d-Serine Increases Release of Acetylcholine in Rat Submandibular Glands
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Chemicals
2.3. Sample Preparation for the Tissues
2.4. Sample Preparation for Plasma and Saliva
2.5. Sample Preparation of Interstitial Fluids of Submandibular Glands
2.6. Derivatization of Amino Acids with Boc-l-Cys-OPA
2.7. HPLC System for Determination of d- and l-Enantiomers in the Plasma, Saliva, and Dialysate
2.8. In Situ Perfusion of Rat Submandibular Glands
2.9. Collection and Determination of Acethylcholine in Interstitial Fluids of Submandibular Glands
2.10. Statistical Analyses
3. Results
3.1. Time Course of the Changes in d- or l-Serine Level in Plasma and Submandibular Glands after Oral Administration
3.2. Effects of Oral Administration of d- or l-Serine on Salivary Secretion under Pilocarpine Stimulation
3.3. d- and l-Serine in Plasma, Saliva, and Interstitial Fluid
3.4. Effects of Perfusion of d-Serine into Submandibular Gland on Carbachol-Induced Salivary Secretion
3.5. Effects of In Vivo Infusion of d-Serine into Submandibular Gland on Acetylcholine Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Folorunso, O.O.; Harvey, T.L.; Brown, S.E.; Cruz, C.; Shahbo, E.; Ajjawi, I.; Balu, D.T. Forebrain expression of serine racemase during postnatal development. Neurochem. Int. 2021, 145, 104990. [Google Scholar] [CrossRef] [PubMed]
- Coyle, J.T.; Balu, D.; Wolosker, H. d-Serine, the Shape-Shifting NMDA Receptor Co-agonist. Neurochem. Res. 2020, 45, 1344–1353. [Google Scholar] [CrossRef]
- Ivanov, A.D.; Mothet, J.-P. The plastic d-serine signaling pathway: Sliding from neurons to glia and vice-versa. Neurosci. Lett. 2019, 689, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Wolosker, H.; Sheth, K.N.; Takahashi, M.; Mothet, J.-P.; Brady, R.O.; Ferris, C.D.; Snyder, S.H. Purification of serine racemase: Biosynthesis of the neuromodulator d-serine. Proc. Natl. Acad. Sci. USA 1999, 96, 721–725. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Oka, T.; Kawaguchi, M.; Hashimoto, A. MK-801 upregulates the expression of d-amino acid oxidase mRNA in rat brain. Mol. Brain Res. 2004, 131, 141–144. [Google Scholar] [CrossRef]
- Pollegioni, L.; Piubelli, L.; Sacchi, S.; Pilone, M.S.; Molla, G. Physiological functions of d-amino acid oxidases: From yeast to humans. Cell. Mol. Life Sci. 2007, 64, 1373–1394. [Google Scholar] [CrossRef]
- Pollegioni, L.; Sacchi, S. Metabolism of the neuromodulator d-serine. Cell. Mol. Life Sci. 2010, 67, 2387–2404. [Google Scholar] [CrossRef]
- Molla, G.; Sacchi, S.; Bernasconi, M.; Pilone, M.S.; Fukui, K.; Pollegioni, L. Characterization of human d-amino acid oxidase. FEBS Lett. 2006, 580, 2358–2364. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Kan, T.; Shirose, K.; Watanabe, M.; Matsuda, M.; Ito, K.; Kawaguchi, M. Free d-Amino Acids in Salivary Gland in Rat. Biology 2022, 11, 390. [Google Scholar] [CrossRef]
- Morikawa, A.; Hamase, K.; Inoue, T.; Konno, R.; Zaitsu, K. Alterations in d-amino acid levels in the brains of mice and rats after the administration of d-amino acids. Amino Acids 2007, 32, 13–20. [Google Scholar] [CrossRef]
- Cull-Candy, S.; Brickley, S.; Farrant, M. NMDA receptor subunits: Diversity, development and disease. Curr. Opin. Neurobiol. 2001, 11, 327–335. [Google Scholar] [CrossRef]
