advice 2022, alf.27.nea. Available online: https://ices-library.figshare.com/articles/report/Alfonsinos_Beryx_spp_in_subareas_1_10_12_and_14_the_Northeast_Atlantic_and_adjacent_waters_/18674753/1 (accessed on 20 November 2022). [CrossRef]
- Stephenson, R.L.; Paul, S.; Pastoors, M.A.; Kraan, M.; Holm, P.; Wiber, M.; Mackinson, S.; Dankel, D.J.; Brooks, K.; Benson, A. Integrating Fishers’ Knowledge Research in Science and Management. ICES J. Mar. Sci. 2016, 73, 1459–1465. [Google Scholar] [CrossRef] [Green Version]
- Hind, E.J. A Review of the Past, the Present, and the Future of Fishers’ Knowledge Research: A Challenge to Established Fisheries Science. ICES J. Mar. Sci. 2015, 72, 341–358. [Google Scholar] [CrossRef] [Green Version]
- Silvano, R.A.M.; Hallwass, G. Participatory Research with Fishers to Improve Knowledge on Small-Scale Fisheries in Tropical Rivers. Sustainability 2020, 12, 4487. [Google Scholar] [CrossRef]
- Medeiros, M.C.; Barboza, R.R.D.; Martel, G.; da Silva Mourão, J. Combining Local Fishers’ and Scientific Ecological Knowledge: Implications for Comanagement. Ocean Coast. Manag. 2018, 158, 1–10. [Google Scholar] [CrossRef]
- Hallwass, G.; Lopes, P.F.; Juras, A.A.; Silvano, R.A.M. Fishers’ Knowledge Identifies Environmental Changes and Fish Abundance Trends in Impounded Tropical Rivers. Ecol. Appl. 2013, 23, 392–407. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.A.; da Silva, R.G.A.; Campos-Silva, J.V.; Batista, V.D.S.; Arantes, C.C. Assessing Biological Traits of Amazonian High-Value Fishes through Local Ecological Knowledge of Urban and Rural Fishers. Hydrobiologia 2021, 848, 2483–2504. [Google Scholar] [CrossRef]
- Ribeiro, A.R.; Damasio, L.M.A.; Silvano, R.A.M. Fishers’ Ecological Knowledge to Support Conservation of Reef Fish (Groupers) in the Tropical Atlantic. Ocean Coast. Manag. 2021, 204, 105543. [Google Scholar] [CrossRef]
- Pereira, P.H.C.; Ternes, M.L.F.; Nunes, J.A.C.C.; Giglio, V.J. Overexploitation and Behavioral Changes of the Largest South Atlantic Parrotfish (Scarus Trispinosus): Evidence from Fishers’ Knowledge. Biol. Conserv. 2021, 254, 108940. [Google Scholar] [CrossRef]
- Bastari, A.; Mascarell, Y.; Ortega, M.; Coll, M. Local Fishers Experience Can Contribute to a Better Knowledge of Marine Resources in the Western Mediterranean Sea. Fish. Res. 2022, 248, 106222. [Google Scholar] [CrossRef]
- Peixoto, U.I.; Casal-Ribeiro, M.; Medeiros-Leal, W.M.; Novoa-Pabon, A.; Pinho, M.; Santos, R. Scientific and Fisher’s Knowledge-Based Ecological Risk Assessment: Combining Approaches to Determine the Vulnerability of Fisheries Stocks. Sustainability 2022, 14, 4870. [Google Scholar] [CrossRef]
- Mangi, S.C.; Kupschus, S.; Mackinson, S.; Rodmell, D.; Lee, A.; Bourke, E.; Rossiter, T.; Masters, J.; Hetherington, S.; Catchpole, T.; et al. Progress in Designing and Delivering Effective Fishing Industry–Science Data Collection in the UK. Fish Fish. 2018, 19, 622–642. [Google Scholar] [CrossRef] [Green Version]
