Bergmann’s Rule under Rocks: Testing the Influence of Latitude and Temperature on a Chiton from Mexican Marine Ecoregions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Therriault, T.; Park, C.; Rice, J. North Pacific Ocean. In The First Global Integrated Marine Assessment: World Ocean Assessment I; Inniss, L., Simcock, A., United Nations, Eds.; Cambridge University Press: Cambridge, UK, 2017; p. 973. ISBN 9781108186148. [Google Scholar]
- Macpherson, E.; Richer, B.; Forges, D.; Schnabel, K.; Samadi, S.; Boisselier, M.; Garcia-rubies, A. Biogeography of the deep-sea galatheid squat lobsters of the Pacific Ocean. Deep Res. Part I Oceanogr. Res. Pap. 2010, 57, 228–238. [Google Scholar] [CrossRef]
- Briggs, J.C. Marine Zoogeography; McGraw-Hill Book Co.: New York, NY, USA, 1974. [Google Scholar]
- Briggs, J.C. Global Biogeography; Elsevier: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Longhurst, A.R. Ecological Geography of the Sea; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Watson, R.; Pauly, D.; Christensen, V.; Froese, R.; Longhurst, A.; Platt, T.; Sathyendranath, S.; Sherman, K.; O’Reilly, J.; Celone, P. Mapping fisheries onto marine ecosystems: A consensus approach for regional, oceanic and global integrations. In Large Marine Ecosystems of the World; Hempel, G., Sherman, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 1, pp. 375–395. [Google Scholar]
- Spalding, M.D.; Fox, H.E.; Allen, G.R.; Davidson, N.; Ferdaña, Z.A.; Finlayson, M.; Halpern, B.S.; Jorge, M.A.; Lombana, A.; Lourie, S.A.; et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 2007, 57, 573–583. [Google Scholar] [CrossRef]
- Wilkinson, T.; Wiken, E.; Creel, J.; Hourigan, T.; Agardy, T.; Herrmann, H.; Janishevski, L.; Madden, C.; Morgan, L.; Padilla, M. Marine Ecoregions of North America; Commission for Environmental Cooperation: Montreal, QC, Canada, 2009; Volume 57, ISBN 9782923358413. [Google Scholar]
- Reyes-Gómez, A. Chitons, The Polyplacophora from the Mexican Pacific; The Festivus: Encinitas, CA, USA, 2016. [Google Scholar]
- Páez-Osuna, F.; Sanchez-Cabeza, J.A.; Ruiz-Fernández, A.C.; Alonso-Rodríguez, R.; Piñón-Gimate, A.; Cardoso-Mohedano, J.G.; Flores-Verdugo, F.J.; Carballo, J.L.; Cisneros-Mata, M.A.; Álvarez-Borrego, S. Environmental status of the Gulf of California: A review of responses to climate change and climate variability. Earth Sci. Rev. 2016, 162, 253–268. [Google Scholar] [CrossRef]
- Keigwin, L.D. Pliocene closing of the Isthmus of Panama, based on biostratigraphic evidence from nearby Pacific Ocean and Caribbean Sea cores. Geology 1978, 6, 630–634. [Google Scholar] [CrossRef]
- Leigh, E.G.; O’Dea, A.; Vermeij, G.J. Historical biogeography of the isthmus of panama. Biol. Rev. 2014, 89, 148–172. [Google Scholar] [CrossRef]
- Eernisse, D.J. Chitons. In Encyclopedia of Tidepools and Rocky Shores; Denny, M., Gaines, S., Eds.; University of California Press: Berkeley, CA, USA, 2007; pp. 127–133. [Google Scholar]
- Ponder, W.F.; Lindberg, D.R.; Ponder, J.M. Biology and Evolution of the Mollusca, Volume Two; Taylor & Francis Group: Boca Raton, FL, USA, 2020; ISBN 9780815361848. [Google Scholar]
- Connors, M.J.; Ehrlich, H.; Hog, M.; Godeffroy, C.; Araya, S.; Kallai, I.; Gazit, D.; Boyce, M.; Ortiz, C. Three-dimensional structure of the shell plate assembly of the chiton Tonicella marmorea and its biomechanical consequences. J. Struct. Biol. 2012, 177, 314–328. [Google Scholar] [CrossRef]
- Ponder, W.F.; Lindberg, D.R.; Ponder, J.M. Biology and Evolution of the Mollusca, Volume One; Taylor & Francis Group: Boca Raton, FL, USA, 2019; ISBN 9781787284395. [Google Scholar]
