Determination of the Bacterial Community of Mustard Pickle Products and Their Microbial and Chemical Qualities
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Microbial Assay
2.3. Chemical Composition Analysis
2.4. High-Throughput Sequencing Method
2.5. Statistical Analysis
3. Results and Discussion
3.1. Microbiological Quality of Mustard Pickle Samples
3.2. Chemical Quality of Mustard Pickle Samples
3.3. Correlation Analysis of Microbial and Chemical Qualities of Mustard Pickle Samples
3.4. HTS Analysis of Mustard Pickle Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, C.S.; Fan, J.J.; Lee, H.C. Nutritional changes of mustard during pickling period. J. Chin. Agric. Chem. Soc. 1990, 28, 195–209. (In Chinese) [Google Scholar]
- Kung, H.F.; Lee, Y.H.; Teng, D.F.; Hsieh, P.C.; Wei, C.I.; Tsai, Y.H. Histamine formation by histamine-forming bacteria and yeast in mustard pickle products in Taiwan. Food Chem. 2006, 99, 579–585. [Google Scholar] [CrossRef]
- Di Cagno, R.; Coda, R.; De Angelis, M.; Gobbetti, M. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013, 33, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Shim, J.M.; Kim, D.W.; Yao, Z.; Kim, J.A.; Kim, H.J.; Kim, J.H. Effects of different types of salts on the growth of lactic acid bacteria and yeasts during kimchi fermentation. Food Sci. Biotechnol. 2018, 27, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.S.; Yanagida, F.; Hsu, J.S. Isolation and characterization of lactic acid bacteria from suan-tsai (fermented mustard), a traditional fermented food in Taiwan. J. Appl. Microbiol. 2006, 101, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Cao, R.; Zhang, J.; Meng, H.; Zhao, L.; Liu, Q. Microbial flora analysis of oyster: A comparison between traditional plate incubation method and high throughput sequencing technology. Food Sci. 2016, 37, 137–141. [Google Scholar]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berglyons, D.; Huntley, J.; Fierer, N. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef]
- Cao, R.; Zhao, L.; Sun, H.; Liu, Q. Characterization of microbial community in high-pressure treated oysters by high-throughput sequencing technology. Innov. Food Sci. Emerg. Technol. 2018, 45, 241–248. [Google Scholar]
- Hu, Y.; Zhang, L.; Liu, Q.; Wang, Y.; Chen, Q.; Kong, B. The potential correlation between bacterial diversity and the characteristic volatile flavour of traditional dry sausages from Northeast China. Food Microbiol. 2020, 91, 103505. [Google Scholar] [CrossRef]
