The Role of Non-Neuronal Acetylcholine in the Autoimmune Blistering Disease Pemphigus Vulgaris
Abstract
:Simple Summary
Abstract
1. Introduction
2. Non-Neuronal Acetylcholine in the Skin and Oral Mucosa
3. ACh Role in Keratinocyte Adhesion
4. Anti-AChR Autoimmunity in Pemphigus
4.1. Anti-mAChR Autoimmunity in Pemphigus
4.2. Anti-nAChR Autoimmunity in Pemphigus
AChR Targeted | Role of AChRs in Autoimmune Blistering Disease | Reference |
---|---|---|
M3 mAChR | Autoantibodies cause an intraepidermal split and acantholysis in patients with anti-Dsg1/3 autoantibody-negative PV. | [24] |
M3 mAChR | Positive correlation of anti-M3 mAChR autoantibody titers with disease severity and the titers declined with therapy (n = 45). Anti-M3 mAChR autoantibody titers are higher in patients with PV than in patients with PF. | [29] |
M3 mAChR | Long-term exposure of anti-M3AChR in cultured keratinocytes has an agonist-like effect on M3 mAChR signaling, disrupting the normal folding of keratinocytes in the epidermis and resulting in acantholysis. | [26] |
M3 mAChR | M3 mAChR knockout mice are noted to have altered intercellular cohesion of basal cells, epidermal hyperplasia, and modulation of genes that contribute to intercellular adhesion and cell arrangement. | [28] |
α3 nAChR | Keratinocytes cultured with α3 nAChR antagonists undergo acantholysis. | [35] |
nAChR | Patients with PV and PF, when compared to normal subjects, have increased anti-nAChR autoantibodies. | [37] |
γ/ε nAChR subunits | Positive anti-γ/ε nAChR serology is associated with mucocutaneous involvement, and there is a positive correlation between this autoantibody value and disease severity at baseline. | [38] |
α9 nAChR | Addition of anti-α9 nAChR antibody causes keratinocyte acantholysis, which is reversed with a cholinergic agonist. | [39] |
α3, α5, α7, α9, α10, β2, and β4 nAChR subunits | PV IgGs precipitate mitochondrial nAChR subunits. | [21] |
Pemphaxin (PX) | Anti-PX PV alone does not cause acantholysis, but addition of anti-PX to PV IgG restores acantholytic activity. | [15] |
4.3. Other AChRs Targeted in Pemphigus
4.4. Role of AChRs in the Multipathogenic Theory of Pemphigus Pathophysiology
5. Therapeutic Implications of Elucidation of Anti-AChR Autoimmunity in Pemphigus
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Grando, S.A.; Kurzen, H. Cholinergic control of keratinocyte cohesion. In Pathophysiology of the Desmosome; Cirillo, N., Lanza, A., Gombos, F., Eds.; Research Signpost: Trivandrum, India, 2009; pp. 87–104. [Google Scholar]
- Grando, S.A. Cholinergic control of epidermal cohesion. Exp. Dermatol. 2006, 15, 265–282. [Google Scholar] [CrossRef]
- Grando, S.A. Biological functions of keratinocyte cholinergic receptors. J. Investig. Dermatol. Symp. Proc. 1997, 2, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.T.; Chernyavsky, A.I.; Arredondo, J.; Bercovich, D.; Orr-Urtreger, A.; Vetter, D.E.; Wess, J.; Beaudet, A.L.; Kitajima, Y.; Grando, S.A. Synergistic control of keratinocyte adhesion through muscarinic and nicotinic acetylcholine receptor subtypes. Exp. Cell. Res. 2004, 294, 534–549. [Google Scholar] [CrossRef]
- Grando, S.A. Pemphigus autoimmunity: Hypotheses and realities. Autoimmunity 2012, 45, 7–35. [Google Scholar] [CrossRef] [Green Version]
