Structural Adaptation of the Excitation–Contraction Coupling Apparatus in Calsequestrin1-Null Mice during Postnatal Development
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. CASQ1-Null Mice
2.2. Preparation of Homogenate Total Membranes, Electrophoresis, and Western Blot Analysis
2.3. Real-Time PCR
2.4. Preparation of Samples for Electron Microscopy (EM)
2.5. Immunohistochemistry
2.6. Measurements
2.7. Statistical Analysis
3. Results
3.1. CASQ Expression during Development in CASQ1-Null Mice
3.2. Morphological Features of the Sarcotubular System during the Maturation and Differentiation Process (from 1 Week to 4–6 Months of Age)
3.3. Disposition at the Junction of the Sarcomeric Proteins in WT and CASQ1-Null Mice
3.4. Junctional Protein Expression during Differentiation and Maturation Process in CASQ1-Null Fast-Twitch Fiber
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nishi, M.; Komazaki, S.; Kurebayashi, N.; Ogawa, Y.; Noda, T.; Iino, M.; Takeshima, H. Abnormal features in skeletal muscle from mice lacking mitsugumin29. J. Cell Biol. 1999, 147, 1473–1480. [Google Scholar] [PubMed]
- Ríos, E.; Ma, J.J.; González, A. The mechanical hypothesis of excitation-contraction (EC) coupling in skeletal muscle. J. Muscle Res. Cell Motil. 1991, 12, 127–135. [Google Scholar] [PubMed]
- Schneider, M.F. Control of calcium release in functioning skeletal muscle fibers. Annu. Rev. Physiol. 1994, 56, 463–484. [Google Scholar]
- Franzini-Armstrong, C.; Jorgensen, A.O. Structure and development of E-C coupling units in skeletal muscle. Annu. Rev. Physiol. 1994, 56, 509–534. [Google Scholar] [PubMed]
- Franzini-Armstrong, C. Simultaneous maturation of transverse tubules and sarcoplasmic reticulum during muscle differentiation in the mouse. Dev. Biol. 1991, 146, 353–363. [Google Scholar] [PubMed]
- Lainé, J.; Skoglund, G.; Fournier, E.; Tabti, N. Development of the excitation-contraction coupling machinery and its relation to myofibrillogenesis in human iPSC-derived skeletal myocytes. Skelet. Muscle 2018, 5, 1. [Google Scholar]
- Damiani, E.; Tarugi, P.; Calandra, S.; Margreth, A. Sequential expression during postnatal development of specific markers of junctional and free sarcoplasmic reticulum in chicken pectoralis muscle. Dev. Biol. 1992, 153, 102–114. [Google Scholar]
- Sacchetto, R.; Volpe, P.; Damiani, E.; Margreth, A. Postnatal development of rabbit fast-twitch skeletal muscle: Accumulation, isoform transition and fibre distribution of calsequestrin. J. Muscle Res. Cell Motil. 1993, 14, 646–653. [Google Scholar]
- Galbiati, F.; Razani, B.; Lisanti, M.P. Caveolae and caveolin-3 in muscular dystrophy. Trends Mol. Med. 2001, 7, 435–441. [Google Scholar]
- Lee, F.; Marcucci, M.; Daniell, L.; Pypaert, M.; Weisz, O.A.; Ochoa, G.; Farsad, K.; Wenk, M.R.; De Camilli, P. Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 2002, 297, 1193–1196. [Google Scholar] [PubMed] [Green Version]
- Brandt, N.R.; Franklin, G.; Brunschwig, J.P.; Caswell, A.H. The role of mitsugumin 29 in transverse tubules of rabbit skeletal muscle. Arch. Biochem. Biophys. 2001, 385, 406–409. [Google Scholar] [PubMed]
- Takeshima, H.; Komazaki, S.; Nishi, M.; Iino, M.; Kangawa, K. Junctophilins: A novel family of junctional membrane complex proteins. Mol. Cell 2000, 6, 11–22. [Google Scholar] [PubMed]