- von Engelhardt, J.; Coserea, I.; Pawlak, V.; Fuchs, E.C.; Köhr, G.; Seeburg, P.H.; Monyer, H. Excitotoxicity in vitro by NR2A- and NR2B-containing NMDA receptors. Neuropharmacology 2007, 53, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Sabel, B.A.; Sautter, J.; Stoehr, T.; Siliprandi, R. A behavioral model of excitotoxicity: Retinal degeneration, loss of vision, and subsequent recovery after intraocular NMDA administration in adult rats. Exp. Brain Res. 1995, 106, 93–105. [Google Scholar] [CrossRef]
- Dreyer, E.B.; Pan, Z.H.; Storm, S.; Lipton, S.A. Greater sensitivity of larger retinal ganglion cells to NMDA-mediated cell death. Neuroreport 1994, 5, 629–631. [Google Scholar] [CrossRef]
- Yago, M.D.; Mata, A.D.; Manas, M.; Singh, J. Effect of extracellular magnesium on nerve-mediated and acetylcholine-evoked in vitro amylase release in rat parotid gland tissue. Exp. Physiol. 2002, 87, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.J.; Oshima, T.; Attwell, D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 2000, 403, 316–321. [Google Scholar] [CrossRef]
- Liu, L.; Wong, T.P.; Pozza, M.F.; Lingenhoehl, K.; Wang, Y.; Sheng, M.; Auberson, Y.P.; Wang, Y.T. Role of NMDA Receptor Subtypes in Governing the Direction of Hippocampal Synaptic Plasticity. Science 2004, 304, 1021–1024. [Google Scholar] [CrossRef]
- Massey, P.V.; Johnson, B.E.; Moult, P.R.; Auberson, Y.P.; Brown, M.W.; Molnar, E.; Collingridge, G.L.; Bashir, Z.I. Differential Roles of NR2A and NR2B-Containing NMDA Receptors in Cortical Long-Term Potentiation and Long-Term Depression. J. Neurosci. 2004, 24, 7821–7828. [Google Scholar] [CrossRef] [PubMed]
- Baum, B.J. Neurotransmitter control of secretion. J. Dent. Res. 1987, 66, 628–632. [Google Scholar] [CrossRef]
- Nakamura, T.; Matsui, M.; Uchida, K.; Futatsugi, A.; Kusakawa, S.; Matsumoto, N.; Nakamura, K.; Manabe, T.; Taketo, M.M.; Mikoshiba, K. M(3) muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J. Physiol. 2004, 558, 561–575. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Shinomiya, T.; Takayasu, N.; Tsukamoto, H.; Kawaguchi, M.; Kobayashi, H.; Oka, T.; Hashimoto, A. Long-Term Treatment With Morphine Increases the d-Serine Content in the Rat Brain by Regulating the mRNA and Protein Expressions of Serine Racemase and d-Amino Acid Oxidase. J. Pharmacol. Sci. 2008, 107, 270–276. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Kawaguchi, M. In Vivo Monitoring of Acetylcholine Release from Nerve Endings in Salivary Gland. Biology 2021, 10, 351. [Google Scholar] [CrossRef] [PubMed]
- Okubo, M.; Kawaguchi, M. Rat submandibular gland perfusion method for clarifying inhibitory regulation of GABAA receptor. J. Pharmacol. Sci. 2013, 122, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Shida, T.; Kondo, E.; Ueda, Y.; Takai, N.; Yoshida, Y.; Araki, T.; Kiyama, H.; Tohyama, M. Role of amino acids in salivation and the localization of their receptors in the rat salivary gland. Mol. Brain Res. 1995, 33, 261–268. [Google Scholar] [CrossRef]
- Danysz, W.; Parsons, C.G. Glycine and N-methyl-d-aspartate receptors: Physiological significance and possible therapeutic applications. Pharmacol. Rev. 1998, 50, 597–664. [Google Scholar]
