Overexpression of E-Cadherin Is a Favorable Prognostic Biomarker in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Extraction
2.4. Quality Assessment
2.5. Statistical Analysis
3. Results
3.1. Process of Study Selection and Features
3.2. Quality Assessment
3.3. Quantitative Evaluation (Meta-Analysis)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnson, N.W.; Jayasekara, P.; Amarasinghe, A.A.H.K. Squamous cell carcinoma and precursor lesions of the oral cavity: Epidemiology and aetiology. Periodontology 2000 2011, 57, 19–37. [Google Scholar] [CrossRef] [PubMed]
- Shield, K.D.; Ferlay, J.; Jemal, A.; Sankaranarayanan, R.; Chaturvedi, A.K.; Bray, F.; Soerjomataram, I. The global incidence of lip, oral cavity, and pharyngeal cancers by subsite in 2012. CA Cancer J. Clin. 2017, 67, 51–64. [Google Scholar] [CrossRef] [PubMed]
- Farah, C.S. Molecular landscape of head and neck cancer and implications for therapy. Ann. Transl. Med. 2021, 9, 915–6264. [Google Scholar] [CrossRef] [PubMed]
- Sayáns, P.; Pérez-Sayáns, M.; Somoza-Martín, J.M.; Barros-Angueira, F.; Reboiras-López, M.D.; Rey, J.M.G.; García-García, A. Genetic and molecular alterations associated with oral squamous cell cancer (Review). Oncol. Rep. 2009, 22, 1277–1282. [Google Scholar] [CrossRef]
- Rivera, C.; Oliveira, A.K.; Costa, R.A.P.; De Rossi, T.; Leme, A.F.P. Prognostic biomarkers in oral squamous cell carcinoma: A systematic review. Oral Oncol. 2017, 72, 38–47. [Google Scholar] [CrossRef]
- Diniz-Freitas, M.; García-Caballero, T.; Antúnez-López, J.; Gándara-Rey, J.M.; Garcia-Garcia, A. Reduced E-cadherin expression is an indicator of unfavourable prognosis in oral squamous cell carcinoma. Oral Oncol. 2006, 42, 190–200. [Google Scholar] [CrossRef]
- Brabletz, T.; Kalluri, R.; Nieto, M.A.; Weinberg, R.A. EMT in cancer. Nat. Rev. Cancer 2018, 18, 128–134. [Google Scholar] [CrossRef]
- Smith, A.; Teknos, T.N.; Pan, Q. Epithelial to mesenchymal transition in head and neck squamous cell carcinoma. Oral Oncol. 2013, 49, 287–292. [Google Scholar] [CrossRef]
- Thiery, J.P.; Sleeman, J.P. Complex networks orchestrate epithelial–mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 2006, 7, 131–142. [Google Scholar] [CrossRef]
- Kyuno, D.; Takasawa, A.; Kikuchi, S.; Takemasa, I.; Osanai, M.; Kojima, T. Role of tight junctions in the epithelial-to-mesenchymal transition of cancer cells. Biochim. Biophys. Acta (BBA) Biomembr. 2020, 1863, 183503. [Google Scholar] [CrossRef]
- Downer, C.S.; Speight, P.M. E-cadherin expression in normal, hyperplastic and malignant oral epithelium. Eur. J. Cancer Part B Oral Oncol. 1993, 29, 303–305. [Google Scholar] [CrossRef]
- Apu, E.H.; Akram, S.U.; Rissanen, J.; Wan, H.; Salo, T. Desmoglein 3—Influence on oral carcinoma cell migration and invasion. Exp. Cell Res. 2018, 370, 353–364. [Google Scholar] [CrossRef]
- Moftah, H.; Dias, K.; Apu, E.H.; Liu, L.; Uttagomol, J.; Bergmeier, L.; Kermorgant, S.; Wan, H. Desmoglein 3 regulates membrane trafficking of cadherins, an implication in cell-cell adhesion. Cell Adhes. Migr. 2017, 11, 211–232. [Google Scholar] [CrossRef]
- Nagafuchi, A.; Shirayoshi, Y.; Okazaki, K.; Yasuda, K.; Takeichi, M. Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature 1987, 329, 341–343. [Google Scholar] [CrossRef]
