Development of Serotonergic and Dopaminergic Neuronal Networks of the Central Nervous System in King Crab, Paralithodes camtschaticus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Immunohistochemistry
2.3. Specification of the Primary Antibodies
2.4. Confocal Microscopy and Imaging
2.5. Terminology
3. Results
3.1. Synapsin-like Immunoreactivity
3.2. Serotonin-like Immunoreactivity
3.3. Tyrosine Hydroxylase-like Immunoreactivity
4. Discussion
4.1. General Features of the Larval and Adult King Crab CNS
4.2. Serotonin-like Immunoreactivity
4.3. Tyrosine Hydroxylase-like Immunoreactivity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, S.; Thatje, S. Global bottlenecks in the distribution of marine Crustacea: Temperature constraints in the family Lithodidae. J. Biogeogr. 2009, 36, 2125–2135. [Google Scholar] [CrossRef]
- Lorentzen, G.; Voldnes, G.; Whitaker, R.D.; Kvalvik, I.; Vang, B.; Gjerp Solstad, R.; Thomassen, M.R.; Siikavuopio, S.I. Current Status of the Red King Crab (Paralithodes camtchaticus) and Snow Crab (Chionoecetes opilio) Industries in Norway. Rev. Fish. Sci. 2018, 26, 42–54. [Google Scholar] [CrossRef]
- Epelbaum, A.B.; Borisov, R.R.; Kovatcheva, N.P. Early development of the red king crab Paralithodes camtschaticus from the Barents Sea reared in the laboratory: Morphology and behavior. J. Mar. Biol. Assoc. UK 2006, 86, 317–333. [Google Scholar] [CrossRef]
- Spitzner, F.; Meth, R.; Krüger, C.; Nischik, E.; Eiler, S.; Sombke, A.; Torres, G.; Harzsch, S. An atlas of larval organogenesis in the European shore crab Carcinus maenas L. (Decapoda, Brachyura, Portunidae). Front. Zool. 2018, 15, 27. [Google Scholar] [CrossRef] [PubMed]
- Anger, K.; Queiroga, H.; Calado, R. Larval development and behavior strategies in Brachyura. In Treatise on Zoology–Anatomy, Taxonomy, Biology. The Crustacea, Vol. 9, Part C-I, Decapoda: Brachyura. Leiden, Boston; Castro, P., Davie, P.J.F., Guinot, D., Schram, F.R., von Vaupel Klein, J.C., Eds.; Brill: Boston, USA, 2015; pp. 317–374. [Google Scholar]
- Gebauer, P.; Gimenez, L.; Hinojosy, I.; Paschke, K. Settlement and metamorphosis in Barnacles and Decapods. In The Natural History of the Crustacea; Anger, K., Harzsch, S., Thiel, M., Eds.; Developmental biology and larval ecology; Oxford University Press: Oxford, UK, 2020; Volume 7, pp. 223–253. [Google Scholar]
- Krieger, J.; Spitzner, F. X-ray Microscopy of the Larval Crustacean Brain. Methods Mol. Biol. 2020, 2047, 253–270. [Google Scholar]
- Harzsch, S.; Dawirs, R.R. A developmental study of serotonin-immunoreactive neurons in the larval central nervous system of the spider crab Hyas araneus (Decapoda, Brachyura). Invertig. Neurosci. 1995, 1, 53–65. [Google Scholar] [CrossRef]
- Scholtz, G. Cell lineage studies in the crayfish Cherax destructor (Crustacea, Decapoda): Germ band formation, segmentation and early neurogenesis. Roux’s Arch. Dev. Biol. 1992, 202, 36–48. [Google Scholar] [CrossRef]
- Sandeman, D.C.; Sandeman, R.E.; Derby, C.; Schmidt, M. Morphology of the Brain of Crayfish, Crabs, and Spiny Lobsters: A Common Nomenclature for Homologous Structures. Biol. Bull. 1992, 183, 304–326. [Google Scholar] [CrossRef]
- Sandeman, D.C.; Scholtz, G.; Sandeman, R.E. Brain Evolution in Decapod Crustacea. J. Exp. Zool. 1993, 265, 112–133. [Google Scholar] [CrossRef]
- Harzsch, S.; Dawirs, R.R. On the morphology of the central nervous system in larval stages of Carcinus maenas L. (Decapoda, Brachyura). Helgoländer Meeresunters 1993, 47, 61–79. [Google Scholar] [CrossRef]
- Helluy, S.M.; Sandeman, R.; Beltz, B. Comparative brain ontogeny of the crayfish and clawed lobster: Implications of direct and larval development. J. Comp. Neurol. 1993, 335, 343–354. [Google Scholar] [CrossRef] [PubMed]
- Stewart, M.J.; Stewart, P.; Sroyraya, M.; Soonklang, N.; Cummins, S.F.; Hanna, P.J.; Duan, W.; Sobhon, P. Cloning of the crustacean hyperglycemic hormone and evidence for molt-inhibiting hormone within the central nervous system of the blue crab Portunus pelagicus. Comp. Biochem. Physiol. A 2013, 164, 276–290. [Google Scholar] [CrossRef] [PubMed]
