Cardio-Metabolic Health of Offspring Exposed in Utero to Human Immuno-Deficiency Virus and Anti-Retroviral Treatment: A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Data Extraction
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organisation (WHO). HIV and AIDS. Available online: https://www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed on 13 November 2022).
- UNAIDS. Global HIV & AIDS statistics. 2022. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 1 November 2022).
- Fleming, A.F. Tropical obstetrics and gynaecology. 1. Anaemia in pregnancy in tropical Africa. Trans. R. Soc. Trop. Med. Hyg. 1989, 83, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Gutin, S.A.; Harper, G.W.; Bitsang, C.; Moshashane, N.; Ramogola-Masire, D.; Harries, J.; Morroni, C. Perspectives about childbearing and pregnancy planning amongst people living with HIV in Gaborone, Botswana. Cult. Health Sex. 2020, 22, 1063–1079. [Google Scholar] [CrossRef] [PubMed]
- Stringer, E.M.; Kendall, M.A.; Lockman, S.; Campbell, T.B.; Nielsen-Saines, K.; Sawe, F.; Cu-Uvin, S.; Wu, X.; Currier, J.S. Pregnancy outcomes among HIV-infected women who conceived on antiretroviral therapy. PLoS ONE 2018, 13, e0199555. [Google Scholar] [CrossRef] [PubMed]
- UNAIDS. UNAIDs info 2019. Available online: https://aidsinfo.unaids.org (accessed on 18 August 2022).
- Evans, C.; Jones, C.E.; Prendergast, A.J. HIV-exposed, uninfected infants: New global challenges in the era of paediatric HIV elimination. Lancet Infect. Dis. 2016, 16, e92–e107. [Google Scholar] [CrossRef] [PubMed]
- Ramokolo, V.; Goga, A.E.; Slogrove, A.L.; Powis, K.M. Unmasking the vulnerabilities of uninfected children exposed to HIV. BMJ 2019, 366, l4479. [Google Scholar] [CrossRef] [PubMed]
- Short, C.E.; Douglas, M.; Smith, J.H.; Taylor, G.P. Preterm delivery risk in women initiating antiretroviral therapy to prevent HIV mother-to-child transmission. HIV Med. 2014, 15, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Lopez, M.; Palacio, M.; Goncé, A.; Hernandez, S.; Barranco, F.J.; Garcia, L.; Loncà, M.; Coll, J.O.; Gratacós, E.; Figueras, F. Risk of intrauterine growth restriction among HIV-infected pregnant women: A cohort study. Eur. J. Clin. Microbiol. 2015, 34, 223–230. [Google Scholar] [CrossRef]
- Sharma, D.; Shastri, S.; Sharma, P. Intrauterine growth restriction: Antenatal and postnatal aspects. Clin. Med. Insights Pediatr. 2016, 10, CMPed-S40070. [Google Scholar] [CrossRef]
- Joung, K.E.; Lee, J.; Kim, J.H. Long-term metabolic consequences of intrauterine growth restriction. Curr. Pediatr. Rep. 2020, 8, 45–55. [Google Scholar] [CrossRef]
- Tremblay, J.; Hamet, P. Environmental and genetic contributions to diabetes. Metabolism 2019, 100, 153952. [Google Scholar] [CrossRef]
- Usui, N.; Shimada, S. Prenatal environment and neurodevelopmental disorders. Front. Endocrinol. 2022, 13, 407. [Google Scholar] [CrossRef]
- Thompson, L.P.; Al-Hasan, Y. Impact of oxidative stress in fetal programming. J. Pregnancy 2012, 2012, 582748. [Google Scholar] [CrossRef] [PubMed]
- Seneviratne, S.N.; Rajindrajith, S. Fetal programming of obesity and type 2 diabetes. World J. Diabetes 2022, 13, 482. [Google Scholar] [CrossRef] [PubMed]
- Demicheva, E.; Crispi, F. Long-term follow-up of intrauterine growth restriction: Cardiovascular disorders. Fetal. Diagn. Ther. 2014, 36, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Barker, D.J.; Osmond, C.; Simmonds, S.J.; Wield, G.A. The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ 1993, 306, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Jauniaux, E.; Charnock-Jones, D.S. The influence of the intrauterine environment on human placental development. Int. J. Dev. Biol. 2009, 54, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, S.K.; Campbell, J.P. Placental structure, function and drug transfer. Crit. Care Pain Med. 2015, 15, 84–89. [Google Scholar] [CrossRef]