- Takeichi, M. Functional correlation between cell adhesive properties and some cell surface proteins. J. Cell Biol. 1977, 75, 464–474. [Google Scholar] [CrossRef]
- Van Roy, F. Beyond E-cadherin: Roles of other cadherin superfamily members in cancer. Nat. Rev. Cancer 2014, 14, 121–134. [Google Scholar] [CrossRef]
- Yazdani, J.; Ghavimi, M.A.; Hagh, E.J.; Ahmadpour, F. The Role of E-Cadherin as a Prognostic Biomarker in Head and Neck Squamous Carcinoma: A Systematic Review and Meta-Analysis. Mol. Diagn. Ther. 2018, 22, 523–535. [Google Scholar] [CrossRef]
- Xu, X.-L.; Ling, Z.Q.; Chen, S.-Z.; Li, B.; Ji, W.-H.; Mao, W.-M. The impact of E-cadherin expression on the prognosis of esophageal cancer: A meta-analysis. Dis. Esophagus 2014, 27, 79–86. [Google Scholar] [CrossRef]
- Xing, X.; Tang, Y.-B.; Yuan, G.; Wang, Y.; Wang, J.; Yang, Y.; Chen, M. The prognostic value of E-cadherin in gastric cancer: A meta-analysis. Int. J. Cancer 2013, 132, 2589–2596. [Google Scholar] [CrossRef]
- Berx, G.; Becker, K.-F.; Höfler, H.; van Roy, F. Mutations of the human E-cadherin (CDH1) gene. Hum. Mutat. 1998, 12, 226–237. [Google Scholar] [CrossRef]
- Carvalho, J.; Van Grieken, N.C.; Pereira, P.M.; Sousa, S.; Tijssen, M.; Buffart, T.E.; Diosdado, B.; Grabsch, H.; Santos, M.A.; Meijer, G.; et al. Lack of microRNA-101 causes E-cadherin functional deregulation through EZH2 up-regulation in intestinal gastric cancer. J. Pathol. 2012, 228, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Kaszak, I.; Witkowska-Piłaszewicz, O.; Niewiadomska, Z.; Dworecka-Kaszak, B.; Toka, F.N.; Jurka, P. Role of Cadherins in Cancer—A Review. Int. J. Mol. Sci. 2020, 21, 7624. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-M.; Gaur, A.B.; Lengyel, E.; Peter, M.E. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008, 22, 894–907. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Su, L.; Huang, D.; Zhang, H.; Shin, D.M.; Chen, Z.G. Downregulation of E-Cadherin enhances proliferation of head and neck cancer through transcriptional regulation of EGFR. Mol. Cancer 2011, 10, 116. [Google Scholar] [CrossRef]
- Zheng, M.; Jiang, Y.-P.; Chen, W.; Li, K.-D.; Liu, X.; Gao, S.-Y.; Feng, H.; Wang, S.-S.; Jiang, J.; Ma, X.-R.; et al. Snail and Slug collaborate on EMT and tumor metastasis through miR-101-mediated EZH2 axis in oral tongue squamous cell carcinoma. Oncotarget 2015, 6, 6794–6810. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of observational studies in epidemiology: A proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Almangush, A.; Heikkinen, I.; Mäkitie, A.; Coletta, R.D.; Läärä, E.; Leivo, I.; Salo, T. Prognostic biomarkers for oral tongue squamous cell carcinoma: A systematic review and meta-analysis. Br. J. Cancer 2017, 117, 856–866. [Google Scholar] [CrossRef]
- Lorenzo-Pouso, A.I.; Gallas-Torreira, M.; Pérez-Sayáns, M.; Chamorro-Petronacci, C.M.; Alvarez-Calderon, O.; Takkouche, B.; Supuran, C.T.; García-García, A. Prognostic value of CAIX expression in oral squamous cell carcinoma: A systematic review and meta-analysis. J. Enzym. Inhib. Med. Chem. 2020, 35, 1258–1266. [Google Scholar] [CrossRef]
- Parmar, M.K.; Torri, V.; Stewart, L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat. Med. 1998, 17, 2815–2834. [Google Scholar] [CrossRef]