- Roberts, R.J.; Carneiro, M.O.; Schatz, M.C. The advantages of SMRT sequencing. Genome Biol. 2013, 14, 405. [Google Scholar] [CrossRef]
- Fichot, E.B.; Norman, R.S. Microbial phylogenetic profiling with the Pacific Biosciences sequencing platform. Microbiome 2013, 1, 10. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Yang, J.; Hou, Q.; Xu, H.; Zheng, Y.; Zhang, H.; Zhang, L. Assessment of bacterial profiles in aged, home-made Sichuan paocai brine with varying titratable acidity by PacBio SMRT sequencing technology. Food Control 2017, 78, 14–23. [Google Scholar] [CrossRef]
- Yang, J.; Cao, J.; Xu, H.; Hou, Q.; Yu, Z.; Zhang, H.; Sun, Z. Bacterial diversity and community structure in Chongqing radish paocai technology. J. Sci. Food Agric. 2018, 98, 3234–3245. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Feng, L.; Yi, J.; Hua, C.; Chen, F.; Liao, X.; Wang, Z.; Hu, X. High hydrostatic pressure inactivation of total aerobic bacteria, lactic acid bacteria, yeasts in sour Chinese cabbage. Int. J. Food Microbiol. 2010, 142, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.S.; Tsai, Y.H.; Chen, P.W.; Chen, Y.C.; Wei, P.C.; Tsai, M.L.; Kuo, C.H.; Lee, Y.C. Impacts of high-hydrostatic pressure on the organoleptic, microbial, and chemical qualities and bacterial community of freshwater clam during storage studied using high-throughput sequencing. LWT—Food Sci. Technol. 2022, 171, 114124. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 18th ed.; Association of Officiating Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Zamora, A.F.; Fields, M.L. Nutritive quality of fermented cowpeas (Vigna sinensis) and chickpeas (Cicer arietinum L.). J. Food Sci. 1979, 44, 234–236. [Google Scholar] [CrossRef]
- Cobb, B.F.; Alaniz, I.A.; Thompson, C.A. Biochemical and microbial studies on shrimp: Nitrogen and amine nitrogen analysis. J. Food Sci. 1973, 38, 431–435. [Google Scholar] [CrossRef]
- Taiwan Food and Drug Administration, Method of Test For Sulfur Dioxide in Foods. 2013. Available online: http://www.fda.gov.tw/upload/133/Content/2013091016555489972.pdf (accessed on 15 August 2015). (In Chinese)
- Chou, S.S.; Chung, J.C.; Hwang, D.F. A high performance liquid chromatography method for determining nitrate and nitrite levels in vegetables. J. Food Drug Anal. 2003, 11, 233–238. [Google Scholar] [CrossRef]
- Chen, H.C.; Huang, Y.R.; Hsu, H.H.; Lin, C.S.; Chen, W.C.; Lin, C.M.; Tsai, Y.H. Determination of histamine and biogenic amines in fish cubes (Tetrapturus angustirostris) implicated in a food-borne poisoning. Food Control 2010, 21, 13–18. [Google Scholar] [CrossRef]
