Current Research on Molecular Biomarkers for Colorectal Cancer in Stool Samples
Abstract
:Simple Summary
Abstract
1. Introduction: Colorectal Cancer Epidemiology and Risk Factors
2. Genetic and Epigenetic Biomarkers from Stool for CRC Diagnosis
3. Microbiome Analysis of Stool for CRC Diagnosis through Metagenomics
4. Analysis of RNA Molecules in Stool from CRC Patients
5. Proteomic Analysis of Stool in CRC
6. Metabolomic Analysis of Stool in CRC
7. Conclusions
8. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.; Arnold, M.; Gini, A.; Lorenzoni, V.; Cabasag, C.J.; Laversanne, M.; Vignat, J.; Ferlay, J.; Murphy, N.; Bray, F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023, 72, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Wang, C.; Bahadini, B.; Hajjar, G.; Fakih, M. Integrating Academic and Community Practices in the Management of Colorectal Cancer: The City of Hope Model. J. Clin. Med. 2020, 9, 1687. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.; Nicolas, A.; Ferrandez, A.; Lanas, A. Colorectal cancer population screening programs worldwide in 2016: An update. World J. Gastroenterol. 2017, 23, 3632–3642. [Google Scholar] [CrossRef] [PubMed]
- Fleming, M.; Ravula, S.; Tatishchev, S.F.; Wang, H.L. Colorectal carcinoma: Pathologic aspects. J. Gastrointest. Oncol. 2012, 3, 153–173. [Google Scholar] [CrossRef]
- Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr.; Kinzler, K.W. Cancer genome landscapes. Science 2013, 339, 1546–1558. [Google Scholar] [CrossRef]
- Yamagishi, H.; Kuroda, H.; Imai, Y.; Hiraishi, H. Molecular pathogenesis of sporadic colorectal cancers. Chin. J. Cancer 2016, 35, 4. [Google Scholar] [CrossRef]
- Ullah, I.; Yang, L.; Yin, F.T.; Sun, Y.; Li, X.H.; Li, J.; Wang, X.J. Multi-Omics Approaches in Colorectal Cancer Screening and Diagnosis, Recent Updates and Future Perspectives. Cancers 2022, 14, 5545. [Google Scholar] [CrossRef]
- Giglia, M.D.; Chu, D.I. Familial Colorectal Cancer: Understanding the Alphabet Soup. Clin. Colon Rectal Surg. 2016, 29, 185–195. [Google Scholar] [CrossRef]
- Samadder, N.J.; Smith, K.R.; Hanson, H.; Pimentel, R.; Wong, J.; Boucher, K.; Ahnen, D.; Singh, H.; Ulrich, C.M.; Burt, R.W.; et al. Increased Risk of Colorectal Cancer among Family Members of All Ages, Regardless of Age of Index Case at Diagnosis. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2015, 13, 2305–2311.e2. [Google Scholar] [CrossRef]
- Jasperson, K.W.; Tuohy, T.M.; Neklason, D.W.; Burt, R.W. Hereditary and familial colon cancer. Gastroenterology 2010, 138, 2044–2058. [Google Scholar] [CrossRef] [PubMed]
- Poulogiannis, G.; McIntyre, R.E.; Dimitriadi, M.; Apps, J.R.; Wilson, C.H.; Ichimura, K.; Luo, F.; Cantley, L.C.; Wyllie, A.H.; Adams, D.J.; et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice. Proc. Natl. Acad. Sci. USA 2010, 107, 15145–15150. [Google Scholar] [CrossRef] [PubMed]
- Sievers, C.K.; Grady, W.M.; Halberg, R.B.; Pickhardt, P.J. New insights into the earliest stages of colorectal tumorigenesis. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Poulogiannis, G.; Frayling, I.M.; Arends, M.J. DNA mismatch repair deficiency in sporadic colorectal cancer and Lynch syndrome. Histopathology 2010, 56, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Grady, W.M. Genetic testing for high-risk colon cancer patients. Gastroenterology 2003, 124, 1574–1594. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.E.; Bodor, J.N.; Puccini, A. Relationship between MLH1, PMS2, MSH2 and MSH6 gene-specific alterations and tumor mutational burden in 1057 microsatellite instability-high solid tumors. Int. J. Cancer 2020, 147, 2948–2956. [Google Scholar] [CrossRef]
- Shaukat, A.; Kahi, C.J.; Burke, C.A.; Rabeneck, L.; Sauer, B.G.; Rex, D.K. ACG Clinical Guidelines: Colorectal Cancer Screening 2021. Am. J. Gastroenterol. 2021, 116, 458–479. [Google Scholar] [CrossRef]
- Vacante, M.; Borzi, A.M.; Basile, F.; Biondi, A. Biomarkers in colorectal cancer: Current clinical utility and future perspectives. World J. Clin. Cases 2018, 6, 869–881. [Google Scholar] [CrossRef]
- Cubiella, J.; Clos-Garcia, M.; Alonso, C.; Martinez-Arranz, I.; Perez-Cormenzana, M.; Barrenetxea, Z.; Berganza, J.; Rodriguez-Llopis, I.; D’Amato, M.; Bujanda, L.; et al. Targeted UPLC-MS Metabolic Analysis of Human Faeces Reveals Novel Low-Invasive Candidate Markers for Colorectal Cancer. Cancers 2018, 10, 300. [Google Scholar] [CrossRef]
- Herring, E.; Tremblay, E.; McFadden, N.; Kanaoka, S.; Beaulieu, J.F. Multitarget Stool mRNA Test for Detecting Colorectal Cancer Lesions Including Advanced Adenomas. Cancers 2021, 13, 1228. [Google Scholar] [CrossRef]