- Thompson, S.A.; Stephenson, R.L.; Rose, G.A.; Paul, S.D. Collaborative Fisheries Research: The Canadian Fisheries Research Network Experience. Can. J. Fish. Aquat. Sci. 2019, 76, 671–681. [Google Scholar] [CrossRef]
- Steins, N.A.; Kraan, M.L.; van der Reijden, K.J.; Quirijns, F.J.; van Broekhoven, W.; Poos, J.J. Integrating Collaborative Research in Marine Science: Recommendations from an Evaluation of Evolving Science-Industry Partnerships in Dutch Demersal Fisheries. Fish Fish. 2020, 21, 146–161. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.; Ruddle, K. Constructing Confidence: Rational Skepticism and Systematic Enquiry in Local Ecological Knowledge Research. Ecol. Appl. 2010, 20, 880–894. [Google Scholar] [CrossRef]
- Rosa, A.; Menezes, G.; Melo, O.; Pinho, M.R. Weight–Length Relationships of 33 Demersal Fish Species from Azores Archipelago. Fish Res. 2006, 80, 329–332. [Google Scholar] [CrossRef]
- Martins, H.R. Biological Studies of the Exploited Stock OfLoligo Forbesi (Mollusca: Cephalopoda) in the Azores. J. Mar. Biol. Assoc. 1982, 62, 799–808. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Santos, R.; Medeiros-Leal, W.; Pinho, M. Synopsis of Biological, Ecological and Fisheries-Related Information on Priority Marine Species in the Azores Region. Arquipelago Life Mar. Sci. 2020, 1 (Suppl. S12), 1–138. [Google Scholar]
- Sparre, P.; Venema, S.C. Introduction to Tropical Fish Stock Assessment; Pt. 1: Manual. Pt. 2: Exercises; FAO: Rome, Italy, 1998; ISBN 0429-9345. [Google Scholar]
- ICES Working Group on the Biology and Assessment of Deep-Sea Fisheries Resources (WGDEEP). ICES Sci. Rep. 2020, 2, 1–928. [CrossRef]
- Santos, R.; Pabon, A.; Silva, W.; Silva, H.; Pinho, M. Population Structure and Movement Patterns of Blackbelly Rosefish in the NE Atlantic Ocean (Azores Archipelago). Fish Ocean. 2020, 29, 227–237. [Google Scholar] [CrossRef]
- Medeiros-Leal, W.; Santos, R.; Novoa-Pabon, A.; Silva, H.; Pinho, M. Population Structure of the European Conger Conger Conger from the Mid-North Atlantic Ocean Inferred from Bathymetric Distribution, Length Composition and Movement Patterns Analyses. Fish Manag. Ecol. 2021, 28, 468–477. [Google Scholar] [CrossRef]
- Pinho, M.; Medeiros-Leal, W.; Sigler, M.; Santos, R.; Novoa-Pabon, A.; Menezes, G.; Silva, H. Azorean Demersal Longline Survey Abundance Estimates: Procedures and Variability. Reg. Stud. Mar. Sci. 2020, 39, 101443. [Google Scholar] [CrossRef]
- ICES. Working Group on Southern Horse Mackerel, Anchovy and Sardine (WGHANSA). ICES Sci. Rep. 2020, 2, 1–655. [Google Scholar] [CrossRef]
- Santos, R.V.S.; Silva, W.M.M.L.; Novoa-Pabon, A.M.; Silva, H.M.; Pinho, M.R. Long-Term Changes in the Diversity, Abundance and Size Composition of Deep Sea Demersal Teleosts from the Azores Assessed through Surveys and Commercial Landings. Aquat. Living Resour. 2019, 32, 25. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.; Crespo, O.; Medeiros-Leal, W.; Novoa-Pabon, A.; Pinho, M. Error Distribution Model to Standardize LPUE, CPUE and Survey-Derived Catch Rates of Target and Non-Target Species. Modelling 2022, 3, 1–13. [Google Scholar] [CrossRef]