- Kaas, P.; Van Belle, R.A. Monograph of Living Chitons (Mollusca: Polyplacophora) Volume 3; Brill: New York, NY, USA, 1987; ISBN 90 04 08614 5. [Google Scholar]
- García-Ríos, C.I.; Álvarez-Ruiz, M. Comunidades de quitones (Mollusca: Polyplacophora) de la Bahía de La Paz, Baja California Sur, México. Rev. Biol. Trop. 2007, 55, 177–182. [Google Scholar] [CrossRef]
- Flores-Garza, R.; Galeana-Rebolledo, L.; Ibáñez, S.G.; Torreblanca-Ramírez, C. Polyplacophora species richness, composition and distribution of its community associated with the intertidal rocky substrate in the marine priority region No. 32 in Guerrero, Mexico. Open J. Ecol. 2012, 2, 192–201. [Google Scholar] [CrossRef]
- Reyes-Gómez, A.; Flores-Garza, R.; Galeana-Rebolledo, L.; Hernández-Vera, G.; Galván-Villa, C.M.; Torreblanca-Ramírez, C.; Flores-Rodríguez, P.; García-Ibañez, S.; Ríos-Jara, E. Intertidal chitons (Mollusca: Polyplacophora) from the rocky coastline of Guerrero, México, with the description of a new species. Zootaxa 2022, 5155, 451–492. [Google Scholar] [CrossRef]
- O’Donnell, M.S.; Ignizio, D.A. Bioclimatic Predictors for Supporting Ecological Applications in the Conterminous United States; U.S. Geological Survey: Reston, VA, USA, 2012; p. 10p. [Google Scholar]
- Blackburn, T.M.; Gaston, K.J.; Loder, N. Geographic gradients in body size: A clarification of Bergmann’s rule. Divers. Distrib. 1999, 5, 165–174. [Google Scholar] [CrossRef]
- Shelomi, M.; Zeuss, D. Bergmann’s and Allen’s Rules in Native European and Mediterranean Phasmatodea. Front. Ecol. EVolume 2017, 5, 1–13. [Google Scholar] [CrossRef]
- Meiri, S.; Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 2003, 30, 331–351. [Google Scholar] [CrossRef]
- Blanckenhorn, W.U.; Demont, M. Bergmann and converse bergmann latitudinal clines in arthropods: Two ends of a continuum? Integr. Comp. Biol. 2004, 44, 413–424. [Google Scholar] [CrossRef]
- Shelomi, M. Where are we now? Bergmann’s rule Sensu Lato in insects. Am. Nat. 2012, 180, 511–519. [Google Scholar] [CrossRef]
- Ray, C. The application of Bergmann’s and Allen’s rules to the poikilotherms. J. Morphol. 1960, 106, 85–108. [Google Scholar] [CrossRef] [PubMed]
- Belk, M.C.; Houston, D.D. Bergmann’s rule in ectotherms: A test using freshwater fishes. Am. Nat. 2002, 160, 803–808. [Google Scholar] [CrossRef]
- Ashton, K.G.; Feldman, C.R. Bergmann’s rule in nonavian reptiles: Turtles follow it, lizards and snakes reverse it. Evolution 2003, 57, 1151–1163. [Google Scholar] [CrossRef]
- Sanzana, M.J.; Parra, L.E.; Sepúlveda-Zúñiga, E.; Benítez, H.A. Latitudinal gradient effect on the wing geometry of Auca coctei (Guérin) (Lepidoptera, Nymphalidae). Rev. Bras. Entomol. 2013, 57, 411–416. [Google Scholar] [CrossRef]
- Bai, Y.; Dong, J.J.; Guan, D.L.; Xie, J.Y.; Xu, S.Q. Geographic variation in wing size and shape of the grasshopper Trilophidia annulata (Orthoptera: Oedipodidae): Morphological trait variations follow an ecogeographical rule. Sci. Rep. 2016, 6, 32680. [Google Scholar] [CrossRef]
- Johnson, D.S.; Crowley, C.; Longmire, K.; Nelson, J.; Williams, B.; Wittyngham, S. The fiddler crab, Minuca pugnax, follows Bergmann’s rule. Ecol. EVolume 2019, 9, 14489–14497. [Google Scholar] [CrossRef]
- Campbell, M.D.; Schoeman, D.S.; Venables, W.; Abu-Alhaija, R.; Batten, S.D.; Chiba, S.; Coman, F.; Davies, C.H.; Edwards, M.; Eriksen, R.S.; et al. Testing Bergmann’s rule in marine copepods. Ecography 2021, 44, 1283–1295. [Google Scholar] [CrossRef]
- Berke, S.K.; Jablonski, D.; Krug, A.Z.; Roy, K.; Tomasovych, A. Beyond Bergmann’s rule: Size-latitude relationships in marine Bivalvia world-wide. Glob. Ecol. Biogeogr. 2013, 22, 173–183. [Google Scholar] [CrossRef]