- Amber, K.T.; Valdebran, M.; Grando, S.A. Non-Desmoglein Antibodies in Patients with Pemphigus Vulgaris. Front. Immunol. 2018, 9, 1190. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Ndoye, A.; Bassler, K.D.; Shultz, L.D.; Shields, M.C.; Ruben, B.S.; Webber, R.J.; Pittelkow, M.R.; Lynch, P.J.; Grando, S.A. Classification, clinical manifestations, and immunopathological mechanisms of the epithelial variant of paraneoplastic autoimmune multiorgan syndrome: A reappraisal of paraneoplastic pemphigus. Arch. Dermatol. 2001, 137, 193–206. [Google Scholar]
- Ahmed, A.R.; Carrozzo, M.; Caux, F.; Cirillo, N.; Dmochowski, M.; Alonso, A.E.; Gniadecki, R.; Hertl, M.; López-Zabalza, M.J.; Lotti, R.; et al. Monopathogenic vs. multipathogenic explanations of pemphigus pathophysiology. Exp. Dermatol. 2016, 25, 839–846. [Google Scholar] [CrossRef]
- Gualtieri, B.; Marzano, V.; Grando, S. Atypical pemphigus: Autoimmunity against desmocollins and other non-desmoglein autoantigens. Ital. J. Dermatol. Venerol. 2021, 156, 134–141. [Google Scholar] [CrossRef]
- Grando, S.A.; Pittelkow, M.; Schallreuter, K. Adrenergic and cholinergic control in the biology of epidermis: Physiological and clinical significance. J. Investig. Dermatol. 2006, 126, 1948–1965. [Google Scholar] [CrossRef] [Green Version]
- Grando, S.A.; Kist, D.A.; Qi, M.; Dahl, M.V. Human keratinocytes synthesize, secrete, and degrade acetylcholine. J. Investig. Dermatol. 1993, 101, 32–36. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.T.; Hall, L.L.; Gallacher, G.; Ndoye, A.; Jolkovsky, D.L.; Webber, R.J.; Buchli, R.; Grando, S.A. Choline acetyltransferase, acetylcholinesterase, and nicotinic acetylcholine receptors of human gingival and esophageal epithelia. J. Dent. Res. 2000, 79, 939–949. [Google Scholar] [CrossRef]
- Arredondo, J.; Hall, L.L.; Ndoye, A.; Chernyavsky, A.I.; Jolkovsky, D.L.; Grando, S.A. Muscarinic acetylcholine receptors regulating cell cycle progression are expressed in human gingival keratinocytes. J. Periodontal. Res. 2003, 38, 79–89, Erratum in: J. Periodontal. Res. 2004, 39, 79. [Google Scholar] [CrossRef]
- Grando, S.A. Connections of nicotine to cancer. Nat. Rev. Cancer 2014, 14, 419–429. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Ndoye, A.; Grando, S.A. Pemphigus vulgaris antibody identifies pemphaxin. A novel keratinocyte annexin-like molecule binding acetylcholine. J. Biol. Chem. 2000, 275, 29466–29476. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, A.; Grando, S.A. Smoking and the skin. Int. J. Dermatol. 2012, 51, 250–262. [Google Scholar] [CrossRef]
- Grando, S.A. Muscarinic receptor agonists and antagonists: Effects on keratinocyte functions. Handb. Exp. Pharmacol. 2012, 208, 429–450. [Google Scholar] [CrossRef]
- Gordon, P.R.; Gelman, L.K.; Gilchrest, B.A. Demonstration of a choline requirement for optimal keratinocyte growth in a defined culture medium. J. Nutr. 1988, 118, 1487–1494. [Google Scholar] [CrossRef]
- Grando, S.A. New approaches to the treatment of pemphigus. J. Investig. Dermatol. Symp. Proc. 2004, 9, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, V.T.; Lee, T.X.; Ndoye, A.; Shultz, L.D.; Pittelkow, M.R.; Dahl, M.V.; Lynch, P.J.; Grando, S.A. The pathophysiological significance of non-desmoglein targets of pemphigus autoimmunity. Pemphigus vulgaris and foliaceus patients develop antibodies against keratinocyte cholinergic receptors. Arch. Dermatol. 1998, 134, 971–980. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, R.P.; Callen, J.P. Pemphugus associated disease and induced pemphigus. Clin. Dermatol. 1983, 1, 42–71. [Google Scholar] [CrossRef]