- Nishikawa, T. Metabolism and functional roles of endogenous d-serine in mammalian brains. Biol. Pharm. Bull. 2005, 28, 1561–1565. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Kobayashi, T.; Oka, T.; Kawaguchi, M.; Hashimoto, A. Distribution and MK-801-induced expression of serine racemase mRNA in rat brain by real-time quantitative PCR. Mol. Brain Res. 2004, 128, 90–94. [Google Scholar] [CrossRef]
- Wolosker, H.; Blackshaw, S.; Snyder, S.H. Serine racemase: A glial enzyme synthesizing d-serine to regulate glutamate-N-methyl-d-aspartate neurotransmission. Proc. Natl. Acad. Sci. USA 1999, 96, 13409–13414. [Google Scholar] [CrossRef]
- Chen, L.; Muhlhauser, M.; Yang, C.R. Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J. Neurophysiol 2003, 89, 691–703. [Google Scholar] [CrossRef]
- Choi, D.W.; Maulucci-Gedde, M.; Kriegstein, A.R. Glutamate neurotoxicity in cortical cell culture. J. Neurosci. 1987, 7, 357–368. [Google Scholar] [CrossRef]
- Lafon-Cazal, M.; Pietri, S.; Culcasi, M.; Bockaert, J. NMDA-dependent superoxide production and neurotoxicity. Nature 1993, 364, 535–537. [Google Scholar] [CrossRef]
- Xiong, Z.G.; Zhu, X.M.; Chu, X.P.; Minami, M.; Hey, J.; Wei, W.L.; MacDonald, J.F.; Wemmie, J.A.; Price, M.P.; Welsh, M.J.; et al. Neuroprotection in ischemia: Blocking calcium-permeable acid-sensing ion channels. Cell 2004, 118, 687–698. [Google Scholar] [CrossRef]
- Arundine, M.; Tymianski, M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell. Mol. Life Sci. 2004, 61, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Serratrice, N.; Lee, C.J.; Francois, F.; Sweedler, J.V.; Puel, J.L.; Mothet, J.P.; Ruel, J. Physiopathological Relevance of d-Serine in the Mammalian Cochlea. Front. Cell Neurosci. 2021, 15, 733004. [Google Scholar] [CrossRef]
- Blanchet, F.; Kemel, M.L.; Gauchy, C.; Desban, M.; Perez, S.; Glowinski, J. N-methyl-d-aspartate-evoked release of [3H]acetylcholine in striatal compartments of the rat: Regulatory roles of dopamine and GABA. Neuroscience 1997, 81, 113–127. [Google Scholar] [CrossRef]
- Bortz, D.M.; Upton, B.A.; Mikkelsen, J.D.; Bruno, J.P. Positive allosteric modulators of the α7 nicotinic acetylcholine receptor potentiate glutamate release in the prefrontal cortex of freely-moving rats. Neuropharmacology 2016, 111, 78–91. [Google Scholar] [CrossRef] [PubMed]
- Agha, K.A.; Abo-Dya, N.E.; Issahaku, A.R.; Agoni, C.; Soliman, M.E.S.; Abdel-Aal, E.H.; Abdel-Samii, Z.K.; Ibrahim, T.S. Novel Sunifiram-carbamate hybrids as potential dual acetylcholinesterase inhibitor and NMDAR co-agonist: Simulation-guided analogue design and pharmacological screening. J. Enzym. Inhib. Med. Chem. 2022, 37, 1241–1256. [Google Scholar] [CrossRef]
- Bouvier, G.; Larsen, R.S.; Rodriguez-Moreno, A.; Paulsen, O.; Sjostrom, P.J. Towards resolving the presynaptic NMDA receptor debate. Curr. Opin. Neurobiol. 2018, 51, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Miya, K.; Inoue, R.; Takata, Y.; Abe, M.; Natsume, R.; Sakimura, K.; Hongou, K.; Miyawaki, T.; Mori, H. Serine racemase is predominantly localized in neurons in mouse brain. J. Comp. Neurol. 2008, 510, 641–654. [Google Scholar] [CrossRef]
- Benneyworth, M.A.; Li, Y.; Basu, A.C.; Bolshakov, V.Y.; Coyle, J.T. Cell selective conditional null mutations of serine racemase demonstrate a predominate localization in cortical glutamatergic neurons. Cell Mol. Neurobiol. 2012, 32, 613–624. [Google Scholar] [CrossRef]