- Ananthakrishnan, A.N.; Cagan, A.; Cai, T.; Gainer, V.S.; Shaw, S.Y.; Churchill, S.; Karlson, E.W.; Murphy, S.N.; Kohane, I.; Liao, K.P. Colonoscopy is associated with a reduced risk for colon cancer and mortality in patients with inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2015, 13, 322–329.e321. [Google Scholar] [CrossRef] [PubMed]
- Ramdzan, A.R.; Abd Rahim, M.A.; Mohamad Zaki, A.; Zaidun, Z.; Mohammed Nawi, A. Diagnostic Accuracy of FOBT and Colorectal Cancer Genetic Testing: A Systematic Review & Meta-Analysis. Ann. Glob. Health 2019, 85, 70. [Google Scholar] [CrossRef] [PubMed]
- Gold, A.; Choueiry, F.; Jin, N.; Mo, X.; Zhu, J. The Application of Metabolomics in Recent Colorectal Cancer Studies: A State-of-the-Art Review. Cancers 2022, 14, 725. [Google Scholar] [CrossRef] [PubMed]
- Erben, V.; Bhardwaj, M.; Schrotz-King, P.; Brenner, H. Metabolomics Biomarkers for Detection of Colorectal Neoplasms: A Systematic Review. Cancers 2018, 10, 246. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Xiang, Y.B.; Rothman, N.; Yu, D.; Li, H.L.; Yang, G.; Cai, H.; Ma, X.; Lan, Q.; Gao, Y.T.; et al. Prospective study of blood metabolites associated with colorectal cancer risk. Int. J. Cancer 2018, 143, 527–534. [Google Scholar] [CrossRef] [PubMed]
- Worheide, M.A.; Krumsiek, J.; Kastenmuller, G.; Arnold, M. Multi-omics integration in biomedical research—A metabolomics-centric review. Anal. Chim. Acta 2021, 1141, 144–162. [Google Scholar] [CrossRef]
- He, S.Y.; Li, Y.C.; Wang, Y.; Peng, H.L.; Zhou, C.L.; Zhang, C.M.; Chen, S.L.; Yin, J.F.; Lin, M. Fecal gene detection based on next generation sequencing for colorectal cancer diagnosis. World J. Gastroenterol. 2022, 28, 2920–2936. [Google Scholar] [CrossRef]
- Muller, H.M.; Oberwalder, M.; Fiegl, H.; Morandell, M.; Goebel, G.; Zitt, M.; Muhlthaler, M.; Ofner, D.; Margreiter, R.; Widschwendter, M. Methylation changes in faecal DNA: A marker for colorectal cancer screening? Lancet 2004, 363, 1283–1285. [Google Scholar] [CrossRef]
- Babaei, H.; Mohammadi, M.; Salehi, R. DNA methylation analysis of secreted frizzled-related protein 2 gene for the early detection of colorectal cancer in fecal DNA. Niger. Med. J. J. Niger. Med. Assoc. 2016, 57, 242–245. [Google Scholar] [CrossRef]
- Chang, E.; Park, D.I.; Kim, Y.J.; Kim, B.K.; Park, J.H.; Kim, H.J.; Cho, Y.K.; Sohn, C.I.; Jeon, W.K.; Kim, B.I.; et al. Detection of colorectal neoplasm using promoter methylation of ITGA4, SFRP2, and p16 in stool samples: A preliminary report in Korean patients. Hepato-Gastroenterology 2010, 57, 720–727. [Google Scholar]
- Huang, Z.; Li, L.; Wang, J. Hypermethylation of SFRP2 as a potential marker for stool-based detection of colorectal cancer and precancerous lesions. Dig. Dis. Sci. 2007, 52, 2287–2291. [Google Scholar] [CrossRef] [PubMed]
- Oberwalder, M.; Zitt, M.; Wontner, C.; Fiegl, H.; Goebel, G.; Zitt, M.; Kohle, O.; Muhlmann, G.; Ofner, D.; Margreiter, R.; et al. SFRP2 methylation in fecal DNA--a marker for colorectal polyps. Int. J. Color. Dis. 2008, 23, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Park, S.K.; Baek, H.L.; Yu, J.; Kim, J.Y.; Yang, H.J.; Jung, Y.S.; Choi, K.Y.; Kim, H.; Kim, H.O.; Jeong, K.U.; et al. Is methylation analysis of SFRP2, TFPI2, NDRG4, and BMP3 promoters suitable for colorectal cancer screening in the Korean population? Intest. Res. 2017, 15, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Liu, J.; Hu, H.; Guo, P.; Shan, Z.; Yang, H.; Wang, J.; Xiao, W.; Zhou, X. A novel panel of stool-based DNA biomarkers for early screening of colorectal neoplasms in a Chinese population. J. Cancer Res. Clin. Oncol. 2019, 145, 2423–2432. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.R.; Tang, D. Hypermethylated SFRP2 gene in fecal DNA is a high potential biomarker for colorectal cancer noninvasive screening. World J. Gastroenterol. 2008, 14, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhu, Y.Q.; Wu, Y.Q.; Zhang, P.; Qi, J. Detection of promoter hypermethylation of Wnt antagonist genes in fecal samples for diagnosis of early colorectal cancer. World J. Gastroenterol. 2014, 20, 6329–6335. [Google Scholar] [CrossRef]
- Amiot, A.; Mansour, H.; Baumgaertner, I.; Delchier, J.C.; Tournigand, C.; Furet, J.P.; Carrau, J.P.; Canoui-Poitrine, F.; Sobhani, I. The detection of the methylated Wif-1 gene is more accurate than a fecal occult blood test for colorectal cancer screening. PLoS ONE 2014, 9, e99233. [Google Scholar] [CrossRef]