- Grando, S.A.; Zelickson, B.D.; Kist, D.A.; Weinshenker, D.; Bigliardi, P.L.; Wendelschafer-Crabb, G.; Kennedy, W.R.; Dahl, M.V. Keratinocyte muscarinic acetylcholine receptors: Immunolocalization and partial characterization. J. Investig. Dermatol. 1995, 104, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Grando, S.A.; Crosby, A.M.; Zelickson, B.D.; Dahl, M.V. Agarose gel keratinocyte outgrowth system as a model of skin re-epithelization: Requirement of endogenous acetylcholine for outgrowth initiation. J. Investig. Dermatol. 1993, 101, 804–810. [Google Scholar] [CrossRef] [Green Version]
- Chernyavsky, A.; Patel, K.G.; Grando, S.A. Mechanisms of synergy of autoantibodies to M3 muscarinic acetylcholine receptor and secretory pathway Ca2+/Mn2+-ATPase isoform 1 in patients with non-desmoglein pemphigus vulgaris. Int. Immunopharmacol. 2020, 80, 106149. [Google Scholar] [CrossRef]
- Sinha, A.A. Constructing immunoprofiles to deconstruct disease complexity in pemphigus. Autoimmunity 2012, 45, 36–43. [Google Scholar] [CrossRef]
- Chernyavsky, A.; Khylynskyi, M.M.; Patel, K.G.; Grando, S.A. Chronic exposure to the anti-M3 muscarinic acetylcholine receptor autoantibody in pemphigus vulgaris contributes to disease pathophysiology. J. Biol. Chem. 2022, 298, 101687. [Google Scholar] [CrossRef]
- Chernyavsky, A.; Amber, K.T.; Agnoletti, A.F.; Wang, C.; Grando, S.A. Synergy among non-desmoglein antibodies contributes to the immunopathology of desmoglein antibody-negative pemphigus vulgaris. J. Biol. Chem. 2019, 294, 4520–4528. [Google Scholar] [CrossRef] [Green Version]
- Lakshmi, M.J.D.; Jaisankar, T.J.; Rajappa, M.; Thappa, D.M.; Chandrashekar, L.; Divyapriya, D.; Munisamy, M.; Revathy, G. Correlation of antimuscarinic acetylcholine receptor antibody titers and antidesmoglein antibody titers with the severity of disease in patients with pemphigus. J. Am. Acad. Dermatol. 2017, 76, 895–902. [Google Scholar] [CrossRef]
- Duan, J.; Grando, C.; Liu, S.; Chernyavsky, A.; Chen, J.K.; Andersen, B.; Grando, S.A. The M3 Muscarinic Acetylcholine Receptor Promotes Epidermal Differentiation. J. Investig. Dermatol. 2022, 142, 3211–3221.e2. [Google Scholar] [CrossRef]
- Chernyavsky, A.; Chen, Y.; Wang, P.H.; Grando, S.A. Pemphigus vulgaris antibodies target the mitochondrial nicotinic acetylcholine receptors that protect keratinocytes from apoptolysis. Int. Immunopharmacol. 2015, 29, 76–80. [Google Scholar] [CrossRef]
- Hutchison, D.M.; Hosking, A.M.; Hong, E.M.; Grando, S.A. Mitochondrial Autoantibodies and the Role of Apoptosis in Pemphigus Vulgaris. Antibodies 2022, 11, 55. [Google Scholar] [CrossRef]
- Marchenko, S.; Chernyavsky, A.I.; Arredondo, J.; Gindi, V.; Grando, S.A. Antimitochondrial autoantibodies in pemphigus vulgaris: A missing link in disease pathophysiology. J. Biol. Chem. 2010, 285, 3695–3704. [Google Scholar] [CrossRef] [Green Version]
- Kalantari-Dehaghi, M.; Chen, Y.; Deng, W.; Chernyavsky, A.; Marchenko, S.; Wang, P.H.; Grando, S.A. Mechanisms of mitochondrial damage in keratinocytes by pemphigus vulgaris antibodies. J. Biol. Chem. 2013, 288, 16916–16925. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Chernyavsky, A.; Webber, R.J.; Grando, S.A.; Wang, P.H. Critical Role of the Neonatal Fc Receptor (FcRn) in the Pathogenic Action of Antimitochondrial Autoantibodies Synergizing with Anti-desmoglein Autoantibodies in Pemphigus Vulgaris. J. Biol. Chem. 2015, 290, 23826–23837. [Google Scholar] [CrossRef] [Green Version]
