A Novel In Vivo Active Pemphigus Model Targeting Desmoglein1 and Desmoglein3: A Tool Representing All Pemphigus Variants
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Recombinant Protein Expression and Purification
2.2. Mice Immunization
2.3. Ethics Statement
2.4. Adoptive Transfer of Splenocytes and Treatments
2.5. PV Score
2.6. Mouse DSG1 and DSG3 ELISA Assay
2.7. Statistical Analysis
3. Results
3.1. Development of an Active Model Representing PF and Mucocutaneous Pemphigus: Evaluation of Antibodies Production in Immunized Animals
3.2. Evaluation of the Disease Phenotype of the New Active Models
3.3. Validation of the New Models through Methyl-Prednisolone Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Amber, K.T.; Valdebran, M.; Grando, S.A. Non-Desmoglein Antibodies in Patients with Pemphigus Vulgaris. Front. Immunol. 2018, 9, 1190. [Google Scholar] [CrossRef] [PubMed]
- Lotti, R.; Atene, C.G.; Zanfi, E.D.; Bertesi, M.; Zanocco-Marani, T. In Vitro, Ex Vivo, and In Vivo Models for the Study of Pemphigus. Int. J. Mol. Sci. 2022, 23, 7044. [Google Scholar] [CrossRef] [PubMed]
- Anhalt, G.J.; Labib, R.S.; Voorhees, J.J.; Beals, T.F.; Diaz, L.A. Induction of Pemphigus in Neonatal Mice by Passive Transfer of IgG from Patients with the Disease. N. Engl. J. Med. 1982, 306, 1189–1196. [Google Scholar] [CrossRef] [PubMed]
- Luyet, C.; Schulze, K.; Sayar, B.S.; Howald, D.; Müller, E.J.; Galichet, A. Preclinical studies identify non-apoptotic low-level caspase-3 as therapeutic target in pemphigus vulgaris. PLoS ONE 2015, 10, e0119809. [Google Scholar] [CrossRef] [PubMed]
- Amagai, M.; Tsunoda, K.; Suzuki, H.; Nishifuji, K.; Koyasu, S.; Nishikawa, T. Use of autoantigen-knockout mice in developing an active autoimmune disease model for pemphigus. J. Clin. Investig. 2000, 105, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, A.; Ishiko, A.; Ota, T.; Tsunoda, K.; Amagai, M.; Nishikawa, T. IgG Binds to Desmoglein 3 in Desmosomes and Causes a Desmosomal Split without Keratin Retraction in a Pemphigus Mouse Model. J. Investig. Dermatol. 2004, 122, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Tsunoda, K.; Ota, T.; Suzuki, H.; Ohyama, M.; Nagai, T.; Nishikawa, T.; Amagai, M.; Koyasu, S. Pathogenic autoantibody production requires loss of tolerance against desmoglein 3 in both T and B cells in experimental pemphigus vulgaris. Eur. J. Immunol. 2002, 32, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Amagai, M.; Nishikawa, T.; Fujii, Y.; Kawakami, Y.; Kuwana, M. Novel System Evaluating In Vivo Pathogenicity of Desmoglein 3-Reactive T Cell Clones Using Murine Pemphigus Vulgaris. J. Immunol. 2008, 181, 1526–1535. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, H.; Kuwana, M.; Amagai, M. A Single Helper T Cell Clone Is Sufficient to Commit Polyclonal Naive B Cells to Produce Pathogenic IgG in Experimental Pemphigus Vulgaris. J. Immunol. 2009, 182, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Lotti, R.; Atene, C.G.; Marconi, A.; Di Rocco, G.; Bonetti, L.R.; Marani, T.Z.; Pincelli, C. Development of a Desmocollin-3 Active Mouse Model Recapitulating Human Atypical Pemphigus. Front. Immunol. 2019, 10, 1387. [Google Scholar] [CrossRef] [PubMed]
- Eming, R.; Hennerici, T.; Bäcklund, J.; Feliciani, C.; Visconti, K.C.; Willenborg, S.; Wohde, J.; Holmdahl, R.; Sønderstrup, G.; Hertl, M. Pathogenic IgG Antibodies against Desmoglein 3 in Pemphigus Vulgaris Are Regulated by HLA-DRB1*04:02–Restricted T Cells. J. Immunol. 2014, 193, 4391–4399. [Google Scholar] [CrossRef] [PubMed]