- Schalkwijk, S.; Greupink, R.; Colbers, A.P.; Wouterse, A.C.; Verweij, V.G.; van Drongelen, J.; Teulen, M.; van den Oetelaar, D.; Burger, D.M.; Russel, F.G. Placental transfer of the HIV integrase inhibitor dolutegravir in an ex vivo human cotyledon perfusion model. J. Antimicrob. Chemother. 2016, 71, 480–483. [Google Scholar] [CrossRef]
- Cerveny, L.; Murthi, P.; Staud, F. HIV in pregnancy: Mother-to-child transmission, pharmacotherapy, and toxicity. Biochim. Biophys. Acta Mol. Basis Dis. 2021, 1867, 166206. [Google Scholar] [CrossRef]
- Naidoo, N.; Moodley, J.; Naicker, T. Maternal endothelial dysfunction in HIV-associated preeclampsia comorbid with COVID-19: A review. Hypertens. Res. 2021, 44, 386–398. [Google Scholar] [CrossRef]
- Vermaak, A.; Theron, G.B.; Schubert, P.T.; Kidd, M.; Rabie, U.; Adjiba, B.M.; Wright, C.A. Morphologic changes in the placentas of HIV-positive women and their association with degree of immune suppression. Int. J. Gynaecol. Obstet. 2012, 119, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, J.G.; Kajantie, E.; Thornburg, K.L.; Osmond, C.; Barker, D.J. Mother’s body size and placental size predict coronary heart disease in men. Eur. Heart J. 2011, 32, 2297–2303. [Google Scholar] [CrossRef] [PubMed]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. Ann. Intern. Med. 2009, 151, W-65. [Google Scholar] [CrossRef] [PubMed]
- Ranganathan, P.; Aggarwal, R. Study designs: Part 1–An overview and classification. Perspects Clin. Res. 2018, 9, 184. [Google Scholar] [CrossRef] [PubMed]
- Omair, A. Selecting the appropriate study design for your research: Descriptive study designs. J. Health Spec. 2015, 3, 153. [Google Scholar] [CrossRef]
- Thomas, L. Longitudinal Study|Definition, Approaches & Examples. Scribbr. Available online: https://www.scribbr.com/methodology/longitudinal-study/ (accessed on 19 November 2023).
- Thiese, M.S. Observational and interventional study design types; an overview. Biochem. Medica 2014, 24, 199–210. [Google Scholar] [CrossRef] [PubMed]
- De la Calle, M.; Rodriguez, R.; Deirós, L.; Bartha, J.L. Fetal cardiac biometry and function in HIV-infected pregnant women exposed to HAART therapy. Prenat. Diagn. 2015, 35, 453–455. [Google Scholar] [CrossRef]
- Grant-Beurmann, S.; Jumare, J.; Ndembi, N.; Matthew, O.; Shutt, A.; Omoigberale, A.; Martin, O.A.; Fraser, C.M.; Charurat, M. Dynamics of the infant gut microbiota in the first 18 months of life: The impact of maternal HIV infection and breastfeeding. Microbiome 2022, 10, 61. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Sasaki, N.; Thompson, B.; Eidem, B.W.; Cheng, I.; Colan, S.D.; O’brien, S.E.; Amdani, S.M.; Shearer, W.T.; Orav, E.J.; et al. Left ventricular diastolic dysfunction in HIV-uninfected infants exposed in utero to antiretroviral therapy. AIDS 2020, 34, 529. [Google Scholar] [CrossRef]
- Sevenoaks, T.; Wedderburn, C.J.; Donald, K.A.; Barnett, W.; Zar, H.J.; Stein, D.J.; Naudé, P.J. Association of maternal and infant inflammation with neurodevelopment in HIV-exposed uninfected children in a South African birth cohort. Brain Behav. Immun. 2021, 91, 65–73. [Google Scholar] [CrossRef]
- White, M.; Feucht, U.D.; Duffley, E.; Molokoane, F.; Durandt, C.; Cassol, E.; Rossouw, T.; Connor, K.L. Does in utero HIV exposure and the early nutritional environment influence infant development and immune outcomes? Findings from a pilot study in Pretoria, South Africa. Pilot Feasibility Stud. 2020, 6, 192. [Google Scholar] [CrossRef]
- Hofer, C.B.; Keiser, O.; Zwahlen, M.; Lustosa, C.S.; CisneFrota, A.C.; de Oliveira, R.H.; Abreu, T.F.; Carvalho, A.W.; Araujo, L.E.; Egger, M. In utero exposure to antiretroviral drugs: Effect on birth weight and growth among HIV-exposed uninfected children in Brazil. Pediatr. Infect Dis. J. 2016, 35, 71. [Google Scholar] [CrossRef] [PubMed]