- Taiwan Food and Drug Administration. Sanitation Standard for Microorganisms in Food; Executive Yuan, Department of Health: Taipei City, Taiwan, 2020.
- Irwin, S.V.; Fisher, P.; Graham, E.; Malek, A.; Robidoux, A. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food. PLoS ONE 2017, 12, e0186629. [Google Scholar] [CrossRef]
- Taiwan Food and Drug Administration, Standards for Specification, Scope Application and Limitation of Food Additives. 2014. Available online: https://consumer.fda.gov.tw/Law/Detail.aspx?nodeID=518&lang=1&lawid=241 (accessed on 15 August 2015).
- Vally, H.; Thompson, P.J. Role of Sulfite additive in wine induced asthma: Single dose and cumulative dose studies. Thorax 2001, 56, 763–769. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, C.M.; Brenner, F.W.; Miller, J.M. Classification, identification, and clinical significance of Proteus, Providencia, and Morganella. Clin. Microbiol. Rev. 2000, 13, 534–546. [Google Scholar] [CrossRef] [PubMed]
- Hola, V.; Peroutkova, T.; Ruzicka, F. Virulence factors in Proteus bacteria from biofilm communities of catheter-associated urinary tract infections. FEMS Immunol. Med. Microbiol. 2012, 65, 343–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, Z.; Shi, X.; Bai, F.; He, X.; Zhang, H.; Li, Y.; Wan, Y.; Lin, Y.; Qiu, Y.; Chen, Q.; et al. Characterization of a novel diarrheagenic strain of Proteus mirabilis associated with food poisoning in China. Front. Microbiol. 2019, 10, 2810. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.C.; Liu, C. Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiol. 2007, 20, 549–558. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.S.; Lin, T.S.; Yu, D.Y.; Su, Y.C.; Tsai, Y.H. Identification of Vibrio parahaemolyticus in seafood by multiplex PCR. J. Aquat. Food Prod. Technol. 2016, 25, 1301–1310. [Google Scholar] [CrossRef]
- Fusco, V.; Quero, G.M.; Cho, G.S.; Kabisch, J.; Meske, D.; Neve, H.; Bockelmann, W.; Franz, C.M.A.P. The genus Weissella: Taxonomy, ecology and biotechnological potential. Front. Microbiol. 2015, 6, 155. [Google Scholar] [CrossRef] [PubMed]
- Chao, S.H.; Wu, R.J.; Watanabe, K.; Tsai, Y.C. Diversity of lactic acid bacteria in suan-tsai and fu-tsai, traditional fermented mustard products of Taiwan. Int. J. Food Microbiol. 2009, 135, 203–210. [Google Scholar] [CrossRef]