- Itzkowitz, S.; Brand, R.; Jandorf, L.; Durkee, K.; Millholland, J.; Rabeneck, L.; Schroy, P.C., III; Sontag, S.; Johnson, D.; Markowitz, S.; et al. A simplified, noninvasive stool DNA test for colorectal cancer detection. Am. J. Gastroenterol. 2008, 103, 2862–2870. [Google Scholar] [CrossRef]
- Ahlquist, D.A.; Taylor, W.R.; Mahoney, D.W.; Zou, H.; Domanico, M.; Thibodeau, S.N.; Boardman, L.A.; Berger, B.M.; Lidgard, G.P. The stool DNA test is more accurate than the plasma septin 9 test in detecting colorectal neoplasia. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2012, 10, 272–277.e271. [Google Scholar] [CrossRef]
- Chen, W.-D.; Han, Z.J.; Skoletsky, J.; Olson, J.; Sah, J.; Myeroff, L.; Platzer, P.; Lu, S.; Dawson, D.; Willis, J.; et al. Detection in Fecal DNA of Colon Cancer–Specific Methylation of the Nonexpressed Vimentin Gene. JNCI J. Natl. Cancer Inst. 2005, 97, 1124–1132. [Google Scholar] [CrossRef]
- Pakbaz, B.; Jabinin, R.; Soltani, N.; Ayatollahi, H.; Farzanehfar, M.R. Quantitative study of vimentin gene methylation in stool samples for colorectal cancer screening. J. Adv. Pharm. Technol. Res. 2019, 10, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Shirahata, A.; Sakata, M.; Sakuraba, K.; Goto, T.; Mizukami, H.; Saito, M.; Ishibashi, K.; Kigawa, G.; Nemoto, H.; Sanada, Y.; et al. Vimentin methylation as a marker for advanced colorectal carcinoma. Anticancer Res. 2009, 29, 279–281. [Google Scholar]
- Xiao, Z.; Li, B.; Wang, G.; Zhu, W.; Wang, Z.; Lin, J.; Xu, A.; Wang, X. Validation of methylation-sensitive high-resolution melting (MS-HRM) for the detection of stool DNA methylation in colorectal neoplasms. Clin. Chim. Acta Int. J. Clin. Chem. 2014, 431, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.P.; Wang, J.; Gui, Y.L.; Zhu, Q.Q.; Xu, Z.W.; Li, J.S. Human stool vimentin, oncostatin M receptor and tissue factor pathway inhibitor 2 gene methylation analysis for the detection of colorectal neoplasms. Zhonghua Yi Xue Za Zhi 2011, 91, 2482–2484. [Google Scholar] [PubMed]
- Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget stool DNA testing for colorectal-cancer screening. N. Engl. J. Med. 2014, 370, 1287–1297. [Google Scholar] [CrossRef]
- Jin, S.; Ye, Q.; Hong, Y.; Dai, W.; Zhang, C.; Liu, W.; Guo, Y.; Zhu, D.; Zhang, Z.; Chen, S.; et al. A systematic evaluation of stool DNA preparation protocols for colorectal cancer screening via analysis of DNA methylation biomarkers. Clin. Chem. Lab. Med. 2020, 59, 91–99. [Google Scholar] [CrossRef]
- Melotte, V.; Lentjes, M.H.; van den Bosch, S.M.; Hellebrekers, D.M.; de Hoon, J.P.; Wouters, K.A.; Daenen, K.L.; Partouns-Hendriks, I.E.; Stessels, F.; Louwagie, J.; et al. N-Myc downstream-regulated gene 4 (NDRG4): A candidate tumor suppressor gene and potential biomarker for colorectal cancer. J. Natl. Cancer Inst. 2009, 101, 916–927. [Google Scholar] [CrossRef]
- Kisiel, J.B.; Yab, T.C.; Nazer Hussain, F.T.; Taylor, W.R.; Garrity-Park, M.M.; Sandborn, W.J.; Loftus, E.V.; Wolff, B.G.; Smyrk, T.C.; Itzkowitz, S.H.; et al. Stool DNA testing for the detection of colorectal neoplasia in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2013, 37, 546–554. [Google Scholar] [CrossRef]
- Loh, K.; Chia, J.A.; Greco, S.; Cozzi, S.J.; Buttenshaw, R.L.; Bond, C.E.; Simms, L.A.; Pike, T.; Young, J.P.; Jass, J.R.; et al. Bone morphogenic protein 3 inactivation is an early and frequent event in colorectal cancer development. Genes Chromosomes Cancer 2008, 47, 449–460. [Google Scholar] [CrossRef]
- Ahlquist, D.A. Multi-target stool DNA test: A new high bar for noninvasive screening. Dig. Dis. Sci. 2015, 60, 623–633. [Google Scholar] [CrossRef]
- Anand, S.; Liang, P.S. A Practical Overview of the Stool DNA Test for Colorectal Cancer Screening. Clin. Transl. Gastroenterol. 2022, 13, e00464. [Google Scholar] [CrossRef] [PubMed]
- Niu, F.; Wen, J.; Fu, X.; Li, C.; Zhao, R.; Wu, S.; Yu, H.; Liu, X.; Zhao, X.; Liu, S.; et al. Stool DNA Test of Methylated Syndecan-2 for the Early Detection of Colorectal Neoplasia. Cancer Epidemiol. Biomark. Prev. A Publ. Am. Assoc. Cancer Res. Cosponsored Am. Soc. Prev. Oncol. 2017, 26, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Oh, T.J.; Oh, H.I.; Seo, Y.Y.; Jeong, D.; Kim, C.; Kang, H.W.; Han, Y.D.; Chung, H.C.; Kim, N.K.; An, S. Feasibility of quantifying SDC2 methylation in stool DNA for early detection of colorectal cancer. Clin. Epigenet. 2017, 9, 126. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wang, D.; Yuan, T.; Fang, H.; Zhu, C.; Qin, J.; Xu, X.; Zhang, C.; Liu, J.; Zhang, Y.; et al. Novel DNA methylation biomarkers in stool and blood for early detection of colorectal cancer and precancerous lesions. Clin. Epigenet. 