- Mabaya, L.; Matarira, H.T.; Tanyanyiwa, D.M.; Musarurwa, C.; Mukwembi, J. Growth trajectories of HIV exposed and HIV unexposed infants. a prospective study in Gweru, Zimbabwe. Glob. Pediatr. Health 2021, 8, 2333794X21990338. [Google Scholar] [CrossRef] [PubMed]
- le Roux, S.M.; Abrams, E.J.; Donald, K.A.; Brittain, K.; Phillips, T.K.; Nguyen, K.K.; Zerbe, A.; Kroon, M.; Myer, L. Growth trajectories of breastfed HIV-exposed uninfected and HIV-unexposed children under conditions of universal maternal antiretroviral therapy: A prospective study. Lancet Child Adolesc. 2019, 3, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Aizire, J.; Sikorskii, A.; Ogwang, L.W.; Kawalazira, R.; Mutebe, A.; Familiar-Lopez, I.; Mallewa, M.; Taha, T.; Boivin, M.J.; Fowler, M.G.; et al. Decreased growth among antiretroviral drug and HIV exposed uninfected versus unexposed children in Malawi and Uganda. AIDS 2020, 34, 215. [Google Scholar] [CrossRef] [PubMed]
- Sofeu, C.L.; Warszawski, J.; Ateba Ndongo, F.; Penda, I.C.; Tetang Ndiang, S.; Guemkam, G.; Makwet, N.; Owona, F.; Kfutwah, A.; Tchendjou, P.; et al. Low birth weight in perinatally HIV-exposed uninfected infants: Observations in urban settings in Cameroon. PLoS ONE 2014, 9, e93554. [Google Scholar] [CrossRef] [PubMed]
- Malaba, T.R.; Phillips, T.; Le Roux, S.; Brittain, K.; Zerbe, A.; Petro, G.; Ronan, A.; McIntyre, J.A.; Abrams, E.J.; Myer, L. Antiretroviral therapy use during pregnancy and adverse birth outcomes in South African women. Int. J. Epidemiol. 2017, 46, 1678–1689. [Google Scholar] [CrossRef]
- Omoni, A.O.; Ntozini, R.; Evans, C.; Prendergast, A.J.; Moulton, L.H.; Christian, P.S.; Humphrey, J.H. Child growth according to maternal and child HIV status in Zimbabwe. J. Pediatr. Infect. 2017, Dis.36, 869. [Google Scholar] [CrossRef]
- Wilkinson, A.L.; Pedersen, S.H.; Urassa, M.; Michael, D.; Todd, J.; Kinung’hi, S.; Changalucha, J.; McDermid, J.M. Associations between gestational anthropometry, maternal HIV, and fetal and early infancy growth in a prospective rural/semi-rural Tanzanian cohort, 2012–2013. BMC Pregnancy Childbirth 2015, 15, 277. [Google Scholar] [CrossRef]
- Schoeman, J.C.; Moutloatse, G.P.; Harms, A.C.; Vreeken, R.J.; Scherpbier, H.J.; Van Leeuwen, L.; Kuijpers, T.W.; Reinecke, C.J.; Berger, R.; Hankemeier, T.; et al. Fetal Metabolic Stress Disrupts Immune Homeostasis and Induces Proinflammatory Responses in Human Immunodeficiency Virus Type 1–and Combination Antiretroviral Therapy–Exposed Infants. J. Infect. Dis. 2017, 216, 436–446. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Williams, P.L.; Zeldow, B.; Wilkinson, J.D.; Seage, G.R., III; Dooley, L.B.; Kaltman, J.R.; Siberry, G.K.; Mofenson, L.M.; Shearer, W.T.; et al. Cardiac Effects of in utero Exposure to Antiretroviral Therapy in HIV-Uninfected Children Born to HIV-Infected Mothers. AIDS 2015, 29, 91. [Google Scholar] [CrossRef] [PubMed]
- Jao, J.; Kirmse, B.; Yu, C.; Qiu, Y.; Powis, K.; Nshom, E.; Epie, F.; Tih, P.M.; Sperling, R.S.; Abrams, E.J.; et al. Lower preprandial insulin and altered fuel use in HIV/antiretroviral-exposed infants in Cameroon. J. Clin. Endocrinol. Metab. 2015, 100, 3260–3269. [Google Scholar] [CrossRef] [PubMed]
- Jitratkosol, M.H.; Sattha, B.; Maan, E.J.; Gadawski, I.; Harrigan, P.R.; Forbes, J.C.; Alimenti, A.; van Schalkwyk, J.; Money, D.M.; Côté, H.C. Blood mitochondrial DNA mutations in HIV-infected women and their infants exposed to HAART during pregnancy. AIDS 2012, 26, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Nyemba, D.C.; Kalk, E.; Madlala, H.P.; Malaba, T.R.; Slogrove, A.L.; Davies, M.A.; Boulle, A.; Myer, L.; Powis, K.M. Lower birth weight-for-age and length-for-age z-scores in infants with in-utero HIV and ART exposure: A prospective study in Cape Town, South Africa. BMC Pregnancy Childbirth 2021, 21, 354. [Google Scholar] [CrossRef]