- Jeong, S.H.; Lee, S.H.; Jung, J.Y.; Choi, E.J.; Jeon, C.O. Microbial succession and Metabolite changes during long-term storage of Kimchi. J. Food Sci. 2013, 78, M763–M769. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lee, S.H.; Kim, J.M.; Park, M.S.; Bae, J.W.; Hahn, Y.; Madsen, E.L.; Jeon, C.O. Metagenomic analysis of Kimchi, a traditional Korean fermented food. Appl. Environ. Microbiol. 2011, 77, 2264–2274. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.M.; Liu, S.L.; Du, X.H.; Chen, G.; Yan, Z.C. Study on microbial communities in Sichuan pickle and the correlation between salinity or acidity and microbial communities. Food Ferment. Ind. 2013, 39, 29–34. [Google Scholar]
Sample Code | APC (log CFU/g) | LAB (log CFU/g) | Coliform (log CFU/g) | Escherichia coli (log CFU/g) | Yeast and Mold (log CFU/g) | Staphylococcus aureus (log CFU/g) | Salmonella spp. (log CFU/g) | Listeria monocytogenes (log CFU/g) |
---|---|---|---|---|---|---|---|---|
A | 4.01 ± 0.07 | 3.30 ± 0.10 | <1 | <1 | <1 | <2 | <2 | <2 |
B | 2.65 ± 0.05 | 2.00 ± 0.05 | <1 | <1 | <1 | <2 | <2 | <2 |
C | 3.99 ± 0.05 | 3.44 ± 0.07 | <1 | <1 | <1 | <2 | <2 | <2 |
D | 3.18 ± 0.05 | <1 | <1 | <1 | <1 | <2 | <2 | <2 |
E | 3.73 ± 0.12 | 3.77 ± 0.11 | <1 | <1 | 4.85 ± 0.07 | <2 | <2 | <2 |
F | 2.98 ± 0.13 | 2.47 ± 0.07 | <1 | <1 | <1 | <2 | <2 | <2 |
G | 2.59 ± 0.19 | <1 | <1 | <1 | <1 | <2 | <2 | <2 |
H | 2.18 ± 0.05 | <1 | <1 | <1 | <1 | <2 | <2 | <2 |
I | 2.91 ± 0.07 | <1 | <1 | <1 | 2.68 ± 0.20 | <2 | <2 | <2 |
J | 3.34 ± 0.05 | 2.42 ± 0.12 | <1 | <1 | 2.30 ± 0.60 | <2 | <2 | <2 |
K | 2.40 ± 0.04 | <1 | <1 | <1 | <1 | <2 | <2 | <2 |
L | 2.63 ± 0.15 | <1 | <1 | <1 | <1 | <2 | <2 | <2 |
M | 3.13 ± 0.06 | <1 | <1 | <1 | <1 | <2 | <2 | <2 |
N | 2.36 ± 0.18 | <1 | <1 | <1 | <1 | <2 | <2 | <2 |
Range | 2.18–4.01 | <1–3.77 | <1 | <1 | <1–4.85 | <2 | <2 | <2 |
Average | 3.01 ± 0.59 a | 1.24 ± 1.55 | <1 | <1 | 0.70 ± 1.50 | <2 | <2 | <2 |
Sample Code | pH | Aw | Moisture (%) | Salt Content (%) | Titratable Acidity (%) | TVBN (mg/100 g) | Sulfite Content (ppm) | Nitrite Content (ppm) |
---|---|---|---|---|---|---|---|---|
A | 4.16 ± 0.08 | 0.951 ± 0.06 | 90.20 ± 0.55 | 3.51 ± 0.10 | 0.51 ± 0.04 | 19.5 ± 0.5 | 237.6 ± 4.9 | 0.40 ± 0.02 |
B | 3.39 ± 0.03 | 0.950 ± 0.08 | 91.24 ± 0.60 | 3.50 ± 0.60 | 1.66 ± 0.16 | 19.9 ± 0.6 | 274.6 ± 8.8 | <0.01 |
C | 3.46 ± 0.03 | 0.945 ± 0.03 | 89.02 ± 0.40 | 3.89 ± 0.13 | 1.35 ± 0.10 | 20.0 ± 0.8 | 337.0 ± 14.7 | 0.12 ± 0.01 |
D | 3.84 ± 0.08 | 0.948 ± 0.04 | 89.44 ± 0.31 | 4.07 ± 0.70 | 0.78 ± 0.05 | 21.3 ± 0.6 | 101.3 ± 4.3 | 0.27 ± 0.06 |
E | 3.67 ± 0.03 | 0.945 ± 0.02 | 89.74 ± 0.41 | 4.31 ± 0.16 | 1.13 ± 0.04 | 33.3 ± 0.7 | 195.3 ± 6.8 | 0.50 ± 0.21 |
F | 3.96 ± 0.02 | 0.947 ± 0.03 | 89.65 ± 0.71 | 4.10 ± 0.20 | 0.73 ± 0.06 | 22.3 ± 0.6 | 837.3 ± 8.4 | 0.34 ± 0.10 |