- Grando, S.A.; Horton, R.M.; Pereira, E.F.; Diethelm-Okita, B.M.; George, P.M.; Albuquerque, E.X.; Conti-Fine, B.M. A nicotinic acetylcholine receptor regulating cell adhesion and motility is expressed in human keratinocytes. J. Investig. Dermatol. 1995, 105, 774–781. [Google Scholar] [CrossRef] [Green Version]
- Grando, S.A.; Bystryn, J.C.; Chernyavsky, A.I.; Frušić-Zlotkin, M.; Gniadecki, R.; Lotti, R.; Milner, Y.; Pittelkow, M.R.; Pincelli, C. Apoptolysis: A novel mechanism of skin blistering in pemphigus vulgaris linking the apoptotic pathways to basal cell shrinkage and suprabasal acantholysis. Exp. Dermatol. 2009, 18, 764–770. [Google Scholar] [CrossRef]
- Bhatia, S.M.; Streilein, R.D.; Hall, R.P. Correlation of IgG autoantibodies against acetylcholine receptors and desmogleins in patients with pemphigus treated with steroid sparing agents or rituximab. PLoS ONE 2020, 15, e0233957. [Google Scholar] [CrossRef]
- Toosi, R.; Teymourzadeh, A.; Mahmoudi, H.; Balighi, K.; Daneshpazhooh, M. Correlation of anti-γ/ε nicotinic acetylcholine receptor antibody levels with anti-desmoglein 1,3 antibody levels and disease severity in pemphigus vulgaris. Clin. Exp. Dermatol. 2021, 46, 1230–1235. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Ndoye, A.; Grando, S.A. Novel human alpha9 acetylcholine receptor regulating keratinocyte adhesion is targeted by Pemphigus vulgaris autoimmunity. Am. J. Pathol. 2000, 157, 1377–1391. [Google Scholar] [CrossRef]
- Kaur, B.; Kerbrat, J.; Kho, J.; Kaler, M.; Kanatsios, S.; Cirillo, N. Mechanism-based therapeutic targets of pemphigus vulgaris: A scoping review of pathogenic molecular pathways. Exp. Dermatol. 2022, 31, 154–171. [Google Scholar] [CrossRef]
- Kalantari-Dehaghi, M.; Anhalt, G.J.; Camilleri, M.J.; Chernyavsky, A.I.; Chun, S.; Felgner, P.L.; Jasinskas, A.; Leiferman, K.M.; Liang, L.; Marchenko, S.; et al. Pemphigus vulgaris autoantibody profiling by proteomic technique. PLoS ONE 2013, 8, e57587. [Google Scholar] [CrossRef] [Green Version]
- Grando, S.A. Retrospective analysis of a single-center clinical experience toward development of curative treatment of 123 pemphigus patients with a long-term follow-up: Efficacy and safety of the multidrug protocol combining intravenous immunoglobulin with the cytotoxic immunosuppressor and mitochondrion-protecting drugs. Int. J. Dermatol. 2019, 58, 114–125. [Google Scholar]
- Lotti, R.; Shu, E.; Petrachi, T.; Marconi, A.; Palazzo, E.; Quadri, M.; Lin, A.; O'Reilly, L.A.; Pincelli, C. Soluble Fas Ligand Is Essential for Blister Formation in Pemphigus. Front. Immunol. 2018, 9, 370. [Google Scholar] [CrossRef] [Green Version]
- Lanza, A.; Lanza, M.; Santoro, R.; Soro, V.; Prime, S.S.; Cirillo, N. Deregulation of PERK in the autoimmune disease pemphigus vulgaris occurs via IgG-independent mechanisms. Br. J. Dermatol. 2011, 164, 336–343. [Google Scholar] [CrossRef]
- Brescacin, A.; Baig, Z.; Bhinder, J.; Lin, S.; Brar, L.; Cirillo, N. What protein kinases are crucial for acantholysis and blister formation in pemphigus vulgaris? A systematic review. J. Cell. Physiol. 2022, 237, 2825–2837. [Google Scholar] [CrossRef]