- García-Otero, L.; López, M.; Guitart-Mampel, M.; Morén, C.; Goncé, A.; Esteve, C.; Salazar, L.; Gómez, O.; Martínez, J.M.; Torres, B.; et al. Cardiac and mitochondrial function in HIV-uninfected fetuses exposed to antiretroviral treatment. PLoS ONE 2019, 14, e0213279. [Google Scholar] [CrossRef]
- García-Otero, L.; López, M.; Goncé, A.; Fortuny, C.; Salazar, L.; Valenzuela-Alcaraz, B.; Guirado, L.; César, S.; Gratacós, E.; Crispi, F. Cardiac remodeling and hypertension in HIV-uninfected infants exposed in utero to antiretroviral therapy. Clin. Infect. Dis. 2021, 73, 586–593. [Google Scholar] [CrossRef]
- Kasahara, T.M.; Hygino, J.; Blanco, B.; Xavier, L.; Araújo-Lima, C.F.; Guillermo, L.V.; Bittencourt, V.C.B.; Guimarães, V.; Andrade, A.F.; Bento, C.A. The impact of maternal anti-retroviral therapy on cytokine profile in the uninfected neonates. Hum. Immunol. 2013, 74, 1051–1056. [Google Scholar] [CrossRef]
- Noguera-Julian, A.; Morén, C.; Rovira, N.; Garrabou, G.; Catalán, M.; Sánchez, E.; Cardellach, F.; Miró, Ó.; Fortuny, C. Decreased mitochondrial function among healthy infants exposed to antiretrovirals during gestation, delivery and the neonatal period. Pediatr. Infect. Dis. J. 2015, 34, 1349–1354. [Google Scholar] [CrossRef]
- García-Otero, L.; López, M.; Gómez, O.; Goncé, A.; Bennasar, M.; Martínez, J.M.; Valenzuela-Alcaraz, B.; Rodriguez-López, M.; Sitges, M.; Loncà, M.; et al. Zidovudine treatment in HIV-infected pregnant women is associated with fetal cardiac remodelling. AIDS 2016, 30, 1393–1401. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Shearer, W.T.; Thompson, B.; Rich, K.C.; Cheng, I.; Orav, E.J.; Kumar, S.; Pignatelli, R.H.; Bezold, L.I.; LaRussa, P.; et al. Cardiac effects of antiretroviral therapy in HIV-negative infants born to HIV-positive mothers: NHLBI CHAART-1 (National Heart, Lung, and Blood Institute Cardiovascular Status of HAART Therapy in HIV-Exposed Infants and Children cohort study). J. Am. Coll. Cardiol. 2011, 57, 76–85. [Google Scholar] [CrossRef]
- Guerra, V.; Leister, E.C.; Williams, P.L.; Starc, T.J.; Lipshultz, S.E.; Wilkinson, J.D.; Van Dyke, R.B.; Hazra, R.; Colan, S.D.; pediatric HIV/AIDS cohort study (PHACS). Long-term effects of in utero antiretroviral exposure: Systolic and diastolic function in HIV-exposed uninfected youth. AIDS Res. Hum. Retroviruses 2016, 32, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Muhangi, L.; Lule, S.A.; Mpairwe, H.; Ndibazza, J.; Kizza, M.; Nampijja, M.; Nakazibwe, E.; Kihembo, M.; Elliott, A.M.; Webb, E.L. Maternal HIV infection and other factors associated with growth outcomes of HIV-uninfected infants in Entebbe, Uganda. Public Health Nutr. 2013, 16, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Ramokolo, V.; Goga, A.E.; Lombard, C.; Doherty, T.; Jackson, D.J.; Engebretsen, I. October. In utero ART exposure and birth and early growth outcomes among HIV-exposed uninfected infants attending immunization services: Results from national PMTCT surveillance, South Africa. Open Forum Infect. Dis. 2017, 4, ofx187. [Google Scholar] [CrossRef] [PubMed]
- Esemu, L.F.; Yuosembom, E.K.; Fang, R.; Rasay, S.; Fodjo, B.A.; Nguasong, J.T.; Kidima, W.; Ekali, G.L.; Chen, J.J.; Ndhlovu, L.; et al. Impact of HIV-1 infection on the IGF-1 axis and angiogenic factors in pregnant Cameroonian women receiving antiretroviral therapy. PLoS ONE 2019, 14, e0215825. [Google Scholar] [CrossRef] [PubMed]
- Pintye, J.; Langat, A.; Singa, B.; Kinuthia, J.; Odeny, B.; Katana, A.; Nganga, L.; John-Stewart, G.; McGrath, C.J. Maternal tenofovir disoproxil fumarate use in pregnancy and growth outcomes among HIV-exposed uninfected infants in Kenya. Infect. Dis. Obstet. Gynecol. 2015, 2015, 276851. [Google Scholar] [CrossRef]