G | 4.07 ± 0.03 | 0.948 ± 0.05 | 89.73 ± 0.52 | 5.32 ± 0.14 | 0.67 ± 0.06 | 16.6 ± 0.5 | 1065.4 ± 14.9 | 0.40 ± 0.06 |
H | 3.90 ± 0.02 | 0.947 ± 0.06 | 89.58 ± 0.90 | 5.52 ± 0.40 | 0.74 ± 0.07 | 23.7 ± 0.5 | 144.0 ± 5.7 | 0.59 ± 0.04 |
I | 4.04 ± 0.06 | 0.921 ± 0.05 | 87.59 ± 0.41 | 8.48 ± 0.30 | 0.64 ± 0.07 | 19.6 ± 0.7 | 411.3 ± 10.9 | 0.65 ± 0.09 |
J | 4.08 ± 0.07 | 0.945 ± 0.04 | 89.96 ± 0.90 | 4.86 ± 0.80 | 0.60 ± 0.05 | 21.9 ± 0.5 | 473.2 ± 10.6 | 0.09 ± 0.01 |
K | 3.59 ± 0.06 | 0.914 ± 0.04 | 85.77 ± 0.40 | 8.55 ± 0.10 | 1.11 ± 0.12 | 36.0 ± 0.9 | 246.7 ± 4.9 | 0.37 ± 0.05 |
L | 3.87 ± 0.04 | 0.960 ± 0.06 | 92.18 ± 0.30 | 3.02 ± 0.70 | 0.64 ± 0.07 | 17.7 ± 0.6 | 753.7 ± 6.6 | 0.31 ± 0.04 |
M | 3.84 ± 0.03 | 0.954 ± 0.04 | 92.80 ± 0.61 | 3.12 ± 0.40 | 0.72 ± 0.06 | 18.3 ± 0.6 | 787.2 ± 17.1 | 0.19 ± 0.05 |
N | 3.61 ± 0.05 | 0.943 ± 0.06 | 88.88 ± 0.70 | 4.23 ± 0.19 | 0.98 ± 0.05 | 22.6 ± 0.7 | 301.9 ± 11.7 | 0.24 ± 0.03 |
Range | 3.39–4.16 | 0.914–0.960 | 85.77–92.80 | 3.02–8.55 | 0.51–1.66 | 16.6–36.0 | 101.3–1065.4 | <0.01–0.65 |
Average | 3.82 ± 0.24 a | 0.944 ± 0.012 | 89.70 ± 1.74 | 4.75 ± 1.76 | 0.88 ± 0.33 | 22.3 ± 5.6 | 440.5 ± 299.7 | 0.32 ± 0.19 |
Sample Code | Levels of Biogenic Amine (mg/kg) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Try a | Phe | Put | Cad | His | Tyr | Spd | Spm | Total | |
A | 0.5 ± 0.1 | 7.7 ± 0.3 | 3.1 ± 0.1 | 19.6 ± 0.9 | 1.7 ± 0.5 | 29.3 ± 4.3 | 6.2 ± 0.7 | ND c | 68.1 |
B | 1.7 ± 0.4 | 5.5 ± 0.1 | 5.0 ± 0.2 | 16.6 ± 1.1 | 3.8 ± 0.6 | 40.5 ± 3.9 | 4.7 ± 0.4 | 1.0 ± 0.3 | 78.8 |
C | 3.2 ± 0.6 | 6.2 ± 0.6 | 4.6 ± 0.3 | 17.8 ± 1.3 | 5.4 ± 0.5 | 42.9 ± 5.1 | 5.7 ± 0.6 | ND | 85.8 |
D | 0.5 ± 0.1 | 7.2 ± 0.2 | 3.1 ± 0.1 | 8.6 ± 0.8 | 1.6 ± 0.3 | 14.7 ± 1.8 | 7.7 ± 0.7 | ND | 43.4 |
E | 6.7 ± 0.5 | 7.7 ± 0.5 | 5.8 ± 0.5 | 25.1 ± 5.5 | 2.4 ± 0.2 | 73.4 ± 8.2 | 9.5 ± 0.8 | 1.6 ± 0.6 | 132.2 |
F | 3.8 ± 0.3 | 6.7 ± 0.1 | 3.4 ± 0.5 | 16.9 ± 2.1 | 3.1 ± 0.7 | 26.1 ± 6.0 | 6.7 ± 0.5 | ND | 66.7 |
G | 3.5 ± 0.2 | 5.8 ± 0.1 | 4.7 ± 0.6 | 7.3 ± 0.8 | 1.3 ± 0.4 | 56.9 ± 6.2 | 7.0 ± 0.6 | ND | 86.5 |
H | 4.1 ± 0.2 | 8.7 ± 0.4 | 4.0 ± 0.2 | 50.1 ± 7.3 | 7.6 ± 0.6 | 32.8 ± 5.1 | 7.8 ± 0.7 | ND | 115.1 |
I | 0.5 ± 0.1 | 17.9 ± 0.9 | 5.3 ± 0.1 | 9.1 ± 0.7 | 11.0 ± 0.5 | 19.9 ± 3.7 | 4.3 ± 0.2 | ND | 68.0 |
J | 0.5 ± 0.1 | 13.3 ± 0.7 | 6.0 ± 0.5 | 27.2 ± 3.0 | 17.3 ± 2.9 | 38.0 ± 5.0 | 4.9 ± 0.3 | ND | 107.2 |
K | 3.4 ± 0.5 | 12.7 ± 0.7 | 6.8 ± 0.4 | 31.9 ± 4.1 | 8.6 ± 1.6 | 64.7 ± 9.2 | 6.8 ± 0.7 | 0.8 ± 0.4 | 135.7 |
L | 0.5 ± 0.2 | 8.9 ± 0.6 | 4.5 ± 0.1 | 20.9 ± 1.6 | 6.6 ± 1.1 | 34.2 ± 5.1 | 3.6 ± 0.5 | ND | 79.2 |