- Tierney, J.F.; Stewart, L.A.; Ghersi, D.; Burdett, S.; Sydes, M.R. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007, 8, 16. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. BMJ 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Chang, H.W.; Chow, V.; Lam, A.; Wei, W.; Yuen, A.P.W. Loss of E-cadherin expression resulting from promoter hypermethylation in oral tongue carcinoma and its prognostic significance. Cancer 2002, 94, 386–392. [Google Scholar] [CrossRef]
- De Herdt, M.J.; Koljenović, S.; van der Steen, B.; Willems, S.M.; Wieringa, M.H.; Nieboer, D.; Hardillo, J.A.; Gruver, A.M.; Zeng, W.; Liu, L.; et al. A novel immunohistochemical scoring system reveals associations of C-terminal MET, ectodomain shedding, and loss of E-cadherin with poor prognosis in oral squamous cell carcinoma. Hum. Pathol. 2020, 104, 42–53. [Google Scholar] [CrossRef]
- Fan, C.-C.; Wang, T.-Y.; Cheng, Y.-A.; Jiang, S.S.; Cheng, C.-W.; Lee, A.Y.-L.; Kao, T.-Y. Expression of E-cadherin, Twist, and p53 and their prognostic value in patients with oral squamous cell carcinoma. J. Cancer Res. Clin. Oncol. 2013, 139, 1735–1744. [Google Scholar] [CrossRef]
- Foschini, M.P.; Cocchi, R.; Morandi, L.; Marucci, G.; Pennesi, M.G.; Righi, A.; Tosi, A.L.; de Biase, D.; Pession, A.; Montebugnoli, L. E-cadherin loss and ΔNp73L expression in oral squamous cell carcinomas showing aggressive behavior. Head Neck 2008, 30, 1475–1482. [Google Scholar] [CrossRef]
- Hung, K.F.; Chang, C.S.; Liu, C.J.; Lui, M.T.; Cheng, C.Y.; Kao, S.Y. Differential expression of E-cadherin in metastatic lesions comparing to primary oral squamous cell carcinoma. J. Oral Pathol. Med. 2006, 35, 589–594. [Google Scholar] [CrossRef]
- Imajyo, I.; Sugiura, T.; Kobayashi, Y.; Shimoda, M.; Ishii, K.; Akimoto, N.; Yoshihama, N.; Kobayashi, I.; Mori, Y. T-box transcription factor Brachyury expression is correlated with epithelial-mesenchymal transition and lymph node metastasis in oral squamous cell carcinoma. Int. J. Oncol. 2012, 41, 1985–1995. [Google Scholar] [CrossRef]
- Kaur, J.; Sawhney, M.; Dattagupta, S.; Shukla, N.K.; Srivastava, A.; Walfish, P.G.; Ralhan, R. Clinical Significance of Altered Expression of β-Catenin and E-Cadherin in Oral Dysplasia and Cancer: Potential Link with ALCAM Expression. PLoS ONE 2013, 8, e67361. [Google Scholar] [CrossRef]
- Kitahara, H.; Kawashiri, S.; Kato, K.; Ohara, T.; Yoshizawa, K.; Nozaki, S.; Nakagawa, K. Immunohistochemical expressions of E-cadherin and b-catenin correlate with the invasion, me-tastasis and prognosis of oral squamous cell carcinoma. Oral Surg. 2008, 1, 28–34. [Google Scholar] [CrossRef]
- Lim, S.-C.; Zhang, S.; Ishii, G.; Endoh, Y.; Kodama, K.; Miyamoto, S.; Hayashi, R.; Ebihara, S.; Cho, J.-S.; Ochiai, A. Predictive Markers for Late Cervical Metastasis in Stage I and II Invasive Squamous Cell Carcinoma of the Oral Tongue. Clin. Cancer Res. 2004, 10, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-K.; Jiang, X.-Y.; Zhou, X.-X.; Wang, D.-M.; Song, X.-L.; Jiang, H.-B. Upregulation of vimentin and aberrant expression of E-cadherin/β-catenin complex in oral squamous cell carcinomas: Correlation with the clinicopathological features and patient outcome. Mod. Pathol. 