2023, 15, 26. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, S.; Wang, H.; Zheng, L.; Zhou, C.; Li, G.; Huang, R.; Wang, H.; Li, C.; Fan, X.; et al. Robust performance of a novel stool DNA test of methylated SDC2 for colorectal cancer detection: A multicenter clinical study. Clin. Epigenet. 2020, 12, 162. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Liu, X.; Liu, Y.; Li, H.; Ma, Y.; Li, S.; Zhu, Y.; Miao, J.; Xiong, S.; Fei, S.; et al. Aberrant DNA Methylation of SEPT9 and SDC2 in Stool Specimens as an Integrated Biomarker for Colorectal Cancer Early Detection. Front. Genet. 2020, 11, 643. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.C.; Wu, P.H.; Chen, Y.J.; Yang, C.H.; Huang, J.L.; Chou, Y.C.; Chang, P.K.; Wen, C.C.; Jao, S.W.; Huang, H.H.; et al. Using Comorbidity Pattern Analysis to Detect Reliable Methylated Genes in Colorectal Cancer Verified by Stool DNA Test. Genes 2021, 12, 1539. [Google Scholar] [CrossRef]
- Liu, X.; Wen, J.; Li, C.; Wang, H.; Wang, J.; Zou, H. High-Yield Methylation Markers for Stool-Based Detection of Colorectal Cancer. Dig. Dis. Sci. 2020, 65, 1710–1719. [Google Scholar] [CrossRef]
- Vega-Benedetti, A.F.; Loi, E.; Moi, L.; Orru, S.; Ziranu, P.; Pretta, A.; Lai, E.; Puzzoni, M.; Ciccone, L.; Casadei-Gardini, A.; et al. Colorectal Cancer Early Detection in Stool Samples Tracing CpG Islands Methylation Alterations Affecting Gene Expression. Int. J. Mol. Sci. 2020, 21, 4494. [Google Scholar] [CrossRef]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Bisht, V.; Nash, K.; Xu, Y.; Agarwal, P.; Bosch, S.; Gkoutos, G.V.; Acharjee, A. Integration of the Microbiome, Metabolome and Transcriptomics Data Identified Novel Metabolic Pathway Regulation in Colorectal Cancer. Int. J. Mol. Sci. 2021, 22, 5763. [Google Scholar] [CrossRef] [PubMed]
- Ternes, D.; Karta, J.; Tsenkova, M.; Wilmes, P.; Haan, S.; Letellier, E. Microbiome in Colorectal Cancer: How to Get from Meta-omics to Mechanism? Trends Microbiol. 2020, 28, 401–423. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Feng, Q.; Wong, S.H.; Zhang, D.; Liang, Q.Y.; Qin, Y.; Tang, L.; Zhao, H.; Stenvang, J.; Li, Y.; et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2017, 66, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Löwenmark, T.; Löfgren-Burström, A.; Zingmark, C.; Eklöf, V.; Dahlberg, M.; Wai, S.N.; Larsson, P.; Ljuslinder, I.; Edin, S.; Palmqvist, R. Parvimonas micra as a putative non-invasive faecal biomarker for colorectal cancer. Sci. Rep. 2020, 10, 15250. [Google Scholar] [CrossRef] [PubMed]
- Osman, M.A.; Neoh, H.M.; Ab Mutalib, N.S.; Chin, S.F.; Mazlan, L.; Raja Ali, R.A.; Zakaria, A.D.; Ngiu, C.S.; Ang, M.Y.; Jamal, R. Parvimonas micra, Peptostreptococcus stomatis, Fusobacterium nucleatum and Akkermansia muciniphila as a four-bacteria biomarker panel of colorectal cancer. Sci. Rep. 2021, 11, 2925. [Google Scholar] [CrossRef] [PubMed]
- Amitay, E.L.; Werner, S.; Vital, M.; Pieper, D.H.; Höfler, D.; Gierse, I.J.; Butt, J.; Balavarca, Y.; Cuk, K.; Brenner, H. Fusobacterium and colorectal cancer: Causal factor or passenger? Results from a large colorectal cancer screening study. Carcinogenesis 2017, 38, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Zeller, G.; Tap, J.; Voigt, A.Y.; Sunagawa, S.; Kultima, J.R.; Costea, P.I.; Amiot, A.; Bohm, J.; Brunetti, F.; Habermann, N.; et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol. Syst. Biol. 2014, 10, 766. [Google Scholar] [CrossRef]
- Suehiro, Y.; Sakai, K.; Nishioka, M.; Hashimoto, S.; Takami, T.; Higaki, S.; Shindo, Y.; Hazama, S.; Oka, M.; Nagano, H.; et al. Highly sensitive stool DNA testing of Fusobacterium nucleatum as a marker for detection of colorectal tumours in a Japanese population. Ann. Clin. Biochem. 2017, 54, 86–91. [Google Scholar] [CrossRef]
- Yang, Y.; Misra, B.B.; Liang, L.; Bi, D.; Weng, W.; Wu, W.; Cai, S.; Qin, H.; Goel, A.; Li, X.; et al. Integrated microbiome and metabolome analysis reveals a novel interplay between commensal bacteria and metabolites in colorectal cancer. Theranostics 2019, 9, 4101–4114. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, S.; Xu, W.; Chen, Q.; Chen, Z.; Yan, C.; Fan, Y.; Zhang, H.; Liu, Q.; Yang, J.; et al. Leveraging Fecal Bacterial Survey Data to Predict Colorectal Tumors. Front. Genet. 2019, 10, 447. [Google Scholar] [CrossRef]