- Lazaridis, K.; Tzartos, S.J. Autoantibody Specificities in Myasthenia Gravis; Implications for Improved Diagnostics and Therapeutics. Front. Immunol. 2020, 11, 212. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Li, J.; Wang, M.; Hao, H.; Chen, X.; Li, R.; Zhu, X. Prevalence of myasthenia gravis and associated autoantibodies in paraneoplastic pemphigus and their correlations with symptoms and prognosis. Br. J. Dermatol. 2015, 172, 968–975. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Arredondo, J.; Chernyavsky, A.I.; Pittelkow, M.R.; Kitajima, Y.; Grando, S.A. Pemphigus vulgaris acantholysis ameliorated by cholinergic agonists. Arch. Dermatol. 2004, 140, 327–334. [Google Scholar] [CrossRef] [Green Version]
- Iraji, F.; Yoosefi, A. Healing effect of Pilocarpine gel 4% on skin lesions of pemphigus vulgaris. Int. J. Dermatol. 2006, 45, 743–746. [Google Scholar] [CrossRef]
- Mehta, J.N.; Martin, A.G. A case of pemphigus vulgaris improved by cigarette smoking. Arch. Dermatol. 2000, 136, 15–17. [Google Scholar] [CrossRef] [Green Version]
- Brenner, S.; Tur, E.; Shapiro, J.; Ruocco, V.; D’Avino, M.; Ruocco, E.; Tsankov, N.; Vassileva, S.; Drenovska, K.; Brezoev, P.; et al. Pemphigus vulgaris: Environmental factors. Occupational, behavioral, medical, and qualitative food frequency questionnaire. Int. J. Dermatol. 2001, 40, 562–569. [Google Scholar] [CrossRef]
- Sullivan, T.P.; Elgart, G.; Kirsner, R. Pemphigus and smoking. Int. J. Dermatol. 2002, 41, 528–530. [Google Scholar] [CrossRef] [PubMed]
- Valikhani, M.; Kavusi, S.; Chams-Davatchi, C.; Daneshpazhooh, M.; Barzegari, M.; Ghiasi, M.; Abedini, R. Pemphigus and associated environmental factors: A case-control study. Clin. Exp. Dermatol. 2007, 32, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Valikhani, M.; Kavusi, S.; Chams-Davatchi, C.; Hallaji, Z.; Esmaili, N.; Ghandi, N.; Farahani, F.; Lajevardi, V. Impact of smoking on pemphigus. Int. J. Dermatol. 2008, 47, 567–570. [Google Scholar] [CrossRef] [PubMed]
Gene Symbol of the Targeted Protein | Name of the Self-Antigen | % of All Patient Sera | % of Anti-Dsg3 Negative Sera | Keratinocyte Dissociation Score | Cytochrome c Release Activity |
---|---|---|---|---|---|
HLA-DRA | major histocompatibility complex, class II, DR α chain | 45 | 58 | − | − |
DSC3 | desmocollin 3 (Dsc3) | 44 | 54 | + (2/2) * | − |
DSC1 | desmocollin 1 (Dsc1) | 44 | 53 | − | − |
ATP2C1 | human secretory pathway Ca2+/Mn2+ATPase protein 1 (SPCA1) | 43 | 59 | + (3/3) | + (3/3) |
PKP3 | plakophilin 3 | 43 | 52 | − | − |
CHRM3 | M3 muscarinic acetylcholine receptor | 42 | 54 | + (1/2) | − |
COL21A1 | collagen, type XXI, α1 | 42 | 51 | − | − |
ANXA8L1 | annexin A8-like 1 | 42 | 50 | − | − |
CD88 | complement component 5a receptor 1 | 42 | 50 | − | − |
CHRNE | ε subunit of nicotinic acetylcholine receptor | 41 | 53 | + (2/2) | + (2/2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foulad, D.P.; Cirillo, N.; Grando, S.A. The Role of Non-Neuronal Acetylcholine in the Autoimmune Blistering Disease Pemphigus Vulgaris. Biology 2023, 12, 354. https://doi.org/10.3390/biology12030354
Foulad DP, Cirillo N, Grando SA. The Role of Non-Neuronal Acetylcholine in the Autoimmune Blistering Disease Pemphigus Vulgaris. Biology. 2023; 12(3):354. https://doi.org/10.3390/biology12030354
Chicago/Turabian StyleFoulad, Delila Pouldar, Nicola Cirillo, and Sergei A. Grando. 2023. "The Role of Non-Neuronal Acetylcholine in the Autoimmune Blistering Disease Pemphigus Vulgaris" Biology 12, no. 3: 354. https://doi.org/10.3390/biology12030354
APA StyleFoulad, D. P., Cirillo, N., & Grando, S. A. (2023). The Role of Non-Neuronal Acetylcholine in the Autoimmune Blistering Disease Pemphigus Vulgaris. Biology, 12(3), 354. https://doi.org/10.3390/biology12030354