2010, 23, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Guerra, M.F.; Marazuela, E.G.; Fernández-Contreras, M.E.; Gamallo, C. P-cadherin expression reduced in squamous cell carcinoma of the oral cavity: An indicatior of poor prognosis. Cancer 2005, 103, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, Y.; Akimoto, S.; Sato, Y.; Kanai, Y.; Sakamoto, M.; Hirohashi, S. Prognostic Significance of Dysadherin Expression in Tongue Cancer: Immunohistochemical Analysis of 91 Cases. Appl. Immunohistochem. Mol. Morphol. 2004, 12, 323–328. [Google Scholar] [CrossRef]
- Ozaki-Honda, Y.; Seki, S.; Fujiwara, M.; Matsuura, M.; Fujita, S.; Ikeda, H.; Umeda, M.; Ayuse, T.; Ikeda, T. Prognostic Prediction of Oral Squamous Cell Carcinoma by E-Cadherin and N-Cadherin Expression in Overall Cells in Tumor Nests or Tumor Cells at the Invasive Front. Cancer Microenviron. 2017, 10, 87–94. [Google Scholar] [CrossRef]
- Pannone, G.; Santoro, A.; Feola, A.; Bufo, P.; Papagerakis, P.; Muzio, L.; Staibano, S.; Ionna, F.; Longo, F.; Franco, R.; et al. The Role of E-Cadherin Down-Regulation in Oral Cancer: CDH1 Gene Expression and Epigenetic Blockage. Curr. Cancer Drug Targets 2014, 14, 115–127. [Google Scholar] [CrossRef]
- Pyo, S.W.; Hashimoto, M.; Kim, Y.S.; Kim, C.H.; Lee, S.H.; Johnson, K.R.; Wheelock, M.J.; Park, J.U. Expression of E-cadherin, P-cadherin and N-cadherin in oral squamous cell carcinoma: Correlation with the clinicopathologic features and patient outcome. J. Cranio-Maxillofac. Surg. 2007, 35, 1–9. [Google Scholar] [CrossRef]
- Rosado, P.; Lequerica-Fernández, P.; Fernández, S.; Allonca, E.; Villallaín, L.; de Vicente, J.C. E-cadherin and β-catenin expression in well-differentiated and moderately-differentiated oral squamous cell carcinoma: Relations with clinical variables. Br. J. Oral Maxillofac. Surg. 2013, 51, 149–156. [Google Scholar] [CrossRef]
- Sgaramella, N.; Wilms, T.; Boldrup, L.; Loljung, L.; Gu, X.; Coates, P.; Hassellof, P.; Califano, L.; Muzio, L.L.; Franco, R.; et al. Ethnicity based variation in expression of E-cadherin in patients with squamous cell carcinoma of the oral tongue. Oncol. Lett. 2018, 16, 6603–6607. [Google Scholar] [CrossRef]
- Da Silva, S.D.; Morand, G.B.; Alobaid, F.A.; Hier, M.P.; Mlynarek, A.M.; Alaoui-Jamali, M.A.; Kowalski, L.P. Epithelial-mesenchymal transition (EMT) markers have prognostic impact in multiple primary oral squamous cell carcinoma. Clin. Exp. Metastasis 2015, 32, 55–63. [Google Scholar] [CrossRef]
- Ueda, G.; Sunakawa, H.; Nakamori, K.; Shinya, T.; Tsuhako, W.; Tamura, Y.; Kosugi, T.; Sato, N.; Ogi, K.; Hiratsuka, H. Aberrant expression of beta- and gamma-catenin is an independent prognostic marker in oral squamous cell carcinoma. Int. J. Oral Maxillofac. Surg. 2006, 35, 356–361. [Google Scholar] [CrossRef]
- Wang, C.; Huang, H.; Huang, Z.; Wang, A.; Chen, X.; Huang, L.; Zhou, X.; Liu, X. Tumor budding correlates with poor prognosis and epithelial-mesenchymal transition in tongue squamous cell carcinoma. J. Oral Pathol. Med. 2011, 40, 545–551. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Chen, Z.; Huang, H.; Jin, Y.; Kolokythas, A.; Wang, A.; Dai, Y.; Wong, D.T.; Zhou, X. Polycomb group protein EZH2-mediated E-cadherin repression promotes metastasis of oral tongue squamous cell carcinoma. Mol. Carcinog. 2013, 52, 229–236. [Google Scholar] [CrossRef]