- Chalashika, P.; Essex, C.; Mellor, D.; Swift, J.A.; Langley-Evans, S. Birthweight, HIV exposure and infant feeding as predictors of malnutrition in Botswanan infants. J. Hum. Nutr. Diet. 2017, 30, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Hernández, S.; Catalán-García, M.; Morén, C.; García-Otero, L.; López, M.; Guitart-Mampel, M.; Milisenda, J.; Coll, O.; Cardellach, F.; Gratacós, E.; et al. Placental mitochondrial toxicity, oxidative stress, apoptosis, and adverse perinatal outcomes in HIV pregnancies under antiretroviral treatment containing zidovudine. J. Acquir. Immune Defic. Syndr. 2017, 75, e113–e119. [Google Scholar] [CrossRef]
- Hernandez, S.; Moren, C.; Lopez, M.; Coll, O.; Cardellach, F.; Gratacos, E.; Miro, O.; Garrabou, G. Perinatal outcomes, mitochondrial toxicity and apoptosis in HIV-treated pregnant women and in-utero-exposed newborn. AIDS 2012, 26, 419–428. [Google Scholar] [CrossRef]
- Wilkinson, J.D.; Williams, P.L.; Yu, W.; Colan, S.D.; Mendez, A.; Zachariah, J.P.; Van Dyke, R.B.; Shearer, W.T.; Margossian, R.E.; Lipshultz, S.E.; et al. Cardiac and inflammatory biomarkers in perinatally HIV-infected and HIV-exposed uninfected children. AIDS 2018, 32, 1267–1277. [Google Scholar] [CrossRef]
- Martins, P.; Pires, A.; Albuquerque, M.E.; Oliveira-Santos, M.; Santos, J.; Sena, C.; Seiça, R. Myocardial peak systolic velocity—A tool for cardiac screening of HIV-exposed uninfected children. Eur. J. Ped. 2020, 179, 395–404. [Google Scholar] [CrossRef]
- Cade, W.T.; Waggoner, A.D.; Hubert, S.; Krauss, M.J.; Singh, G.K.; Overton, E.T. Reduced diastolic function and left ventricular mass in HIV-negative pre-adolescent children exposed to antiretroviral therapy in utero. AIDS 2012, 26, 2053. [Google Scholar] [CrossRef] [PubMed]
- González, R.; Rupérez, M.; Sevene, E.; Vala, A.; Maculuve, S.; Bulo, H.; Nhacolo, A.; Mayor, A.; Aponte, J.J.; Macete, E.; et al. Effects of HIV infection on maternal and neonatal health in southern Mozambique: A prospective cohort study after a decade of antiretroviral drugs roll out. PLoS ONE 2017, 12, e0178134. [Google Scholar] [CrossRef] [PubMed]
- Hodel, E.M.; Marzolini, C.; Waitt, C.; Rakhmanina, N. Pharmacokinetics, placental and breast milk transfer of antiretroviral drugs in pregnant and lactating women living with HIV. Curr. Pharm Des. 2019, 25, 556–576. [Google Scholar] [CrossRef] [PubMed]
- Pariente, G.; Leibson, T.; Carls, A.; Adams-Webber, T.; Ito, S.; Koren, G. Pregnancy-associated changes in pharmacokinetics: A systematic review. PLoS Med. 2016, 13, e1002160. [Google Scholar] [CrossRef] [PubMed]
- Dirajlal-Fargo, S.; McComsey, G.A. Cardiometabolic complications in youth with perinatally acquired HIV in the era of antiretroviral therapy. Curr. HIV/AIDS Rep. 2021, 18, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Matjuda, E.N.; Engwa, G.A.; Sewani-Rusike, C.R.; Nkeh-Chungag, B.N. An Overview of Vascular Dysfunction and Determinants: The Case of Children of African Ancestry. Front. Pediatr. 2021, 9, 769589. [Google Scholar] [CrossRef]
- Sangwung, P.; Petersen, K.F.; Shulman, G.I.; Knowles, J.W. Mitochondrial dysfunction, insulin resistance, and potential genetic implications: Potential role of alterations in mitochondrial function in the pathogenesis of insulin resistance and type 2 diabetes. Endocrinology 2020, 161, bqaa017. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Wilkinson, J.D.; Thompson, B.; Cheng, I.; Briston, D.A.; Shearer, W.T.; Orav, E.J.; Westphal, J.A.; Miller, T.L.; Colan, S.D.; et al. Cardiac effects of highly active antiretroviral therapy in perinatally HIV-infected children: The CHAART-2 study. J. Am. Coll. Cardiol. 2017, 70, 2240–2247. [Google Scholar] [CrossRef]