- Balu, D.T.; Takagi, S.; Puhl, M.D.; Benneyworth, M.A.; Coyle, J.T. d-serine and serine racemase are localized to neurons in the adult mouse and human forebrain. Cell Mol. Neurobiol. 2014, 34, 419–435. [Google Scholar] [CrossRef]
- Wu, S.Z.; Bodles, A.M.; Porter, M.M.; Griffin, W.S.; Basile, A.S.; Barger, S.W. Induction of serine racemase expression and d-serine release from microglia by amyloid beta-peptide. J. Neuroinflammation 2004, 1, 2. [Google Scholar] [CrossRef]
- Wu, S.; Barger, S.W. Induction of serine racemase by inflammatory stimuli is dependent on AP-1. Ann. N. Y. Acad. Sci. 2004, 1035, 133–146. [Google Scholar] [CrossRef]
- Kartvelishvily, E.; Shleper, M.; Balan, L.; Dumin, E.; Wolosker, H. Neuron-derived d-serine release provides a novel means to activate N-methyl-d-aspartate receptors. J. Biol. Chem. 2006, 281, 14151–14162. [Google Scholar] [CrossRef] [PubMed]
- Schell, M.J.; Molliver, M.E.; Snyder, S.H. d-serine, an endogenous synaptic modulator: Localization to astrocytes and glutamate-stimulated release. Proc. Natl. Acad. Sci. USA 1995, 92, 3948–3952. [Google Scholar] [CrossRef]
- Perez, E.J.; Tapanes, S.A.; Loris, Z.B.; Balu, D.T.; Sick, T.J.; Coyle, J.T.; Liebl, D.J. Enhanced astrocytic d-serine underlies synaptic damage after traumatic brain injury. J. Clin. Investig. 2017, 127, 3114–3125. [Google Scholar] [CrossRef]
- Koopman, F.; Vosters, J.; Roescher, N.; Broekstra, N.; Tak, P.; Vervoordeldonk, M. Cholinergic anti-inflammatory pathway in the non-obese diabetic mouse model. Oral Dis. 2015, 21, 858–865. [Google Scholar] [CrossRef]
- Proctor, G.B.; Carpenter, G.H. Regulation of salivary gland function by autonomic nerves. Auton Neurosci. 2007, 133, 3–18. [Google Scholar] [CrossRef]
- Papouin, T.; Dunphy, J.M.; Tolman, M.; Dineley, K.T.; Haydon, P.G. Septal Cholinergic Neuromodulation Tunes the Astrocyte-Dependent Gating of Hippocampal NMDA Receptors to Wakefulness. Neuron 2017, 94, 840–854.e7. [Google Scholar] [CrossRef] [PubMed]
- Zappettini, S.; Grilli, M.; Olivero, G.; Chen, J.; Padolecchia, C.; Pittaluga, A.; Tomé, A.R.; Cunha, R.A.; Marchi, M. Nicotinic α7 receptor activation selectively potentiates the function of NMDA receptors in glutamatergic terminals of the nucleus accumbens. Front. Cell. Neurosci. 2014, 8, 332. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Vijayaraghavan, S. Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores. Proc. Natl. Acad. Sci. USA 2001, 98, 4148–4153. [Google Scholar] [CrossRef]
- Shen, J.X.; Yakel, J.L. Functional α7 nicotinic ACh receptors on astrocytes in rat hippocampal CA1 slices. J. Mol. Neurosci. 2012, 48, 14–21. [Google Scholar] [CrossRef]
- Takata, N.; Mishima, T.; Hisatsune, C.; Nagai, T.; Ebisui, E.; Mikoshiba, K.; Hirase, H. Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J. Neurosci. 2011, 31, 18155–18165. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.S.; Paul, R.K.; Ramamoorthy, A.; Torjman, M.C.; Moaddel, R.; Bernier, M.; Wainer, I.W. Nicotinic acetylcholine receptor antagonists alter the function and expression of serine racemase in PC-12 and 1321N1 cells. Cell. Signal. 2013, 25, 2634–2645. [Google Scholar] [CrossRef] [PubMed]
- Buchholzer, M.L.; Klein, J. NMDA-induced acetylcholine release in mouse striatum: Role of NO synthase isoforms. J. Neurochem. 2002, 82, 1558–1560. [Google Scholar] [CrossRef]