- Chang, H.; Mishra, R.; Cen, C.; Tang, Y.; Ma, C.; Wasti, S.; Wang, Y.; Ou, Q.; Chen, K.; Zhang, J. Metagenomic Analyses Expand Bacterial and Functional Profiling Biomarkers for Colorectal Cancer in a Hainan Cohort, China. Curr. Microbiol. 2021, 78, 705–712. [Google Scholar] [CrossRef] [PubMed]
- Rezasoltani, S.; Asadzadeh Aghdaei, H.; Dabiri, H.; Akhavan Sepahi, A.; Modarressi, M.H.; Nazemalhosseini Mojarad, E. The association between fecal microbiota and different types of colorectal polyp as precursors of colorectal cancer. Microb. Pathog. 2018, 124, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jiao, N.; Zhu, R.; Zhang, Y.; Wu, D.; Wang, A.J.; Fang, S.; Tao, L.; Li, Y.; Cheng, S.; et al. Identification of microbial markers across populations in early detection of colorectal cancer. Nat. Commun. 2021, 12, 3063. [Google Scholar] [CrossRef] [PubMed]
- Kharofa, J.; Apewokin, S. Metagenomic analysis of the fecal microbiome in colorectal cancer patients compared to healthy controls as a function of age. Cancer Med. 2023, 12, 2945–2957. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Peng, Y.; Yu, J.; Chen, T.; Wu, Y.; Shi, L.; Li, Q.; Wu, J.; Fu, X. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget 2017, 8, 31802–31814. [Google Scholar] [CrossRef]
- Hashemi Goradel, N.; Heidarzadeh, S.; Jahangiri, S.; Farhood, B.; Mortezaee, K.; Khanlarkhani, N.; Negahdari, B. Fusobacterium nucleatum and colorectal cancer: A mechanistic overview. J. Cell. Physiol. 2019, 234, 2337–2344. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Vos, P. Molecular markers for human colon cancer in stool and blood identified by RT-PCR. Anticancer Res. 2004, 24, 4127–4134. [Google Scholar]
- Hamaya, Y.; Yoshida, K.; Takai, T.; Ikuma, M.; Hishida, A.; Kanaoka, S. Factors that contribute to faecal cyclooxygenase-2 mRNA expression in subjects with colorectal cancer. Br. J. Cancer 2010, 102, 916–921. [Google Scholar] [CrossRef]
- Beaulieu, J.F.; Herring, E.; Kanaoka, S.; Tremblay, É. Use of integrin alpha 6 transcripts in a stool mRNA assay for the detection of colorectal cancers at curable stages. Oncotarget 2016, 7, 14684–14692. [Google Scholar] [CrossRef]
- Herring, E.; Kanaoka, S.; Tremblay, E.; Beaulieu, J.F. Droplet digital PCR for quantification of ITGA6 in a stool mRNA assay for the detection of colorectal cancers. World J. Gastroenterol. 2017, 23, 2891–2898. [Google Scholar] [CrossRef]
- Shang, R.; Lee, S.; Senavirathne, G.; Lai, E.C. microRNAs in action: Biogenesis, function and regulation. Nat. Rev. Genet. 2023, 24, 816–833. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.E.; Jeffries, C.D.; Vos, P.W.; Flake, G.; Nuovo, G.J.; Sinar, D.R.; Naziri, W.; Marcuard, S.P. Diagnostic microRNA markers for screening sporadic human colon cancer and active ulcerative colitis in stool and tissue. Cancer Genom. Proteom. 2009, 6, 281–295. [Google Scholar]
- Ahmed, F.E.; Ahmed, N.C.; Vos, P.W.; Bonnerup, C.; Atkins, J.N.; Casey, M.; Nuovo, G.J.; Naziri, W.; Wiley, J.E.; Mota, H.; et al. Diagnostic microRNA markers to screen for sporadic human colon cancer in stool: I. Proof of principle. Cancer Genom. Proteom. 2013, 10, 93–113. [Google Scholar]
- Bastaminejad, S.; Taherikalani, M.; Ghanbari, R.; Akbari, A.; Shabab, N.; Saidijam, M. Investigation of MicroRNA-21 Expression Levels in Serum and Stool as a Potential Non-Invasive Biomarker for Diagnosis of Colorectal Cancer. Iran. Biomed. J. 2017, 21, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.H.; Cho, Y.S.; Choi, J.H.; Kim, H.K.; Kim, S.S.; Chae, H.S. Stool-Based miR-92a and miR-144* as Noninvasive Biomarkers for Colorectal Cancer Screening. Oncology 2019, 97, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.Y.; Chen, C.C.; Chang, Y.S.; Tsai, W.S.; You, J.F.; Lin, G.P.; Chen, T.W.; Chen, J.S.; Chan, E.C. MicroRNA-223 and microRNA-92a in stool and plasma samples act as complementary biomarkers to increase colorectal cancer detection. Oncotarget 2016, 7, 10663–10675. [Google Scholar] [CrossRef] [PubMed]
- Phua, L.C.; Chue, X.P.; Koh, P.K.; Cheah, P.Y.; Chan, E.C.; Ho, H.K. Global fecal microRNA profiling in the identification of biomarkers for colorectal cancer screening among Asians. Oncol. Rep. 2014, 32, 97–104. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, A.; Li, J.; Fu, J.; Wang, G.; Yang, Y.; Cui, L.; Sun, J. Fecal miR-29a and miR-224 as the noninvasive biomarkers for colorectal cancer. Cancer Biomark. Sect. A Dis. Markers 2016, 16, 259–264. [Google Scholar] [CrossRef]
- Duran-Sanchon, S.; Moreno, L.; Auge, J.M.; Serra-Burriel, M.; Cuatrecasas, M.; Moreira, L.; Martin, A.; Serradesanferm, A.; Pozo, A.; Costa, R.; et al. Identification and Validation of MicroRNA Profiles in Fecal Samples for Detection of Colorectal Cancer. Gastroenterology 2020, 158, 947–957. [Google Scholar] [CrossRef]