- Takeshima, H.; Hoshijima, M.; Song, L.S. Ca2+ microdomains organized by junctophilins. Cell Calcium 2015, 58, 349–356. [Google Scholar]
- Barone, V.; Randazzo, D.; Del Re, V.; Sorrentino, V.; Daniela Rossi, D. Organization of junctional sarcoplasmic reticulum proteins in skeletal muscle fibers. J. Muscle Res. Cell Motil. 2015, 36, 501–515. [Google Scholar] [PubMed]
- Ito, K.; Komazaki, S.; Sasamoto, K.; Yoshida, M.; Nishi, M.; Kitamura, K.; Takeshima, H. Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J. Cell Biol. 2001, 154, 1059–1067. [Google Scholar] [PubMed]
- Komazaki, S.; Ito, K.; Takeshima, H.; Nakamura, H. Deficiency of triad formation in developing skeletal muscle cells lacking junctophilin type 1. FEBS Lett. 2002, 524, 225–229. [Google Scholar] [CrossRef] [Green Version]
- Guo, A.; Zhang, X.; Iyer, V.R.; Chen, B.; Zhang, C.; Kutschke, W.J.; Weiss, R.M.; Franzini-Armstrong, C.; Song, L.S. Overexpression of junctophilin-2 does not enhance baseline function but attenuates heart failure development after cardiac stress. Proc. Natl. Acad. Sci. USA 2014, 111, 12240–12245. [Google Scholar]
- Sorrentino, V.; Volpe, P. Ryanodine receptors: How many, where and why? Trends Pharmacol. Sci. 1993, 14, 98–103. [Google Scholar]
- Sorrentino, V. The ryanodine receptor family of intracellular calcium release channels. Adv. Pharmacol. 1995, 33, 67–90. [Google Scholar]
- Block, B.A.; O’Brien, J.; Franck, J. The role of ryanodine receptor isoforms in the structure and function of the vertebrate triad. Soc. Gen. Physiol. Ser. 1996, 51, 47–65. [Google Scholar]
- Sutko, J.L.; Airey, J.A.; Welch, W.; Ruest, L. The pharmacology of ryanodine and related compounds. Pharmacol. Rev. 1997, 49, 53–98. [Google Scholar] [PubMed]
- Protasi, F.; Franzini-Armstrong, C.; Flucher, B.E. Coordinated incorporation of skeletal muscle dihydropyridine receptors and ryanodine receptors in peripheral couplings of BC3H1 cells. J. Cell Biol. 1997, 137, 859–870. [Google Scholar] [CrossRef]
- Rossi, D.; Simeoni, I.; Micheli, M.; Bootman, M.; Lipp, P.; Allen, P.D.; Sorrentino, V. RyR1 and RyR3 isoforms provide distinct intracellular Ca2+ signals in HEK 293 cells. J. Cell Sci. 2002, 115 Pt 12, 2497–2504. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Kelley, J.; Schmeisser, G.; Kobayashi, Y.M.; Jones, L.R. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J. Biol. Chem. 1997, 272, 23389–23397. [Google Scholar] [CrossRef] [Green Version]
- Murayama, T.; Kurebayashi, N.; Ogawa, Y. Role of Mg2+ in Ca2+-induced Ca2+ release through ryanodine receptors of frog skeletal muscle: Modulations by adenine nucleotides and caffeine. Biophys. J. 2000, 78, 1810–1824. [Google Scholar] [PubMed] [Green Version]
- MacLennan, D.H. Ca2+ signalling and muscle disease. Eur. J. Biochem. 2000, 267, 5291–5297. [Google Scholar] [CrossRef] [PubMed]
- Dirksen, R.T.; Avila, G. Distinct effects on Ca2+ handling caused by malignant hyperthermia and central core disease mutations in RyR1. Biophys. J. 2004, 87, 3193–3204. [Google Scholar] [CrossRef] [Green Version]
- MacLennan, D.H.; de Leon, S. Biosynthesis of sarcoplasmic reticulum proteins. Methods Enzymol. 1983, 96, 570–579. [Google Scholar]
- Campbell, K.P.; MacLennan, D.H.; Jorgensen, A.O.; Mintzer, M.C. Purification and characterization of calsequestrin from canine cardiac sarcoplasmic reticulum and identification of the 53,000 dalton glycoprotein. J. Biol. Chem. 1983, 258, 1197–1204. [Google Scholar] [CrossRef]