- Mellin, J.; Le Prevost, M.; Kenny, J.; Sturgeon, K.; Thompson, L.C.; Foster, C.; Kessler, H.H.; Goswami, N.; Klein, N.; Judd, A.; et al. Arterial stiffness in a cohort of young people living with perinatal HIV and HIV negative young people in England. Front. Cardiovasc. Med. 2022, 9, 821568. [Google Scholar] [CrossRef]
- Worm, S.W.; Sabin, C.; Weber, R.; Reiss, P.; El-Sadr, W.; Dabis, F.; De Wit, S.; Law, M.; Monforte, A.D.A.; Friis-Møller, N.; et al. Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: The data collection on adverse events of anti-HIV drugs (D: A: D) study. J. Infect. Dis. 2010, 201, 318–330. [Google Scholar] [CrossRef]
- Matasariu, D.R.; Onofriescu, M.; Mihalceanu, E.; Schaas, C.M.; Bujor, I.E.; Tibeica, A.M.; Cristofor, A.E.; Ursache, A. Impact of HAART Therapy and HIV Infection over Fetal Growth—An Anthropometric Point of View. Microorganisms 2022, 10, 1123. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.J.; Ryckman, K.K.; Barnabei, V.M.; Howard, B.V.; Isasi, C.R.; Sarto, G.E.; Tom, S.E.; Van Horn, L.V.; Wallace, R.B.; Robinson, J.G. The impact of birth weight on cardiovascular disease risk in the Women’s Health Initiative. Nutr. Metab. Cardiovasc. Dis. 2016, 26, 239–245. [Google Scholar] [CrossRef] [PubMed]
- Alexander, B.T.; Dasinger, J.H.; Intapad, S. Fetal programming and cardiovascular pathology. Compr. Physiol. 2015, 5, 997. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.; Slopen, N.; Nelson, C.A.; Zeanah, C.H.; Georgieff, M.K.; Fox, N.A. Catch-up growth, metabolic, and cardiovascular risk in post-institutionalized Romanian adolescents. Pediatr. Res. 2018, 84, 842–848. [Google Scholar] [CrossRef]
- Risnes, K.R.; Nilsen, T.I.; Romundstad, P.R.; Vatten, L.J. Head size at birth and long-term mortality from coronary heart disease. Int. J. Epidemiol. 2009, 38, 955–962. [Google Scholar] [CrossRef]
- Hangge, P.T.; Cnota, J.F.; Woo, J.G.; Hinton, A.C.; Divanovic, A.A.; Manning, P.B.; Ittenbach, R.F.; Hinton, R.B. Microcephaly is associated with early adverse neurologic outcomes in hypoplastic left heart syndrome. Pediatr. Res. 2013, 74, 61–67. [Google Scholar] [CrossRef]
- Williams, P.L.; Yildirim, C.; Chadwick, E.G.; Van Dyke, R.B.; Smith, R.; Correia, K.F.; DiPerna, A.; Seage III, G.R.; Hazra, R.; Crowell, C.S. Association of maternal antiretroviral use with microcephaly in HIV-exposed uninfected children in the prospective surveillance monitoring for ART toxicities (SMARTT) cohort study. Lancet HIV 2020, 7, e49. [Google Scholar] [CrossRef]
Category | Specific Category | Keywords | Search Number | Search Mask |
---|---|---|---|---|
Population | Inclusion criteria | “pregnant woman” OR “pregnant women” OR “maternal” OR “Foetus” OR “Fetus” OR “new-born” OR “neonates” OR “infant” OR “child” OR “children” OR “offspring” | 1 | All fields |
Intervention | Drugs | “ART” OR “antiretroviral therapy” OR “HAART” OR “highly active antiretroviral therapy” OR “anti-HIV agents” OR “HIV drug” | 2 | All fields |
Environment | “In-utero” OR “intrauterine” OR ”foetal” OR “fetal” | 3 | All fields | |
Infection | “HIV positive” OR “human immunodeficiency virus” or “HIV positive” OR “HIV” OR HIV OR “HIV infection” | 4 | All fields | |
Period | “pregnancy” OR “gestation” OR “prenatal” OR “postnatal” OR “perinatal” | 5 | ||
Comparison | Study group | “HIV exposed uninfected” (HEU) children or HIV-positive pregnant women | 6 | All fields |
Control group | “HIV unexposed uninfected” (HUU) children or HIV negative pregnant women | 7 | ||
Outcome | Anthropometry | “weight” OR “low birth weight” OR “LBW” OR “high birth weight” OR “HBW” OR “weight for age” OR “WAZ” OR “height” OR “length” OR “length for age” OR “LAZ” OR “head circumference” OR “HC” | 8 | All fields |
Cardiac effects | “cardiac biometry” OR “cardiac toxicity” OR “diastole” OR “diastolic” OR “systolic” OR “systole” | 9 | All fields | |