- Gharib, E.; Nazemalhosseini-Mojarad, E. Identification of a stool long non-coding RNAs panel as a potential biomarker for early detection of colorectal cancer. J. Clin. Lab. Anal. 2021, 35, e23601. [Google Scholar] [CrossRef]
- Boja, E.S.; Rodriguez, H. Proteogenomic convergence for understanding cancer pathways and networks. Clin. Proteom. 2014, 11, 22. [Google Scholar] [CrossRef] [PubMed]
- Bosch, L.J.W.; de Wit, M.; Pham, T.V.; Coupe, V.M.H.; Hiemstra, A.C.; Piersma, S.R.; Oudgenoeg, G.; Scheffer, G.L.; Mongera, S.; Sive Droste, J.T.; et al. Novel Stool-Based Protein Biomarkers for Improved Colorectal Cancer Screening: A Case-Control Study. Ann. Intern. Med. 2017, 167, 855–866. [Google Scholar] [CrossRef] [PubMed]
- Ning, C.; Li, Y.Y.; Wang, Y.; Han, G.C.; Wang, R.X.; Xiao, H.; Li, X.Y.; Hou, C.M.; Ma, Y.F.; Sheng, D.S.; et al. Complement activation promotes colitis-associated carcinogenesis through activating intestinal IL-1β/IL-17A axis. Mucosal Immunol. 2015, 8, 1275–1284. [Google Scholar] [CrossRef] [PubMed]
- Komor, M.A.; Bosch, L.J.; Coupé, V.M.; Rausch, C.; Pham, T.V.; Piersma, S.R.; Mongera, S.; Mulder, C.J.; Dekker, E.; Kuipers, E.J.; et al. Proteins in stool as biomarkers for non-invasive detection of colorectal adenomas with high risk of progression. J. Pathol. 2020, 250, 288–298. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, X.; Yang, X.; Jiang, Y.; Li, A.; Cong, J.; Li, Y.; Xie, Q.; Xu, C.; Liu, D. Identification of faecal extracellular vesicles as novel biomarkers for the non-invasive diagnosis and prognosis of colorectal cancer. J. Extracell. Vesicles 2023, 12, e12300. [Google Scholar] [CrossRef]
- Clish, C.B. Metabolomics: An emerging but powerful tool for precision medicine. Cold Spring Harb. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef]
- Song, E.M.; Byeon, J.S. Fecal Fatty Acid Profiling as a Potential New Screening Biomarker in Patients with Colorectal Cancer. Dig. Dis. Sci. 2018, 63, 1229–1236. [Google Scholar] [CrossRef]
- Brown, D.G.; Rao, S.; Weir, T.L.; O’Malia, J.; Bazan, M.; Brown, R.J.; Ryan, E.P. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016, 4, 11. [Google Scholar] [CrossRef]
- Lin, Y.; Ma, C.; Bezabeh, T.; Wang, Z.; Liang, J.; Huang, Y.; Zhao, J.; Liu, X.; Ye, W.; Tang, W.; et al. 1H NMR-based metabolomics reveal overlapping discriminatory metabolites and metabolic pathway disturbances between colorectal tumor tissues and fecal samples. Int. J. Cancer 2019, 145, 1679–1689. [Google Scholar] [CrossRef]
- Nannini, G.; Meoni, G.; Tenori, L.; Ringressi, M.N.; Taddei, A.; Niccolai, E.; Baldi, S.; Russo, E.; Luchinat, C.; Amedei, A. Fecal metabolomic profiles: A comparative study of patients with colorectal cancer vs adenomatous polyps. World J. Gastroenterol. 2021, 27, 6430–6441. [Google Scholar] [CrossRef]
- Clos-Garcia, M.; Garcia, K.; Alonso, C.; Iruarrizaga-Lejarreta, M.; D’Amato, M.; Crespo, A.; Iglesias, A.; Cubiella, J.; Bujanda, L.; Falcon-Perez, J.M. Integrative Analysis of Fecal Metagenomics and Metabolomics in Colorectal Cancer. Cancers 2020, 12, 1142. [Google Scholar] [CrossRef] [PubMed]
Gene | Study Population | Methodology | References |
---|---|---|---|
Mutation | |||
TP53 | Chinese | NGS | [27] |
APC | Chinese | NGS | [27] |
KRAS | Chinese | NGS | [27] |
Hypermethylation | |||
SFRP2 | Austrian | MethyLight | [28] |
Korean | Methylation-specific PCR | [30] | |
Chinese | Methylation-specific PCR | [31] | |
Austrian | MethyLight | [32] | |
Chinese | MethyLight | [34] | |
Chinese | MethyLight | [35] | |
Chinese | Methylation-specific PCR | [36] | |
Korean | Methylation-specific PCR | [33] | |
Iranian | Methylation-specific PCR | [29] | |
VIM | American | Methylation-specific PCR | [38] |
American | Methylation-specific PCR | [37] | |
Chinese | Methylation-specific PCR | [43] | |
Chinese | Methylation-specific PCR | [44] | |
American | Methylation-specific PCR | [39] | |
NDRG4 | American | Methylation-specific PCR | [39] |
American; Canadian | Methylation-specific PCR | [45] | |
Chinese | Methylation-specific PCR | [46] | |
Belgian | Methylation-specific PCR | [47] | |
Korean | Methylation-specific PCR | [33] | |
American | Methylation-specific PCR | [48] | |
BMP3 | American | Methylation-specific PCR | [39] |
American; Canadian | Methylation-specific PCR | [45] | |
American | Methylation-specific PCR | [48] | |
Korean | Methylation-specific PCR | [33] | |
SDC2 | Chinese | MethyLight | [34] |
Chinese | Methylation-specific PCR | [46] | |