- Ikemoto, N.; Ronjat, M.; Mészáros, L.G.; Koshita, M. Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum. Biochemistry 1989, 28, 6764–6771. [Google Scholar]
- Beard, N.A.; Sakowska, M.M.; Dulhunty, A.F.; Laver, D.R. Calsequestrin is an inhibitor of skeletal muscle ryanodine receptor calcium release channels. Biophys. J. 2002, 82 Pt 1, 310–320. [Google Scholar] [CrossRef] [Green Version]
- Saito, A.; Seiler, S.; Chu, A.; Fleischer, S. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J. Cell Biol. 1984, 99, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Deshmukh, A.; Murgia, M.; Nagaraj, N.; Treebak, J.T.; Cox, J.; Mann, M. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors. Mol. Cell. Proteom. 2015, 14, 841–853. [Google Scholar] [CrossRef] [Green Version]
- Franzini-Armstrong, C.; Kenney, L.J.; Varriano-Marston, E. The structure of calsequestrin in triads of vertebrate skeletal muscle: A deep-etch study. J. Cell Biol. 1987, 105, 49–56. [Google Scholar]
- Damiani, E.; Volpe, P.; Margreth, A. Coexpression of two isoforms of calsequestrin in rabbit slow-twitch muscle. J. Muscle Res. Cell Motil. 1990, 11, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Paolini, C.; Quarta, M.; Nori, A.; Boncompagni, S.; Canato, M.; Volpe, P.; Allen, P.D.; Reggiani, C.; Protasi, F. Reorganized stores and impaired calcium handling in skeletal muscle of mice lacking calsequestrin-1. J. Physiol. 2007, 583 Pt 2, 767–784. [Google Scholar] [CrossRef]
- Paolini, C.; Quarta, M.; D’Onofrio, L.; Reggiani, C.; Protasi, F. Differential effect of calsequestrin ablation on structure and function of fast and slow skeletal muscle fibers. J. Biomed. Biotechnol. 2011, 2011, 634075. [Google Scholar] [CrossRef] [Green Version]
- Paolini, C.; Protasi, F.; Franzini-Armstrong, C. The relative position of RyR feet and DHPR tetrads in skeletal muscle. J. Mol. Biol. 2004, 342, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Airey, J.A.; Beck, C.F.; Murakami, K.; Tanksley, S.J.; Deerinck, T.J.; Ellisman, M.H.; Sutko, J.L. Identification and localization of two triad junctional foot protein isoforms in mature avian fast twitch skeletal muscle. J. Biol. Chem. 1990, 265, 14187–14194. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.R.; Suzuki, Y.J.; Wang, W.; Kobayashi, Y.M.; Ramesh, V.; Franzini-Armstrong, C.; Cleemann, L.; Morad, M. Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J. Clin. Investig. 1998, 101, 1385–1393. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, Y.M.; Jones, L.R. Identification of triadin 1 as the predominant triadin isoform expressed in mammalian myocardium. J. Biol. Chem. 1999, 274, 28660–28668. [Google Scholar] [CrossRef] [Green Version]
- Flucher, B.E.; Andrews, S.B.; Fleischer, S.; Marks, A.R.; Caswell, A.; Powell, J.A. Triad formation: Organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro. J. Cell Biol. 1993, 123, 1161–1174. [Google Scholar] [CrossRef] [PubMed]
- Takekura, H.; Sun, X.; Franzini-Armstrong, C. Development of the excitation-contraction coupling apparatus in skeletal muscle: Peripheral and internal calcium release units are formed sequentially. J. Muscle Res. Cell Motil. 1994, 15, 102–118. [Google Scholar] [PubMed]
- Block, B.A.; Imagawa, T.; Campbell, K.P.; Franzini-Armstrong, C. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J. Cell Biol. 1988, 107 Pt 2, 2587–2600. [Google Scholar] [CrossRef]