Cardiovascular risk factors | “obesity” OR “dyslipidaemia” OR “hypertension” OR “high blood pressure” OR “inflammation” OR “inflammatory” OR “oxidative stress” OR “reactive oxygen species” OR “ROS” or “diabetes” OR “vascular dysfunction” OR “endothelial dysfunction” OR “lipid” | 10 | All fields | |
Mitochondrial effects | “mitochondrial toxicity” OR “mitochondrial DNA” OR “mtDNA” OR “mutation” | 11 | All fields | |
Excluded terms | “COVID-19” OR “animal” OR “simian immunodeficiency virus” OR “SIV” OR “SARS-CoV 2” OR “coronavirus” OR “nervous system disease” OR “malaria” OR “cancer” OR “tumor” OR “malignant” OR “malignance” | 12 |
Country | Study Design | Sample Size | Onset of ART Treatment | ART | Outcome | Indirect/Direct Measure | Citation |
---|---|---|---|---|---|---|---|
Spain | Longitudinal cohort | 99 mother–infant pairs | 10 women before gestation; 19 women during gestation | Mothers = 2NRTI (3TC, d4T, FTC); ZDV; 1NNRTI (NVP)/1 PI (NFV, RTV, LPV) ATV. HEU children = ZDV |
| Indirect and direct | [31] |
Nigeria | Longitudinal cohort | 131 HUU and 141 HEU infants | N/A | N/A |
| Indirect | [32] |
United States | Longitudinal cohort | 148 HEU and 130 HUU children | N/A | N/A |
| Direct | [33] |
South Africa | Longitudinal cohort | 77 HEU and 190 HUU children | 41.6% before pregnancy; 58.4% during pregnancy | N/A |
| Direct and indirect | [34] |
South Africa | Observational prospective pilot | 22 HUU infants; 32 HEU infants | N/A | Mothers = TDF, FTC, EFV, AZT, 3TC, LPV |
| Indirect | [35] |
Brazil | Prospective cohort | 155 HUU and 433 HEU infants | 114 infants in the 1st trimester; 319 infants in the 2nd or 3rd trimester | HEU children = ZDV; cotrimoxazole after 6 weeks old |
| Indirect | [36] |
Zimbabwe | Prospective cohort | 52 HEU and 55 HUU children | N/A | Neonates = NVP; administration of cotrimoxazole at 6 weeks old. |
| Indirect | [37] |
South Africa | Prospective cohort | 461 HEU and 411 HUU children | HIV-positive women during 1st antenatal clinic visit | N/A |
| Indirect | [38] |
Malawi and Uganda | Prospective cohort | 471 HEU and 462 HUU children | N/A | Women = ZDV; cART regimens. |
| Indirect | [39] |
Cameroon | Prospective cohort | 3737 mother–infant pairs | 89.3% of pregnant women before or during pregnancy | N/A |
| Indirect | [40] |
South Africa | Prospective cohort | 299 HIV-women and 1494 HIV+ women | 922 women during pregnancy; 572 women before conceiving | 87% women = (TDF, 3TC EFV); 4% (TDF, 3TC and NVP; 3% (PI); 6% (other NRTI) |
| Indirect | [41] |
Zimbabwe | Prospective cohort | 3120 HEU and 9210 HUU children | N/A | HEU infants = co-trimoxazole |
| Indirect | [42] |
Tanzania | Prospective cohort | 70 HIV-women and 44 HIV+ women | 15 women before pregnancy. 24 women during pregnancy. | Women = EFV, AZT, 3TC (CD4 < 350 cells/μL). AZT (other HIV+ women). |
| Indirect | [43] |
Netherlands | Prospective cohort | 12 HEU and 15 HUU infants | 5 women before pregnancy | Mothers = 2NRTI (ZDV, 3TC); either a PI (RTV-boosted LPV or NFV) or an NNRTI (NVP) |
| Direct | [44] |
United States | Prospective cohort | 417 HEU and 98 HUU children | N/A | Mothers = NRTI, NNRTI, and PI |
| Direct | [45] |
Cameroon | Prospective cohort | 210 HUU and 156 HEU children | N/A | Women = cART (CD4 < 350 cells/μL); Other women and infants = AZT + NVP |
| Direct and indirect | [46] |
Columbia | Prospective cohort | 57 HEU and 70 HUU infants | 12 women before conception; 45 women during pregnancy | Women = ZDV/3TC/d4T/dddI/ABC/FTC/TDF |
| Direct | [47] |
South Africa | Prospective cohort | 431 HEU and 457 HUU infants | 62% of women before conception; 32% after conception | N/A |
| Indirect | [48] |
Spain | Prospective cohort | 47 HIV+; 47-pregnant women | 78.7% of women before pregnancy | Women = NRTI; either a NNRTI/1PI/INI |
| Direct | [49] |