Chinese | MethyLight | [52] | |
Korean | Methylation-specific PCR | [53] | |
Chinese | Methylation-specific PCR | [56] | |
Chinese | Methylation-specific PCR | [55] | |
Taiwanese | Methylation-specific PCR | [57] | |
Chinese | Methylation-specific PCR | [54] | |
COL4A1 | Chinese | Methylation-specific PCR | [58] |
COL4A2 | Chinese | Methylation-specific PCR | [58] |
TLX2 | Chinese | Methylation-specific PCR | [58] |
ITGA4 | Chinese | Methylation-specific PCR | [58] |
Korean | Methylation-specific PCR | [30] | |
WIF1 | Chinese | Methylation-specific PCR | [36] |
American | Methylation-specific PCR | [37] | |
GRIA4 | Italian | MethyLight | [59] |
VIPR2 | Italian | MethyLight | [59] |
SFRP5 | Austrian | MethyLight | [28] |
PGR | Austrian | MethyLight | [28] |
CALCA | Austrian | MethyLight | [28] |
IGFBP2 | Austrian | MethyLight | [28] |
TFPI2 | American | Methylation-specific PCR | [39] |
Korean | Methylation-specific PCR | [33] | |
Chinese | Methylation-specific PCR | [36] | |
p16 | Korean | Methylation-specific PCR | [30] |
KRAS | Chinese | MethyLight | [34] |
American | Methylation-specific PCR | [39] | |
ALX4 | American | Methylation-specific PCR | [37] |
OMSR | Chinese | Methylation-specific PCR | [36] |
ADHFE1 | Taiwanese | Methylation-specific PCR | [57] |
PPP2R5C | Taiwanese | Methylation-specific PCR | [57] |
SHOX2 | Chinese | Methylation-specific PCR | [54] |
Bacteria | Study Population | CRC Stage | References |
---|---|---|---|
Fusobacterium nucleatum | Chinese, Danish, French, Austrian | CRC | [63] |
German | CRC | [66] | |
German | CRC | [67] | |
Japanese | CRC | [68] | |
Swedish | CRC | [64] | |
Chinese | CRC | [69] | |
Chinese, American, Irish, Italian, Canadian, Spanish | CRC | [70] | |
Chinese | CRC | [71] | |
Iranian | AD | [72] | |
Austrian, Canadian, Chinese, German, French, Indian, Italian, Japanese, American | CRC | [74] | |
Parvimonas micra | Chinese, Danish, French, Austrian | CRC | [63] |
Swedish | CRC | [64] | |
Malay, Chinese and Indian | CRC | [65] | |
Chinese | CRC | [71] | |
American, Canadian, Chinese | CRC | [73] | |
Peptostreptococcus stomatis | Malay, Chinese and Indian | CRC | [65] |
Akkermansia muciniphila | Malay, Chinese and Indian | CRC | [65] |
Echerichia/Shigella | Chinese, American, Irish, Italian, Canadian, Spanish | CRC | [70] |
Coriobacteriaceae bacterium | Chinese | CRC | [71] |
Gemella morbillorum | Chinese | CRC | [71] |
Citrobacter portucalensis | Chinese | CRC | [71] |
Alloprevotella sp. | Chinese | CRC | [71] |
Shigella sonei | Chinese | CRC | [71] |
Enterococcus fecalis | Iranian | AD | [72] |
Streptococcus bovis | Iranian | AD | [72] |
Enterotoxigenic Bacteroides fragilis | Iranian | AD | [72] |
Porphyromonas sp. | Iranian | AD | [72] |
American, Canadian, Chinese | CRC | [73] | |
Clostridium scindens | American, Canadian, Chinese | CRC | [73] |
Blautia sp. | American, Canadian, Chinese | CRC | [73] |
Eubacterium coprostanoligenes group sp. | American, Canadian, Chinese | CRC | [73] |
Ruminococaceae UCG-002 sp. | American, Canadian, Chinese | CRC | [73] |
Bacteroides dorei | American, Canadian, Chinese | AD | [73] |
Eubacterium ruminantium | American, Canadian, Chinese | AD | [73] |
Erysipelatoclostridium ramosum | American, Canadian, Chinese | AD | [73] |
Lachnospira pectinoschiza | American, Canadian, Chinese | AD | [73] |
Potential Biomarker | Study Population | CRC Stage | References |
---|---|---|---|
mRNA | |||
GCC | American | CRC | [77] |
CEA | American | CRC | [77] |
Japanese | CRC | [78] | |
PYPAF5 | American | CRC | [77] |
H1F1 | American | CRC | [77] |
TAX1BP2 | American | CRC | [77] |
OR2I4P | American | CRC | [77] |
OR2A7 | American | CRC | [77] |
FIZZ1 | American | CRC | [77] |
B2M | Japanese | CRC | [78] |
E-CAD | Japanese | CRC | [78] |
CD45 | Japanese | CRC | [78] |
COX-2 | Japanese | CRC | [78] |
ITGA6 | Japanese | AD, CRC | [79] |
Japanese, Canadian | AD | [20,80] | |
GADD45B | Japanese, Canadian | CRC | [20] |
ITGA2 | Japanese, Canadian | CRC | [20] |
MYBL2 | Japanese, Canadian | CRC | [20] |
MYC | Japanese, Canadian | CRC | [20] |
PTGS2 | Japanese, Canadian | CRC | [20] |
S100A4 | Japanese, Canadian | CRC | [20] |
CEACAM5 | Japanese, Canadian | AD | [20] |
MACC1 | Japanese, Canadian | AD | [20] |
miRNA | |||
miR-7 | American | ↑CRC | [83] |
miR-9 | American | ↓CRC | [83] |
miR-16 | American | ↓CRC | [82] |
miR-17 | American | ↑CRC | [83] |
miR-20a | American | ↑CRC | [82] |
American | ↑CRC | [83] | |
miR-21 | American | ↑CRC | [82] |
American | ↑CRC | [83] | |
Iranian | ↑CRC | [84] | |
Korean | ↑CRC | [85] | |