- Le Fur, J.; Guilavogui, A.; Teitelbaum, A. Contribution of Local Fishermen to Improving Knowledge of the Marine Ecosystem and Resources in the Republic of Guinea, West Africa. Can. J. Fish. Aquat. Sci. 2011, 68, 1454–1469. [Google Scholar] [CrossRef] [Green Version]
- Silvano, R.A.M.; MacCord, P.F.L.; Lima, R.V.; Begossi, A. When Does This Fish Spawn? Fishermen’s Local Knowledge of Migration and Reproduction of Brazilian Coastal Fishes. Environ. Biol. Fishes 2006, 76, 371–386. [Google Scholar] [CrossRef]
- Gasparini, J.L.; Rocha, L.A.; Floeter, S.R. Ptereleotris Randalli n. Sp., a New Dartfish (Gobioidei: Microdesmidae) from the Brazilian Coast. Aqua 2001, 4, 109–114. [Google Scholar]
- Schemmel, E.; Friedlander, A.M.; Andrade, P.; Keakealani, K.; Castro, L.M.; Wiggins, C.; Wilcox, B.A.; Yasutake, Y.; Kittinger, J.N. The Codevelopment of Coastal Fisheries Monitoring Methods to Support Local Management. Ecol. Soc. 2016, 21, 34. [Google Scholar] [CrossRef] [Green Version]
- Batista, V.S.; Lima, L.G. In Search of Traditional Bio-Ecological Knowledge Useful for Fisheries Co-Management: The Case of Jaraquis Semaprochilodus Spp. (Characiformes, Prochilodontidae) in Central Amazon, Brazil. J. Ethnobiol. Ethnomed. 2010, 6, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Begossi, A.; Salivonchyk, S.; Lopes, P.F.M.; Silvano, R.A.M. Fishers’ Knowledge on the Coast of Brazil. J. Ethnobiol. Ethnomed. 2016, 12, 20. [Google Scholar] [CrossRef] [Green Version]
- Froese, R.; Pauly, D. FishBase. Available online: www.fishbase.org (accessed on 10 October 2022).
- Cadima, E.L. Fish Stock Assessment Manual; FAO: Rome, Italy, 2003; ISBN 9251045054. [Google Scholar]
- Hutchings, J.A. Numerical Assessment in the Front Seat, Ecology and Evolution in the Back Seat. Mar. Ecol. Prog. Ser. 2000, 208, 299–303. [Google Scholar]
- Dulvy, N.K.; Ellis, J.R.; Goodwin, N.B.; Grant, A.; Reynolds, J.D.; Jennings, S. Methods of Assessing Extinction Risk in Marine Fishes. Fish Fish. 2004, 5, 255–276. [Google Scholar] [CrossRef] [Green Version]
- Hutchings, J.A.; Myers, R.A.; García, V.B.; Lucifora, L.O.; Kuparinen, A. Life-history Correlates of Extinction Risk and Recovery Potential. Ecol. Appl. 2012, 22, 1061–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dulvy, N.K.; Sadovy, Y.; Reynolds, J.D. Extinction Vulnerability in Marine Populations. Fish Fish. 2003, 4, 25–64. [Google Scholar] [CrossRef]
- Wang, T.; Fujiwara, M.; Gao, X.; Liu, H. Minimum Viable Population Size and Population Growth Rate of Freshwater Fishes and Their Relationships with Life History Traits. Sci. Rep. 2019, 9, 3612. [Google Scholar] [CrossRef] [Green Version]
- Froese, R.; Binohlan, C. Simple Methods to Obtain Preliminary Growth Estimates for Fishes. J. Appl. Ichthyol. 2003, 19, 376–379. [Google Scholar] [CrossRef]
- Santos, R.; Medeiros-Leal, W.; Novoa-Pabon, A.; Silva, H.; Pinho, M. Demersal Fish Assemblages on Seamounts Exploited by Fishing in the Azores (NE Atlantic). J. Appl. Ichthyol. 2021, 37, 198–215. [Google Scholar] [CrossRef]
- Pauly, D. Anecdotes and the Shifting Baseline Syndrome of Fisheries. Trends Ecol. Evol. 1995, 10, 430. [Google Scholar] [CrossRef]