- Ibáñez, C.M.; Carter, M.J.; Aguilera, M.A.; Pardo-Gandarillas, M.C.; Rezende, E.L. Body size variation in polyplacophoran molluscs: Geographical clines and community structure along the south-eastern Pacific. Glob. Ecol. Biogeogr. 2021, 30, 1781–1795. [Google Scholar] [CrossRef]
- Zelditch, M.; Swiderski, D.; Sheets, H. Geometric Morphometrics for Biologists: A Primer, 2nd ed.; Academic Press: Cambridge, MA, USA, 2012; ISBN 9780123869036. [Google Scholar]
- Klingenberg, C.P.; Gidaszewski, N.A. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Syst. Biol. 2010, 59, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Bookstein, F.L. Morphometric Tools for Landmark Data: Geometry and Biology; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Klingenberg, C.P. Size, shape, and form: Concepts of allometry in geometric morphometrics. Dev. Genes EVolume 2016, 226, 113–137. [Google Scholar] [CrossRef] [PubMed]
- Bookstein, F.L. Landmark methods for forms without landmarks: Localizing group differences in outline shape. Med. Image Anal. 1996, 1, 225–243. [Google Scholar] [CrossRef]
- Benítez, H.A.; Püschel, T.A. Modelando la varianza de la forma: Morfometría geométrica aplicaciones en biología evolutiva. Int. J. Morphol. 2014, 32, 998–1008. [Google Scholar] [CrossRef]
- Rohlf, F.J. The tps series of software. Hystrix Ital. J. Mammal. 2015, 26, 9–12. [Google Scholar] [CrossRef]
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H. ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics; Springer-Verlag New York, USA, CRAN.R-project. 2016. Available online: https://github.com/tidyverse/ggplot2 (accessed on 15 April 2023).
- Schlager, S. Morpho and Rvcg—Shape Analysis in R. In Statistical Shape and Deformation Analysis; Zheng, G., Li, S., Szekely, G., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 217–256. ISBN 9780128104934. [Google Scholar]
- Adams, D.; Collyer, M.; Kaliontzopoulou, A.; Baken, E. Geomorph, Geometric Morphometric Analyses of 2D/3D Landmark Data. Version: 4.0.1; CRAN.R-project. 2021. Available online: https://github.com/geomorphR/geomorph (accessed on 15 April 2023).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation; CRAN.R-project. 2023. Available online: https://github.com/tidyverse/dplyr (accessed on 15 April 2023).
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 2006, 26, 32–46. [Google Scholar]
- Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [Google Scholar] [CrossRef]
- Maturi, E.; Harris, A.; Mittaz, J.; Sapper, J.; Wick, G.; Zhu, X.; Dash, P.; Koner, P. A new high-resolution sea surface temperature blended analysis. Bull. Am. Meteorol. Soc. 2017, 98, 1015–1026. [Google Scholar] [CrossRef]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Atkinson, D.; Sibly, R.M. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol. EVolume 1997, 12, 235–239. [Google Scholar] [CrossRef]
- Rollinson, N.; Rowe, L. Temperature-dependent oxygen limitation and the rise of Bergmann’s rule in species with aquatic respiration. Evolution 2018, 72, 977–988. [Google Scholar] [CrossRef] [PubMed]
- García-Ríos, C.I. Los Quitones de Puerto Rico; Isla Negra Editores: San Juan, Puerto Rico, 2003. [Google Scholar]
- Liuzzi, M.G. Polyplacophora. In Los Invertebrados Marinos; Calcagno, J.A., Ed.; Fundación de Historia Natural Félix de Azara: Buenos Aires, Argentina, 2014; pp. 119–131. [Google Scholar]
- Salewski, V.; Watt, C. Bergmann’s rule: A biophysiological rule examined in birds. Oikos 2017, 126, 161–172. [Google Scholar] [CrossRef]