miR-27a-3p | Spanish | ↑AD ↑CRC | [89] |
miR-29a | Chinese | ↓CRC | [88] |
miR-29b | American | ↓CRC | [83] |
miR-92 | American | ↑CRC | [82] |
miR-92a | Taiwanese | ↑CRC | [86] |
Korean | ↑CRC | [85] | |
American | ↑CRC | [83] | |
miR-96 | American | ↑CRC | [82] |
American | ↑CRC | [83] | |
miR-106a | American | ↑CRC | [82] |
American | ↑CRC | [83] | |
miR-125b | American | ↓CRC | [82] |
miR-126 | American | ↓CRC | [82] |
miR-127-5p | American | ↓CRC | [83] |
miR-130b-3p | Spanish | ↑AD ↑CRC | [89] |
miR-134 | American | ↑CRC | [83] |
miR-138 | American | ↓CRC | [83] |
miR-143 | American | ↓CRC | [82] |
American | ↓CRC | [83] | |
miR-145 | American | ↓CRC | [82] |
miR-183 | American | ↑CRC | [83] |
miR-196a | American | ↑CRC | [83] |
miR-199a-3p | American | ↑CRC | [83] |
miR-203 | American | ↑CRC | [82] |
miR-214 | American | ↑CRC | [83] |
miR-222 | American | ↓CRC | [83] |
miR-223 | Taiwanese | ↑CRC | [86] |
Chinese | ↑CRC | [87] | |
Chinese | ↓CRC | [88] | |
miR-224 | Chinese | ↓CRC | [88] |
miR-320 | American | ↓CRC | [82] |
miR-326 | American | ↑CRC | [82] |
miR-421 | Spanish | ↑AD ↑CRC | [89] |
miR-451 | Chinese | ↑CRC | [87] |
miR-484-5p | American | ↓CRC | [82] |
miR-938 | American | ↓CRC | [83] |
lncRNA | |||
PCAT1 | Iranian | ↑CRC | [90] |
CCAT1 | Iranian | ↑CRC | [90] |
CCAT2 | Iranian | ↑CRC | [90] |
TUSC7 | Iranian | ↑CRC | [90] |
H19 | Iranian | ↑CRC | [90] |
HOTAIR | Iranian | ↑CRC | [90] |
HULC | Iranian | ↑CRC | [90] |
PTENP1 | Iranian | ↑CRC | [90] |
MALAT1 | Iranian | ↑CRC | [90] |
MEG3 | Iranian | ↑CRC | [90] |
Potential Biomarker | Study Population | CRC Stage | References |
---|---|---|---|
AZU1 | German | ↑AD ↑CRC | [92] |
C3 | German | ↑CRC | [92] |
C5 | German | ↑CRC | [92] |
CDA | German | ↑CRC | [92] |
MPO | German | ↑AD ↑CRC | [92] |
FN1 | German | ↑CRC | [92] |
German, Dutch | ↑CRC | [94] | |
LTF | German | ↑AD ↑CRC | [92] |
HP | German | ↑CRC | [92] |
German, Dutch | ↑AD ↑CRC | [94] | |
HBB | German | ↑CRC | [92] |
HBA1 | German | ↑CRC | [92] |
RBP4 | German | ↑CRC | [92] |
German, Dutch | ↑CRC | [94] | |
HPX | German | ↑AD | [92] |
SERPINF12 | German | ↑AD | [92] |
LAMP1 | German, Dutch | ↑AD | [94] |
SYNE2 | German, Dutch | ↑AD | [94] |
ANXA6 | German, Dutch | ↑AD | [94] |
LRG1 | German, Dutch | ↑CRC | [94] |
CD147 | Chinese | ↑CRC | [95] |
A33 | Chinese | ↑CRC | [95] |
Potential Biomarker | Study Population | CRC Stage | References |
---|---|---|---|
Alpha-hydroxyisovalerate | American | ↑CRC | [98] |
Isovalerate | American | ↑CRC | [98] |
Valerate | American | ↑CRC | [98] |
N1-methyl-2-pyridine-5-carboxamide | American | ↑CRC | [98] |
7-ketodeoxycholate | American | ↓CRC | [98] |
Deoxycholate | American | ↓CRC | [98] |
Tryptophylglycine | American | ↓CRC | [98] |
Cadaverine | Chinese | ↑CRC | [69] |
Putrescine | Chinese | ↑CRC | [69] |
Alanine | Chinese | ↑CRC | [99] |
Lactate | Chinese | ↑CRC | [99] |
Glutamate | Chinese | ↑CRC | [99] |
Succinate | Chinese | ↑CRC | [99] |
Glycerol | Italian | ↑CRC | [100] |
Phenylalanine | Italian | ↑CRC | [100] |
3-hydroxyphenyl acetate | Italian | ↓CRC | [100] |
Galactose | Italian | ↓CRC | [100] |
Acetate | Italian | ↓AD ↓CRC | [100] |
Chinese | ↓CRC | [99] | |
Xilose | Italian | ↓CRC | [100] |
Isobutyrate | Italian | ↓AD ↓CRC | [100] |
Butyrate | Italian | ↓AD | [100] |
Chinese | ↓CRC | [99] | |
Propionate | Italian | ↓AD | [100] |
Chinese | ↓CRC | [99] | |
3-hydroxyphenyl acetate | Italian | ↓AD | [100] |
Cholesterol esters | Spanish | ↑CRC | [19] |
Spanish | ↑CRC | [101] | |
Sphingomyelins | Spanish | ↑CRC | [19] |
Spanish | ↑CRC | [101] | |
Phosphatidylethanolamine | Spanish | ↑CRC | [19] |
Spanish | ↑CRC | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Órdenes, P.; Carril Pardo, C.; Elizondo-Vega, R.; Oyarce, K. Current Research on Molecular Biomarkers for Colorectal Cancer in Stool Samples. Biology 2024, 13, 15. https://doi.org/10.3390/biology13010015
Órdenes P, Carril Pardo C, Elizondo-Vega R, Oyarce K. Current Research on Molecular Biomarkers for Colorectal Cancer in Stool Samples. Biology. 2024; 13(1):15. https://doi.org/10.3390/biology13010015
Chicago/Turabian StyleÓrdenes, Patricio, Claudio Carril Pardo, Roberto Elizondo-Vega, and Karina Oyarce. 2024. "Current Research on Molecular Biomarkers for Colorectal Cancer in Stool Samples" Biology 13, no. 1: 15. https://doi.org/10.3390/biology13010015
APA StyleÓrdenes, P., Carril Pardo, C., Elizondo-Vega, R., & Oyarce, K. (2024). Current Research on Molecular Biomarkers for Colorectal Cancer in Stool Samples. Biology, 13(1), 15. https://doi.org/10.3390/biology13010015