- Treves, S.; Vukcevic, M.; Maj, M.; Thurnheer, R.; Mosca, B.; Zorzato, F. Minor sarcoplasmic reticulum membrane components that modulate excitation-contraction coupling in striated muscles. J. Physiol. 2009, 587 Pt 13, 3071–3079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jayasinghe, I.D.; Clowsley, A.H.; Munro, M.; Hou, Y.; Crossman, D.J.; Soeller, C. Revealing T-Tubules in Striated Muscle with New Optical Super-Resolution Microscopy Techniques. Eur. J. Transl. Myol. 2014, 25, 4747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phimister, A.J.; Lango, J.; Lee, E.H.; Ernst-Russell, M.A.; Takeshima, H.; Ma, J.; Allen, P.D.; Pessah, I.N. Conformation-dependent stability of junctophilin 1 (JP1) and ryanodine receptor type 1 (RyR1) channel complex is mediated by their hyper-reactive thiols. J. Biol. Chem. 2007, 282, 8667–8677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, D.; Barone, V.; Giacomello, E.; Cusimano, V.; Sorrentino, V. The Sarcoplasmic Reticulum: An Organized Patchwork of Specialized Domains. Traffic 2008, 9, 1044–1049. [Google Scholar]
- Blood, P.D.; Voth, G.A. Direct observation of Bin/amphiphysin/Rvs (BAR) domain-induced membrane curvature by means of molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 2006, 103, 15068–15072. [Google Scholar] [CrossRef]
- Nicot, A.S.; Toussaint, A.; Tosch, V.; Kretz, C.; Wallgren-Pettersson, C.; Iwarsson, E.; Kingston, H.; Garnier, J.M.; Biancalana, V.; Oldfors, A.; et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat. Genet. 2007, 39, 1134–1139. [Google Scholar] [CrossRef]
EDL | No. Junction/100 μm2 | No. Multiple Junctions/100 μm2 | No. Longitudinal Junctions/100 μm2 | No. Oblique Junctions/100 μm2 | No. Transversal Triads/100 μm2 |
---|---|---|---|---|---|
WT 1 month | 106.2 (n = 118) | 1.7 ± 3.3 (1.6%) | 9.5 ± 11.9 (8.9%) | 11.50 ± 8.6 (10.8%) | 83.5 ± 27.1 (78.6%) |
CASQ1-null 1 month | 89.4 (n = 123) | 5.7 ± 6.5 * (6.3%) | 19.1 ± 10.1 * (21.4%) | 11.2 ± 7.1 (12.5%) | 53.4 ± 21.3 * (59.7%) |
CASQ1-null 4 month | 106.0 (n = 146) | 23.66 ± 4.8 * (22.0%) | 24.06 ± 11.1 * (22.7%) | 6.01 ± 2.0 (5.7%) | 52.3 ± 12.8 * (49.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murzilli, S.; Serano, M.; Pietrangelo, L.; Protasi, F.; Paolini, C. Structural Adaptation of the Excitation–Contraction Coupling Apparatus in Calsequestrin1-Null Mice during Postnatal Development. Biology 2023, 12, 1064. https://doi.org/10.3390/biology12081064
Murzilli S, Serano M, Pietrangelo L, Protasi F, Paolini C. Structural Adaptation of the Excitation–Contraction Coupling Apparatus in Calsequestrin1-Null Mice during Postnatal Development. Biology. 2023; 12(8):1064. https://doi.org/10.3390/biology12081064
Chicago/Turabian StyleMurzilli, Stefania, Matteo Serano, Laura Pietrangelo, Feliciano Protasi, and Cecilia Paolini. 2023. "Structural Adaptation of the Excitation–Contraction Coupling Apparatus in Calsequestrin1-Null Mice during Postnatal Development" Biology 12, no. 8: 1064. https://doi.org/10.3390/biology12081064
APA StyleMurzilli, S., Serano, M., Pietrangelo, L., Protasi, F., & Paolini, C. (2023). Structural Adaptation of the Excitation–Contraction Coupling Apparatus in Calsequestrin1-Null Mice during Postnatal Development. Biology, 12(8), 1064. https://doi.org/10.3390/biology12081064