- Wang, C.; Liu, X.; Huang, H.; Ma, H.; Cai, W.; Hou, J.; Huang, L.; Dai, Y.; Yu, T.; Zhou, X. Deregulation of Snai2 is associated with metastasis and poor prognosis in tongue squamous cell carcinoma. Int. J. Cancer 2012, 130, 2249–2258. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Fan, M.; Zhou, Q.; Deng, H.; Aisharif, M.J.; Chen, X. The expression of E-cadherin at the invasive tumor front of oral squamous cell carcinoma: Immunohistochemical and RT-PCR analysis with clinicopathological correlation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2009, 107, 547–554. [Google Scholar] [CrossRef]
- Wangmo, C.; Charoen, N.; Jantharapattana, K.; Dechaphunkul, A.; Thongsuksai, P. Epithelial–Mesenchymal Transition Predicts Survival in Oral Squamous Cell Carcinoma. Pathol. Oncol. Res. 2019, 26, 1511–1518. [Google Scholar] [CrossRef]
- Zhao, D.; Tang, X.-F.; Yang, K.; Liu, J.-Y.; Ma, X.-R. Over-expression of integrin-linked kinase correlates with aberrant expression of Snail, E-cadherin and N-cadherin in oral squamous cell carcinoma: Implications in tumor progression and metastasis. Clin. Exp. Metastasis 2012, 29, 957–969. [Google Scholar] [CrossRef]
- Cirillo, N.; Hassona, Y.; Celentano, A.; Lim, K.P.; Manchella, S.; Parkinson, E.K.; Prime, S.S. Cancer-associated fibroblasts regulate keratinocyte cell–cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer. J. Carcinog. 2017, 38, 76–85. [Google Scholar] [CrossRef]
- Krisanaprakornkit, S.; Iamaroon, A. Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma. ISRN Oncol. 2012, 2012, 1–10. [Google Scholar] [CrossRef]
- Vallina, C.; López-Pintor, R.M.; González-Serrano, J.; de Vicente, J.C.; Hernández, G.; Lorz, C. Genes involved in the epithelial-mesenchymal transition in oral cancer: A systematic review. Oral Oncol. 2021, 117, 105310. [Google Scholar] [CrossRef]
Study | Year | Country | Sample Size | Tumor Subsite | Recruitment Period | Follow-Up (Months) | E-Cadherin Antibody | Cut-Off Point (%) | E-Cadherin (+) Cases |
---|---|---|---|---|---|---|---|---|---|
Chang et al. | 2002 | China | 109 | Tongue | N/A | 63 | H5250 (monoclonal) | 50 | 18 |
Lim et al. | 2004 | Japan | 56 | Tongue | 1992–2000 | 24 | Clone 36 (monoclonal) | 50 | 18 |
Nakanishi et al. | 2004 | Japan | 91 | Tongue | 1983–1995 | 58 | HECD-1 (monoclonal) | 80 | 28 |
Munoz-Guerra et al. | 2005 | Spain | 50 | Tongue, floor of mouth | 1987–2000 | 36 | Clone 36 (monoclonal) | NA | 28 |
Diniz-freitas et al. | 2006 | Spain | 47 | Tongue, floor of mouth, alveolar ridge, retromolar trigone, palate, buccal mucosa | 1995–2000 | 36 | Clone 36 (monoclonal) | 10 | 33 |
Hung et al. | 2006 | Taiwan | 45 | Tongue, floor of the mouth, gingiva, palate | 1999–2005 | 29 | sc-8426 (monoclonal) | 10 | 19 |
Ueda et al. | 2006 | Japan | 135 | NA | 1990–1999 | 68 | Clone 36 (monoclonal) | 90 | 54 |
Kitaraha et al. | 2007 | Japan | 80 | Tongue, floor of the mouth, gingiva, buccal mucosa, palate, lip | 1990–2005 | NA | Clone 36 (monoclonal) | 70 | 34 |
Pyo et al. | 2007 | USA | 49 | NA | 1992–1999 | NA | HECD-1 (monoclonal) | 75 | 10 |
Forischini et al. | 2008 | Italy | 58 | NA | N/A | 19.7 | NCH-38 (monoclonal) | 50 | 20 |