- Camus, P.A.; Navarrete, A.H.; Sanhueza, Á.G.; Felipe Opazo, L. Trophic ecology of the chiton Acanthopleura echinata on Chilean rocky shores. Rev. Chil. Hist. Nat. 2012, 85, 123–135. [Google Scholar] [CrossRef]
- Lavín, M.F.; Marinone, S.G. An Overview of the Physical Oceanography of. In Nonlinear Processes in Geophysical Fluid Dynamics: A Tribute to the Scientific Work of Pedro Ripa; Velasco Fuentes, O.U., Sheinbaum, J., Ochoa, J., Eds.; Springer: Ensenada, México, 2003; pp. 173–204. [Google Scholar]
- Vinarski, M.V. On the applicability of Bergmann’s rule to ectotherms: The state of the art. Biol. Bull. Rev. 2014, 4, 232–242. [Google Scholar] [CrossRef]
- Angilletta, M.J.; Dunham, A.E. The Temperature-Size Rule in Ectotherms: Simple Evolutionary Explanations May Not Be General. Am. Nat. 2003, 162, 332–342. [Google Scholar] [CrossRef]
- Avila-Poveda, O.H. Annual change in morphometry and in somatic and reproductive indices of Chiton articulatus adults (Polyplacophora: Chitonidae) from Oaxaca, Mexican Pacific. Am. Malacol. Bull. 2013, 31, 65–74. [Google Scholar] [CrossRef]
- Angilletta, M.J. Temperature and the Life History. In Thermal Adaptation: A Theoretical and Empirical Synthesis; Angilletta, M.J., Ed.; Oxford University Press: New York, NY, USA, 2009; pp. 157–180. ISBN 9780198570875. [Google Scholar]
- Glynn, P.W. On the ecology of the Caribbean chitons Acanthopleura granulata Gmelin and Chiton tuberculatus Linné: Density, mortality, feeding, reproduction, and growth. Smithson. Contrib. Zool. 1970, 66, 1–21. [Google Scholar] [CrossRef]
- Atkinson, D. Temperature and Organism Size—A Biological Law for Ectotherms? Adv. Ecol. Res. 1994, 25, 1–58. [Google Scholar] [CrossRef]
- Stillwell, R.C. Are latitudinal clines in body size adaptive? Oikos 2010, 119, 1387–1390. [Google Scholar] [CrossRef] [PubMed]
- Arnett, A.E.; Gotelli, N.J. Bergmann’s rule in larval ant lions: Testing the starvation resistance hypothesis. Ecol. Entomol. 2003, 28, 645–650. [Google Scholar] [CrossRef]
- Reyes-Gómez, A.; Barrientos-Lujan, N.; Medina-Bautista, J.; Ramírez-Luna, S. Chitons from the coralline area of Oaxaca, Mexico (Polyplacophora). Boll. Malacol. 2010, 46, 110–124. [Google Scholar]
SS | MS | F | p | |
---|---|---|---|---|
Centroid size | 0.0090 | 0.009 | 20.04 | 0.001 ** |
Ecoregion | 0.0043 | 0.0021 | 4.84 | 0.001 ** |
Ecoregion * Centroid Size | 0.0012 | 0.0006 | 1.33 | 0.211 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-P, R.; Benítez, H.A.; Ornelas-García, C.P.; Correa, M.; Suazo, M.J.; Piñero, D. Bergmann’s Rule under Rocks: Testing the Influence of Latitude and Temperature on a Chiton from Mexican Marine Ecoregions. Biology 2023, 12, 766. https://doi.org/10.3390/biology12060766
Hernández-P R, Benítez HA, Ornelas-García CP, Correa M, Suazo MJ, Piñero D. Bergmann’s Rule under Rocks: Testing the Influence of Latitude and Temperature on a Chiton from Mexican Marine Ecoregions. Biology. 2023; 12(6):766. https://doi.org/10.3390/biology12060766
Chicago/Turabian StyleHernández-P, Raquel, Hugo A. Benítez, Claudia Patricia Ornelas-García, Margarita Correa, Manuel J. Suazo, and Daniel Piñero. 2023. "Bergmann’s Rule under Rocks: Testing the Influence of Latitude and Temperature on a Chiton from Mexican Marine Ecoregions" Biology 12, no. 6: 766. https://doi.org/10.3390/biology12060766
APA StyleHernández-P, R., Benítez, H. A., Ornelas-García, C. P., Correa, M., Suazo, M. J., & Piñero, D. (2023). Bergmann’s Rule under Rocks: Testing the Influence of Latitude and Temperature on a Chiton from Mexican Marine Ecoregions. Biology, 12(6), 766. https://doi.org/10.3390/biology12060766