- Zapelini, C.; Bender, M.G.; Giglio, V.J.; Schiavetti, A. Tracking Interactions: Shifting Baseline and Fisheries Networks in the Largest Southwestern Atlantic Reef System. Aquat. Conserv. 2019, 29, 2092–2106. [Google Scholar] [CrossRef]
- Glenn, H.; Tingley, D.; Marono, S.S.; Holm, D.; Kell, L.; Padda, G.; Edvardsson, I.R.; Asmundsson, J.; Conides, A.; Kapiris, K. Trust in the Fisheries Scientific Community. Mar. Policy 2012, 36, 54–72. [Google Scholar] [CrossRef]
- McKinley, E.; Kelly, R.; Mackay, M.; Shellock, R.; Cvitanovic, C.; van Putten, I. Development and Expansion in the Marine Social Sciences: Insights from the Global Community. iScience 2022, 25, 104735. [Google Scholar] [CrossRef] [PubMed]
- Silver, J.J.; Campbell, L.M. Fisher Participation in Research: Dilemmas with the Use of Fisher Knowledge. Ocean Coast. Manag. 2005, 48, 721–741. [Google Scholar] [CrossRef]
- Clark, T. We’re Over-Researched Here!’ Exploring Accounts of Research Fatigue within Qualitative Research Engagements. Sociology 2008, 42, 953–970. [Google Scholar] [CrossRef]
- Mackinson, S.; Raicevich, S.; Kraan, M.L.; Magudia, R.; Borrow, K. Good Practice Guide: Participatory Research in Fisheries Science; GAP Connecting Science Stakeholder and Policy: Lowestoft, Suffolk, 2015. [Google Scholar]
Species | Spawning Season (Fishers) | Nº Responses | Frequency (%) * | Spawning Season (Literature) | Agreement |
---|---|---|---|---|---|
Pagrus pagrus | Spring | 4 | 23.5 | Spring to summer | MA |
Summer | 3 | 17.6 | |||
Autumn | 0 | 0.0 | |||
Winter | 10 | 58.8 | |||
Loligo forbesii | Spring | 2 | 13.3 | Year-round, peak between the Winter and Spring | HA |
Summer | 1 | 6.7 | |||
Autumn | 0 | 0.0 | |||
Winter | 12 | 80.0 | |||
Trachurus picturatus | Spring | 3 | 18.8 | Winter to spring | MA |
Summer | 9 | 56.3 | |||
Autumn | 0 | 0.0 | |||
Winter | 4 | 25.0 | |||
Pagellus bogaraveo | Spring | 4 | 23.5 | Winter to spring | HA |
Summer | 1 | 5.9 | |||
Autumn | 0 | 0.0 | |||
Winter | 12 | 70.6 | |||
Helicolenus dactylopterus | Spring | 4 | 23.5 | Winter to summer | HA |
Summer | 5 | 29.4 | |||
Autumn | 0 | 0.0 | |||
Winter | 8 | 47.1 | |||
Conger conger | Spring | 3 | 23.1 | Winter to summer | HA |
Summer | 1 | 7.7 | |||
Autumn | 0 | 0.0 | |||
Winter | 9 | 69.2 |
Species | Growth Rate (Fishers) | Nº Responses | Frequency (%) * | Growth Rate (Literature) ** | Agreement |
---|---|---|---|---|---|
Pagrus pagrus | Slow | 5 | 15.6 | 0.04 ≤ k ≤ 0.07 | LA |
Moderate | 25 | 78.1 | = Slow | ||
Fast | 2 | 6.3 | |||
Loligo forbesii | Slow | 2 | 4.8 | No information | - |
Moderate | 25 | 59.5 | |||
Fast | 15 | 35.7 | |||
Trachurus picturatus | Slow | 3 | 7.3 | 0.07 ≤ k ≤ 0.20 | LA |
Moderate | 19 | 46.3 | = Slow | ||
Fast | 19 | 46.3 | |||
Pagellus bogaraveo | Slow | 16 | 38.1 | 0.06 ≤ k ≤ 0.17 | MA |
Moderate | 21 | 50.0 | = Slow | ||
Fast | 5 | 11.9 | |||
Helicolenus dactylopterus | Slow | 12 | 36.4 | 0.05 ≤ k ≤ 0.18 | MA |
Moderate | 19 | 57.6 | = Slow | ||
Fast | 2 | 6.1 | |||
Conger conger | Slow | 4 | 11.4 | No information | - |