Wang et al. | 2009 | China | 52 | Tongue, gingiva, floor of the mouth, buccal mucosa, palate | 1994–2001 | 38.8 | 589 (monoclonal) | 11 | 30 |
Liu et al. | 2010 | China | 83 | Tongue, gingiva, floor of the mouth, buccal mucosa, palate, lip | 1994–2004 | 50.1 | ZM-0092 (monoclonal) | 80 | 31 |
Wang et al. | 2011 | China | 230 | Tongue | 1996–2005 | 65 | Clone 36 (monoclonal) | 90 | 30 |
Imajyo et al. | 2012 | Japan | 152 | Tongue, floor of the mouth floor, buccal mucosa, gingival | 1993–2006 | NA | Clone 36 (monoclonal) | NA | 104 |
Rosado et al. | 2012 | Spain | 59 | Tongue, floor of the mouth, gingiva, buccal mucosa, palate, lip | 1990–1992 | 55 | HECD-1 (monoclonal) | 67 | 37 |
Wang et al. | 2012 | China | 76 | Tongue | 1996–2005 | 65 | sc-8426 (monoclonal) | 50 | 34 |
Zhao et al. | 2012 | China | 98 | Tongue, floor of the mouth floor, buccal mucosa, gingival | 2001–2003 | 60 | sc-8426 (monoclonal) | 40 | 49 |
Kaur et al. | 2013 | India | 105 | Tongue, floor of the mouth, lip, gingiva, hard palate, soft palate, retromolar trigone and floor of the mouth | 2002–2005 | 24 | sc-8426 (monoclonal) | 50 | 61 |
Wang et al. | 2013 | China | 67 | Tongue | 1996–2005 | 65 | sc-8426 (monoclonal) | 50 | 27 |
Fan et al. | 2014 | Taiwan | 74 | Oral mucosa, Buccal, Gingival, palate, Other | 1999–2006 | NA | NCH-38 (monoclonal) | 50 | 22 |
Pannone et al. | 2014 | Italy | 164 | Tongue, floor of the mouth, buccal mucosa, retromolar trigone, gingiva, palate, lip | 1990–2006 | 39,41 | Clone 36 (monoclonal) | NA | 152 |
Da Silva et al. | 2015 | Brazil | 102 | NA | N/A | 120 | NCH-38 (monoclonal) | 5 | 68 |
Ozaki-Honda et al | 2017 | Japan | 76 | NA | 1983–2002 | NA | Ab40772 (monoclonal) | 50 | 55 |
Sgaramella et al. | 2018 | Sweden | 120 | Tongue | N/A | 47 | M3612 (monoclonal) | 20 | 118 |
De Herdt et al | 2020 | The Netherlands | 203 | Tongue, floor of mouth, gingiva, palate | 1984–2010 | NA | NCH-38 (monoclonal) | 50 | NA |
Wangmo et al. | 2020 | Thailand | 200 | Tongue, Floor of the mouth, gingiva, buccal mucosa | 2008–2011 | NA | NCH-38 (monoclonal) | 60 | 172 |
Study | Year | Overall Survival (HR 95% CI) | Disease-Free Survival/Progression Free Survival (HR 95% CI) | Disease-Specific Survival (HR 95% CI) | Adjustment |
---|---|---|---|---|---|
Chang et al. | 2002 | 0.40 (0.17–0.94) | Cox multivariate regression adjusted for gender, grade, TNM stage, T stage and N status. | ||
Lim et al. | 2004 | 0.41 (0.20–0.84) | Cox multivariate regression adjusted for stage, location, and N status. | ||
Nakanishi et al. | 2004 | 0.22 (0.05–0.97) | Cox multivariate regression adjusted for age, gender, tumor differentiation, N status, TNM stage, growth pattern, invasion depth, and vessel invasion. | ||
Munoz-Guerra et al. | 2005 | 0.28 (0.09–0.87) | Univariate. | ||
Diniz-freitas et al. | 2006 | 0.18 (0.07–0.46) | 0.41 (0.18–0.93) | Cox multivariate regression adjusted for stage and surgical margin status. | |
Hung et al. | 2006 | 0.56 (0.23–1.36) | Univariate. | ||
Ueda et al. | 2006 | 0.71 (0.19–2.65) | Cox multivariate regression adjusted for tumor differentiation, T status, N status, TNM stage, and mode of invasion. | ||
Kitaraha et al. | 2007 | 0.36 (0.08–1.60) | Univariate. | ||