Spain | Prospective cohort | 34 HEU and 53 HUU infants | 79.4% before pregnancy | Women = 2NRTI; 1NNRTI/1 boosted PI or 1 INI |
| Direct | [50] |
Brazil | Prospective cohort | 12 HIV− pregnant; 80 HIV+ pregnant women | 20 women at delivery. 60 women at 20–32 weeks gestation | Women = 2 NRTIs (AZT,3TC/ddI, 3TC) with PI(LPV/SQV) |
| Direct and indirect | [51] |
Spain | Prospective observational | 133 HEU and 73 HUU infants | 111 women at 2–40 weeks of gestation. | Women = NRTI, NVP NFV, ZDV (mothers) |
| Indirect | [52] |
Spain | Prospective cohort | 42 HIV+; 84 HIV− pregnant women | 32 women before pregnancy. | Women = 2NRTI; 1PI |
| Direct | [53] |
United States | Prospective multisite cohort | 136 HEU HIV+ infants | N/A | N/A |
| Direct | [54] |
United States | Prospective cohort | 156 HEU and 18 HUU children and adolescents | N/A | Women = 87 Non-HAART ARV; 67 HAART |
| Direct | [55] |
Uganda | Retrospective cohort | 1380 HUU and 122 HEU children | 5 HIV mothers during gestation | Women = 1NVP; cotrimoxazole |
| Indirect | [56] |
South Africa | Cross-sectional survey | 6179 HUU 2599 HEU newborns, | N/A | Women = TDF; 3TC/FTC, NVP if CD4 ≤ 350 cell/µL or ZDV from 14 weeks. Infants = NVP |
| Indirect | [57] |
Cameroon | Pilot cross-sectional | 102 mother-neonate pairs | N/A | N/A |
| Indirect | [58] |
Kenya | Cross-sectional survey | 277 mother- infant pairs | 63% of women during pregnancy | Women = TDF/ AZT/3TC/NVP; d24/3TC/NVP TDF/3TC/NVP/TDF/3TC/EFV |
| Indirect | [59] |
Botswana | Comparative cross-sectional | 154 HEU and 259 HUU children | N/A | N/A |
| Indirect | [60] |
Spain | Cross-sectional | 32 HIV− t; 24 HIV+ pregnant women | 84% of pregnant women before pregnancy | NRTI, 2NRTI, 1PI, 2NRTI/, 2PI, 2NRTI, /NNRTI/AZT monotherapy (mothers) |
| Indirect and direct | [61] |
Spain | Cross-sectional, controlled observational | 35 HIV− women; 27 HIV+ pregnant women | 4 women in 2nd stage of pregnancy; 23 women before gestation | 2NRTI, 1PI/NRTI, 1NNRTI |
| Indirect and direct | [62] |
United States | Cross-sectional analysis | 156 HEU and HIV youth | N/A | Women = HAART, PI (159); HAART (54), non-HAART ART (17) |
| Direct | [63] |
Portugal | Case control | 77 HEU children; 38 HUU children | N/A | N/A |
| Direct | [64] |
United States | Cross-sectional | 30 HEU and 30 HUU children | N/A | Women = 10% ZTV; 90% cART |
| Direct | [65] |
Mozambique | Randomized control trial | 561 HIV+ and 1183 HIV− pregnant women | 21% of women at delivery | Women = AZT; HEU infants = NVP |
| Indirect | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matjuda, E.N.; Engwa, G.A.; Mungamba, M.M.; Sewani-Rusike, C.R.; Goswami, N.; Nkeh-Chungag, B.N. Cardio-Metabolic Health of Offspring Exposed in Utero to Human Immuno-Deficiency Virus and Anti-Retroviral Treatment: A Systematic Review. Biology 2024, 13, 32. https://doi.org/10.3390/biology13010032
Matjuda EN, Engwa GA, Mungamba MM, Sewani-Rusike CR, Goswami N, Nkeh-Chungag BN. Cardio-Metabolic Health of Offspring Exposed in Utero to Human Immuno-Deficiency Virus and Anti-Retroviral Treatment: A Systematic Review. Biology. 2024; 13(1):32. https://doi.org/10.3390/biology13010032
Chicago/Turabian StyleMatjuda, Edna Ngoakoana, Godwill Azeh Engwa, Muhulo Muhau Mungamba, Constance Rufaro Sewani-Rusike, Nandu Goswami, and Benedicta Ngwenchi Nkeh-Chungag. 2024. "Cardio-Metabolic Health of Offspring Exposed in Utero to Human Immuno-Deficiency Virus and Anti-Retroviral Treatment: A Systematic Review" Biology 13, no. 1: 32. https://doi.org/10.3390/biology13010032
APA StyleMatjuda, E. N., Engwa, G. A., Mungamba, M. M., Sewani-Rusike, C. R., Goswami, N., & Nkeh-Chungag, B. N. (2024). Cardio-Metabolic Health of Offspring Exposed in Utero to Human Immuno-Deficiency Virus and Anti-Retroviral Treatment: A Systematic Review. Biology, 13(1), 32. https://doi.org/10.3390/biology13010032