Moderate | 25 | 71.4 | |||
Fast | 6 | 17.1 |
Species | Size Trend (Fishers) | Nº Responses | Frequency (%) * | Size Trend (Literature) | Reference | Agreement |
---|---|---|---|---|---|---|
Pagrus pagrus | Increasing | 1 | 1.6 | No information | - | - |
Stable | 40 | 65.6 | ||||
Decreasing | 20 | 32.8 | ||||
Loligo forbesii | Increasing | 5 | 7.8 | No information | - | - |
Stable | 52 | 81.3 | ||||
Decreasing | 7 | 10.9 | ||||
Trachurus picturatus | Increasing | 0 | 0.0 | No information | - | - |
Stable | 50 | 84.7 | ||||
Decreasing | 9 | 15.3 | ||||
Pagellus bogaraveo | Increasing | 4 | 7.4 | Stable | [34] | MA |
Stable | 27 | 50.0 | ||||
Decreasing | 23 | 42.6 | ||||
Helicolenus dactylopterus | Increasing | 3 | 4.8 | Stable | [35] | MA |
Stable | 43 | 69.4 | ||||
Decreasing | 16 | 25.8 | ||||
Conger conger | Increasing | 5 | 7.9 | Stable | [36] | HA |
Stable | 44 | 69.8 | ||||
Decreasing | 14 | 22.2 |
Species | Catch Trend (Fishers) | Nº Responses | Frequency (%) * | Catch Trend (Literature) | Reference | Agreement |
---|---|---|---|---|---|---|
Pagrus pagrus | Increasing | 4 | 6.9 | Increasing | [37] | LA |
Stable | 24 | 41.4 | ||||
Decreasing | 30 | 51.7 | ||||
Loligo forbesii | Increasing | 5 | 7.5 | No information | ||
Stable | 39 | 58.2 | ||||
Decreasing | 23 | 34.3 | ||||
Trachurus picturatus | Increasing | 2 | 3.3 | Decreasing | [38] | MA |
Stable | 31 | 51.7 | ||||
Decreasing | 27 | 45.0 | ||||
Pagellus bogaraveo | Increasing | 5 | 8.3 | Decreasing | [39] | MA |
Stable | 15 | 25.0 | ||||
Decreasing | 40 | 66.7 | ||||
Helicolenus dactylopterus | Increasing | 4 | 6.7 | Decreasing | [40] | MA |
Stable | 25 | 41.7 | ||||
Decreasing | 31 | 51.7 | ||||
Conger conger | Increasing | 3 | 5.1 | Stable | [36] | MA |
Stable | 32 | 54.2 | ||||
Decreasing | 24 | 40.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, R.; Peixoto, U.I.; Casal-Ribeiro, M.; Medeiros-Leal, W. Complementary Role of Fishers’ Experiential Knowledge to Conventional Science in Terms of Species-Specific Biological Traits and Population Changes in Azorean Waters. Biology 2023, 12, 194. https://doi.org/10.3390/biology12020194
Santos R, Peixoto UI, Casal-Ribeiro M, Medeiros-Leal W. Complementary Role of Fishers’ Experiential Knowledge to Conventional Science in Terms of Species-Specific Biological Traits and Population Changes in Azorean Waters. Biology. 2023; 12(2):194. https://doi.org/10.3390/biology12020194
Chicago/Turabian StyleSantos, Régis, Ualerson Iran Peixoto, Morgan Casal-Ribeiro, and Wendell Medeiros-Leal. 2023. "Complementary Role of Fishers’ Experiential Knowledge to Conventional Science in Terms of Species-Specific Biological Traits and Population Changes in Azorean Waters" Biology 12, no. 2: 194. https://doi.org/10.3390/biology12020194
APA StyleSantos, R., Peixoto, U. I., Casal-Ribeiro, M., & Medeiros-Leal, W. (2023). Complementary Role of Fishers’ Experiential Knowledge to Conventional Science in Terms of Species-Specific Biological Traits and Population Changes in Azorean Waters. Biology, 12(2), 194. https://doi.org/10.3390/biology12020194