Pyo et al. | 2007 | 0.77 (0.48–1.24) | Cox multivariate regression adjusted for tumor differentiation, T status, N status, TNM stage, and mode of invasion. | ||
Foschini et al. | 2008 | 0.11 (0.02–0.61) | Univariate. | ||
Wang et al. | 2009 | 0.28 (0.08–0.98) | Univariate. | ||
Liu et al. | 2010 | 0.55 (0.37–0.82) | Univariate. | ||
Wang et al. | 2011 | 0.15 (0.06–0.40) | Univariate. | ||
Imajyo et al. | 2012 | 0.38 (0.12–1.20) | 0.51 (0.29–0.98) | Univariate. | |
Rosado et al. | 2012 | 0.56 (0.34–0.92) | Cox multivariate regression adjusted for TNM stage, T stage and N status. | ||
Wang et al. | 2012 | 0.78 (0.64–1.09) | Univariate. | ||
Zhao et al. | 2012 | 0.42 (0.22–0.75) | 0.74 (0.42–1.30) | Cox multivariate regression adjusted for TNM stage and N status. | |
Kaur et al. | 2013 | 0.26 (0.10–0.68) | Univariate. | ||
Wang et al. | 2013 | 0.15 (0.05–0.45) | Univariate. | ||
Fan et al. | 2014 | 0.41 (0.22–0.75) | Cox multivariate regression adjusted for betel quid chewing, cigarette smoking, tumor size, TNM stage, and recurrence. | ||
Pannone et al. | 2014 | 0.43 (0.13–1.42) | Univariate. | ||
Da Silva et al. | 2015 | 0.48 (0.23–1.00) | Univariate. | ||
Ozaki-Honda et al | 2017 | 0.83 (0.20–3.48) | Univariate. | ||
Sgaramella et al. | 2018 | 0.45 (0.23–0.80) | Univariate. | ||
De Herdt et al | 2020 | 0.39 (0.21–0.72) | 0.47 (0.28–0.79) | Univariate. | |
Wangmo et al. | 2020 | 0.57 (0.34–0.96) | Cox multivariate regression adjusted for T stage, N status, clinical stage and treatment. |
Study | Year | Samples | Clinical Data | Immunohistochemistry | Prognostication | Statistics | Classical Prognostic Factors | Overall |
---|---|---|---|---|---|---|---|---|
Chang et al. | 2002 | I | I | I | A | A | A | 3 |
Lim et al. | 2004 | A | A | I | A | A | A | 5 |
Nakanishi et al. | 2004 | A | A | A | A | A | A | 6 |
Munoz-Guerra et al. | 2005 | A | I | A | I | I | A | 3 |
Diniz-freitas et al. | 2006 | A | A | A | A | A | A | 6 |
Hung et al. | 2006 | A | A | A | A | I | I | 4 |
Ueda et al. | 2006 | A | A | A | A | A | A | 6 |
Kitaraha et al. | 2007 | A | A | A | A | I | A | 5 |
Pyo et al. | 2007 | A | I | A | I | A | A | 5 |
Foschini et al. | 2008 | A | I | I | I | I | I | 1 |
Wang et al. | 2009 | A | A | I | I | I | I | 2 |
Liu et al. | 2010 | I | A | I | A | I | I | 2 |
Wang et al. | 2011 | A | A | I | A | I | I | 3 |
Imajyo et al. | 2012 | A | A | A | A | I | A | 5 |
Rosado et al. | 2012 | A | I | A | I | A | A | 4 |
Wang et al. | 2012 | A | I | I | A | I | A | 3 |
Zhao et al. | 2012 | A | A | A | A | A | A | 6 |
Kaur et al. | 2013 | I | I | I | I | I | A | 1 |
Wang et al. | 2013 | A | I | A | A | I | A | 4 |
Fan et al. | 2014 | A | A | A | A | A | A | 6 |
Pannone et al. | 2014 | A | A | A | A | I | I | 4 |
Da Silva et al. | 2015 | A | A | A | A | I | A | 5 |
Ozaki-Honda et al | 2017 | A | I | I | I | I | I | 1 |
Sgaramella et al. | 2018 | I | A | A | I | I | I | 2 |
De Herdt et al | 2020 | A | A | A | A | I | A | 5 |
Wang Mo et al. | 2020 | A | A | A | A | A | A | 6 |
Number of Studies (n) | Pooled HR (95% CI), Fixed Effects | Pooled HR (95% CI), Random Effects | p Value | I2 (%) | Q Test p Value | ||
---|---|---|---|---|---|---|---|
Overall survival | |||||||
Overall | 18 | 0.78 (0.74–0.83) | 0.41 (0.32–0.54) | <0.001 | 59.52 | <0.001 | |