- Rakovska, A.; Kiss, J.P.; Raichev, P.; Lazarova, M.; Kalfin, R.; Milenov, K. Somatostatin stimulates striatal acetylcholine release by glutamatergic receptors: An in vivo microdialysis study. Neurochem. Int. 2002, 40, 269–275. [Google Scholar] [CrossRef]
- Giovannini, M.G.; Camilli, F.; Mundula, A.; Pepeu, G. Glutamatergic regulation of acetylcholine output in different brain regions: A microdialysis study in the rat. Neurochem. Int. 1994, 25, 23–26. [Google Scholar] [CrossRef] [PubMed]
- Henselmans, J.M.L.; Stoof, J.C. Regional differences in the regulation of acetylcholine release upon D2 dopamine and N-methyl-d-aspartate receptor activation in rat nucleus accumbens and neostriatum. Brain Res. 1991, 566, 1–7. [Google Scholar] [CrossRef]
- Giovannini, M.G.; Camilli, F.; Mundula, A.; Bianchi, L.; Colivicchi, M.A.; Pepeu, G. Differential regulation by N-methyl-d-aspartate and non-N-methyl-d-aspartate receptors of acetylcholine release from the rat striatum in vivo. Neuroscience 1995, 65, 409–415. [Google Scholar] [CrossRef]
- Scatton, B.; Lehmann, J. N-methyl-C-aspartate-type receptors mediate striatal 3H-acetylcholine release evoked by excitatory amino acids. Nature 1982, 297, 422–424. [Google Scholar] [CrossRef]
- Moor, E.; Auth, F.; DeBoer, P.; Westerink, B.H. Septal and hippocampal glutamate receptors modulate the output of acetylcholine in hippocampus: A microdialysis study. J. Neurochem. 1996, 67, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Ransom, R.W.; Deschenes, N.L. Glycine modulation of NMDA-evoked release of [3H]acetylcholine and [3H]dopamine from rat striatal slices. Neurosci. Lett. 1989, 96, 323–328. [Google Scholar] [CrossRef]
- Sawaki, K.; Ouchi, K.; Sato, T.; Kawaguchi, M. Existence of gamma-aminobutyric acid and its biosynthetic and metabolic enzymes in rat salivary glands. Jpn. J. Pharmacol. 1995, 67, 359–363. [Google Scholar] [CrossRef]
- Kosuge, Y.; Kawaguchi, M.; Sawaki, K.; Okubo, M.; Shinomiya, T.; Sakai, T. Immunohistochemical study on GABAergic system in salivary glands. Eur. J. Pharmacol. 2009, 610, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, M. Coupling of benzodiazepine and GABA (A) receptors in the salivary glands is a factor of drug-induced xerostomia. Int. Acad. Biomed. Drug Res. 1996, 11, 291–296. [Google Scholar]
d-Ser | l-Ser | l-Glu | |
---|---|---|---|
plasma | 2.53 ± 0.25 | 217.45 ± 31.25 | 144.47 ± 10.63 |
saliva | 0.67 ± 0.35 | 57.86 ± 14.79 | 20.64 ± 5.02 |
interstitial fluids | 0.21 ± 0.01 | 5.81 ± 0.33 | 16.21 ± 3.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshikawa, M.; Okubo, M.; Shirose, K.; Kan, T.; Kawaguchi, M. d-Serine Increases Release of Acetylcholine in Rat Submandibular Glands. Biology 2023, 12, 1227. https://doi.org/10.3390/biology12091227
Yoshikawa M, Okubo M, Shirose K, Kan T, Kawaguchi M. d-Serine Increases Release of Acetylcholine in Rat Submandibular Glands. Biology. 2023; 12(9):1227. https://doi.org/10.3390/biology12091227
Chicago/Turabian StyleYoshikawa, Masanobu, Migiwa Okubo, Kosuke Shirose, Takugi Kan, and Mitsuru Kawaguchi. 2023. "d-Serine Increases Release of Acetylcholine in Rat Submandibular Glands" Biology 12, no. 9: 1227. https://doi.org/10.3390/biology12091227
APA StyleYoshikawa, M., Okubo, M., Shirose, K., Kan, T., & Kawaguchi, M. (2023). d-Serine Increases Release of Acetylcholine in Rat Submandibular Glands. Biology, 12(9), 1227. https://doi.org/10.3390/biology12091227