M | 0.5 ± 0.1 | 8.9 ± 0.6 | 5.2 ± 0.3 | 26.2 ± 5.0 | 5.6 ± 0.9 | 43.2 ± 7.3 | 4.5 ± 0.6 | ND | 94.1 |
N | 0.5 ± 0.3 | 10.6 ± 0.8 | 6.1 ± 0.6 | 39.2 ± 3.8 | 14.0 ± 2.8 | 55.0 ± 6.8 | 4.5 ± 0.4 | 0.6 ± 0.1 | 130.5 |
Range | 0.5–6.7 | 5.5–17.9 | 3.1–6.8 | 7.3–50.1 | 1.3–17.3 | 14.7–73.4 | 3.6–9.5 | ND–1.6 | 43.4–135.7 |
Average | 2.1 ± 0.2 b | 9.1 ± 0.4 | 4.8 ± 0.1 | 22.6 ± 1.2 | 6.4 ± 0.5 | 48.0 ± 1.7 | 6.0 ± 0.2 | 0.3 ± 0.1 | 78.7 ± 65.1 |
APC | LAB | Yeast and Mold | pH | Aw | Moisture | Salt Content | Titratable Acidity | TVBN | Sulfite | Nitrite | |
---|---|---|---|---|---|---|---|---|---|---|---|
APC | |||||||||||
LAB | 0.7913 ** | ||||||||||
Yeast and mold | 0.3489 | 0.3857 | |||||||||
pH | 0.0998 | −0.1165 | 0.0980 | ||||||||
Aw | 0.2096 | 0.2025 | −0.2363 | 0.1137 | |||||||
Moisture | 0.1493 | 0.0873 | −0.1429 | 0.1092 | 0.9020 ** | ||||||
Salt content | −0.3527 | −0.3536 | 0.2379 | 0.1009 | −0.9384 ** | −0.8417 ** | |||||
Titratable acidity | −0.0080 | 0.2902 | −0.0051 | −0.9390 ** | −0.1248 | −0.1197 | −0.0693 | ||||
TVBN | −0.0518 | 0.1619 | 0.4139 | −0.3597 | −0.5750* | −0.5921 * | 0.4538 | 0.32020 | |||
Sulfites | −0.1568 | −0.2023 | −0.2045 | 0.3786 | 0.2915 | 0.3860 | −0.1637 | −0.36741 | −0.4862 | ||
Nitrite | −0.1651 | −0.2344 | 0.3410 | 0.4588 | −0.3764 | −0.3888 | 0.5487* | −0.46315 | 0.2469 | −0.0767 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chien, H.-I.; Yen, Y.-F.; Lee, Y.-C.; Wei, P.-C.; Huang, C.-Y.; Tseng, C.-H.; Yen, F.-L.; Tsai, Y.-H. Determination of the Bacterial Community of Mustard Pickle Products and Their Microbial and Chemical Qualities. Biology 2023, 12, 258. https://doi.org/10.3390/biology12020258
Chien H-I, Yen Y-F, Lee Y-C, Wei P-C, Huang C-Y, Tseng C-H, Yen F-L, Tsai Y-H. Determination of the Bacterial Community of Mustard Pickle Products and Their Microbial and Chemical Qualities. Biology. 2023; 12(2):258. https://doi.org/10.3390/biology12020258
Chicago/Turabian StyleChien, Hung-I, Yu-Fan Yen, Yi-Chen Lee, Pi-Chen Wei, Chun-Yung Huang, Chih-Hua Tseng, Feng-Lin Yen, and Yung-Hsiang Tsai. 2023. "Determination of the Bacterial Community of Mustard Pickle Products and Their Microbial and Chemical Qualities" Biology 12, no. 2: 258. https://doi.org/10.3390/biology12020258
APA StyleChien, H. -I., Yen, Y. -F., Lee, Y. -C., Wei, P. -C., Huang, C. -Y., Tseng, C. -H., Yen, F. -L., & Tsai, Y. -H. (2023). Determination of the Bacterial Community of Mustard Pickle Products and Their Microbial and Chemical Qualities. Biology, 12(2), 258. https://doi.org/10.3390/biology12020258