High quality | 9 | 0.45 (0.35–0.57) | 0.43 (0.32–0.57) | <0.001 | 20.30 | 0.26 | |
Low quality | 9 | 0.80 (0.76–0.85) | 0.51 (0.37–0.69) | <0.001 | 77.61 | <0.001 | |
Full adjustment | 6 | 0.47 (0.35–0.62) | 0.42 (0.28–0.63) | <0.001 | 47.94 | 0.09 | |
Asian | 12 | 0.80 (0.75–0.84) | 0.48 (0.37–0.63) | <0.001 | 75.27 | <0.001 | |
Non-Asian | 6 | 0.47 (0.35–0.64) | 0.39 (0.24–0.65) | <0.001 | 55.87 | <0.001 | |
Tongue | 5 | 0.28 (0.19–0.43) | 0.28 (0.17–0.45) | <0.001 | 29.34 | 0.23 | |
Mixed subsites | 13 | 0.79 (0.75–0.84) | 0.55 (0.43–0.69) | <0.001 | 68.03 | <0.001 | |
Use of Clone 36 antibody | 5 | 0.29 (0.19–0.43) | 0.29 (0.19–0.43) | <0.001 | 0 | 0.47 | |
Use of other antibodies | 13 | 0.79 (0.75–0.84) | 0.54 (0.43–0.69) | <0.001 | 71.24 | <0.001 | |
Use of 50% cut-off point | 7 | 0.81 (0.76–0.85) | 0.52 (0.38–0.72) | <0.001 | 78.96 | <0.001 | |
Use of other cut-off points | 11 | 0.47 (0.38–0.58) | 0.42 (0.31–0.57) | <0.001 | 38.60 | 0.09 | |
Disease-free survival | |||||||
Overall | 9 | 0.47 (0.37–0.61) | 0.47 (0.37–0.61) | <0.001 | 0 | 0.64 | |
High quality | 5 | 0.54 (0.41–0.72) | 0.54 (0.41–0.72) | <0.001 | 0 | 0.72 | |
Low quality | 4 | 0.31 (0.19–0.52) | 0.31 (0.19–0.52) | 0.004 | 0 | 0.91 | |
Full adjustment | 4 | 0.55 (0.39–0.76) | 0.55 (0.39–0.76) | <0.001 | 0 | 0.68 | |
Use of Clone 36 antibody | 4 | 0.46 (0.31–0.69) | 0.46 (0.31–0.69) | <0.001 | 0 | 0.72 | |
Use of other antibodies | 5 | 0.48 (0.36–0.66) | 0.47 (0.33–0.67) | <0.001 | 15.18 | 0.32 | |
Disease-specific survival | |||||||
Overall | 3 | 0.55 (0.39–0.76) | 0.55 (0.39–0.76) | <0.001 | 0 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorenzo-Pouso, A.I.; Silva, F.F.-V.e.; Pérez-Jardón, A.; Chamorro-Petronacci, C.M.; Oliveira-Alves, M.G.; Álvarez-Calderón-Iglesias, Ó.; Caponio, V.C.A.; Pinti, M.; Perrotti, V.; Pérez-Sayáns, M. Overexpression of E-Cadherin Is a Favorable Prognostic Biomarker in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Biology 2023, 12, 239. https://doi.org/10.3390/biology12020239
Lorenzo-Pouso AI, Silva FF-Ve, Pérez-Jardón A, Chamorro-Petronacci CM, Oliveira-Alves MG, Álvarez-Calderón-Iglesias Ó, Caponio VCA, Pinti M, Perrotti V, Pérez-Sayáns M. Overexpression of E-Cadherin Is a Favorable Prognostic Biomarker in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Biology. 2023; 12(2):239. https://doi.org/10.3390/biology12020239
Chicago/Turabian StyleLorenzo-Pouso, Alejandro I., Fábio França-Vieira e Silva, Alba Pérez-Jardón, Cintia M. Chamorro-Petronacci, Mônica G. Oliveira-Alves, Óscar Álvarez-Calderón-Iglesias, Vito Carlo Alberto Caponio, Morena Pinti, Vittoria Perrotti, and Mario Pérez-Sayáns. 2023. "Overexpression of E-Cadherin Is a Favorable Prognostic Biomarker in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis" Biology 12, no. 2: 239. https://doi.org/10.3390/biology12020239
APA StyleLorenzo-Pouso, A. I., Silva, F. F. -V. e., Pérez-Jardón, A., Chamorro-Petronacci, C. M., Oliveira-Alves, M. G., Álvarez-Calderón-Iglesias, Ó., Caponio, V. C. A., Pinti, M., Perrotti, V., & Pérez-Sayáns, M. (2023). Overexpression of E-Cadherin Is a Favorable Prognostic Biomarker in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Biology, 12(2), 239. https://doi.org/10.3390/biology12020239