- Hudemann, C.; Maglie, R.; Llamazares-Prada, M.; Beckert, B.; Didona, D.; Tikkanen, R.; Schmitt, T.; Hashimoto, T.; Waschke, J.; Hertl, M.; et al. Human Desmocollin 3—Specific IgG Antibodies Are Pathogenic in a Humanized HLA Class II Transgenic Mouse Model of Pemphigus. J. Invest. Dermatol. 2022, 142, 915–923.e3. [Google Scholar] [CrossRef] [PubMed]
- Hirose, M.; Recke, A.; Beckmann, T.; Shimizu, A.; Ishiko, A.; Bieber, K.; Westermann, J.; Zillikens, D.; Schmidt, E.; Ludwig, R.J. Repetitive Immunization Breaks Tolerance to Type XVII Collagen and Leads to Bullous Pemphigoid in Mice. J. Immunol. 2011, 187, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Waschke, J.; Spindler, V.; Bruggeman, P.; Zillikens, D.; Schmidt, G.; Drenckhahn, D. Inhibition of Rho A activity causes pemphigus skin blistering. J. Cell Biol. 2006, 175, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Spindler, V.; Waschke, J. Role of Rho GTPases in desmosomal adhesion and pem-phigus pathogenesis. Ann. Anat. 2011, 193, 177–180. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zeng, X.; Halifu, Y.; Chen, W.; Hu, F.; Wang, P.; Zhang, H.; Kang, X. Blocking RhoA/ROCK inhibits the pathogenesis of pemphigus vulgaris by suppressing oxidative stress and apoptosis through TAK1/NOD2-mediated NF-κB pathway. Mol. Cell Biochem. 2017, 436, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Furue, M.; Kadono, T. Pemphigus, a pathomechanism of acantholysis. Australas. J. Dermatol. 2017, 58, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Egu, D.T.; Schmitt, T.; Waschke, J. Mechanisms Causing Acantholysis in Pemphigus-Lessons from Human Skin. Front. Immunol. 2022, 13, 884067. [Google Scholar] [CrossRef] [PubMed]
Type of Lesion | Score | Sites |
---|---|---|
Erosion | 1 | Snout |
Periocular region | ||
Periauricolar region | ||
Back | ||
Chest | ||
Abdomen | ||
Right foreleg | ||
Left foreleg | ||
Right hind leg | ||
Left hind leg | ||
Tail | ||
Alopecia | 1 | Face |
0.5 | Neck | |
1 | Back | |
0.5 | Abdomen | |
Erythema | 0.5–1 | Footpad |
Abdomen | ||
Face |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotti, R.; Atene, C.G.; Zanfi, E.D.; Bertesi, M.; Pincelli, C.; Zanocco-Marani, T. A Novel In Vivo Active Pemphigus Model Targeting Desmoglein1 and Desmoglein3: A Tool Representing All Pemphigus Variants. Biology 2023, 12, 702. https://doi.org/10.3390/biology12050702
Lotti R, Atene CG, Zanfi ED, Bertesi M, Pincelli C, Zanocco-Marani T. A Novel In Vivo Active Pemphigus Model Targeting Desmoglein1 and Desmoglein3: A Tool Representing All Pemphigus Variants. Biology. 2023; 12(5):702. https://doi.org/10.3390/biology12050702
Chicago/Turabian StyleLotti, Roberta, Claudio Giacinto Atene, Emma Dorotea Zanfi, Matteo Bertesi, Carlo Pincelli, and Tommaso Zanocco-Marani. 2023. "A Novel In Vivo Active Pemphigus Model Targeting Desmoglein1 and Desmoglein3: A Tool Representing All Pemphigus Variants" Biology 12, no. 5: 702. https://doi.org/10.3390/biology12050702
APA StyleLotti, R., Atene, C. G., Zanfi, E. D., Bertesi, M., Pincelli, C., & Zanocco-Marani, T. (2023). A Novel In Vivo Active Pemphigus Model Targeting Desmoglein1 and Desmoglein3: A Tool Representing All Pemphigus Variants. Biology, 12(5), 702. https://doi.org/10.3390/biology12050702