- Geiselbrecht, H.; Melzer, R.R. Nervous systems in 3D: A comparison of Caridean, anomuran, and brachyuranzoea-I (Decapoda). J. Exp. Zool. B Mol. Dev. Evol. 2013, 320, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Glebov, K.; Voronezhskaya, E.E.; Khabarova, M.Y.; Ivashkin, E.; Nezlin, L.P.; Ponimaskin, E.G. Mechanisms underlying dual effects of serotonin during development of Helisoma trivolvis (Mollusca). BMC Dev. Biol. 2014, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Kempf, S.C.; Page, L.R. Pires A: Development of serotonin-like immunoreactivity in the embryos and larvae of nudibranch mollusks with emphasis on the structure and possible function of the apical sensory organ. J. Comp. Neurol. 1997, 386, 507–528. [Google Scholar] [CrossRef]
- Zieger, E.; Bräunig, P.; Harzsch, S. A developmental study of serotonin-immunoreactive neurons in the embryonic brain of the marbled crayfish and the migratory locust: Evidence for a homologous protocerebral group of neurons. Arthropod. Struct. Dev. 2013, 42, 507–520. [Google Scholar] [CrossRef] [PubMed]
- Harzsch, S. Evolution of identified arthropod neurons: The serotonergic system in relation to engrailed-expressing cells in the embryonic ventral nerve cord of the American lobster Homarusamericanus Milne Edwards, 1873 (Malacostraca, Pleocyemata, Homarida). Dev. Biol. 2003, 258, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Beltz, B.S.; Pontes, M.; Helluy, S.M.; Kravitz, E.A. Patterns of appearance of serotonin and proctolin immunoreactivities in the developing nervous system of the American lobster. J. Neurobiol. 1990, 21, 521–542. [Google Scholar] [CrossRef]
- Cournil, I.; Casasnovas, B.; Helluy, S.M.; Beltz, B.S. Dopamine in the lobster Homarus gammarus: II. Dopamine-immunoreactive neurons and development of the nervous system. J. Comp. Neurol. 1995, 362, 1–16. [Google Scholar] [CrossRef]
- Zega, G.; Pennati, R.; Groppelli, S.; Sotgia, C.; De Bernardi, F. Dopamine and serotonin modulate the onset of metamorphosis in the ascidian Phallusia mammillata. Dev. Biol. 2005, 282, 246–256. [Google Scholar] [CrossRef]
- Nguyen, L.; Rigo, J.M.; Rocher, V.; Belachew, S.; Malgrange, B.; Rogister, B.; Leprince, P.; Moonen, G. Neurotransmitters as early signals for central nervous system development. Cell Tissue Res. 2001, 305, 187–202. [Google Scholar] [CrossRef] [PubMed]
- Anger, K.; Nair, K.K.C. Laboratory experiments on the larval development of Hyas araneus (Decapoda, Majidae). Helgol. Wiss. Meeresunters. 1979, 32, 36–54. [Google Scholar] [CrossRef]
- Dyachuk, V.A.; Maiorova, M.A.; Odintsova, N.A. Identification of b integrin-like- and fibronectin-like proteins in the bivalve mollusk Mytilus trossulus. Dev. Growth. Differ. 2015, 57, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Yurchenko, O.V.; Skiteva, O.I.; Voronezhskaya, E.E.; Dyachuk, V.A. Nervous system development in the Pacific oyster, Crassostrea gigas (Mollusca: Bivalvia). Front. Zool. 2018, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Harzsch, S.; Waloszek, D. Serotonin-immunoreactive neurons in the ventral nerve cord of Crustacea: A character to study aspects of arthropod phylogeny. Arthropod Struct. Dev. 2000, 29, 307–322. [Google Scholar] [CrossRef]
- Beltz, B.S.; Kravitz, E.A. Mapping of serotonin-like immunoreactivity in the lobster nervous system. J. Neurosci. 1983, 3, 585–602. [Google Scholar] [CrossRef]
- Cournil, I.; Helluy, S.M.; Beltz, B.S. Dopamine in the lobster Homarus gammarus. I. Comparative analysis of dopamine and tyrosine hydroxylase immunoreactivities in the nervous system of the juvenile. J. Comp. Neurol. 1994, 344, 455–469. [Google Scholar] [CrossRef]
- Harzsch, S.; Hansson, B.S. Brain architecture in the terrestrial hermit crab Coenobita clypeatus (Anomura, Coenobitidae), a crustacean with a good aerial sense of smell. BMC Neurosci. 2008, 9, 58. [Google Scholar] [CrossRef]
- Krieger, J.; Sombke, A.; Seefluth, F.; Kenning, M.; Hansson, B.S.; Harzsch, S. Comparative brain architecture of the European shore Crab Carcinus maenas (Brachyura) and the Common hermit Crab Pagurus bernhardus (Anomura). Cell Tissue Res. 2012, 348, 47–69. [Google Scholar] [CrossRef]
- Harzsch, S. Ontogeny of the ventral nerve cord in malacostracan crustaceans: A common plan for neuronal development in Crustacea, Hexapoda and other Arthropoda? Arthropod. Struct. Dev. 2003, 32, 17–37. [Google Scholar] [CrossRef]
- Krieger, J.; Sandeman, R.E.; Sandeman, D.C.; Hansson, B.S.; Harzsch, S. Brain architecture of the largest living land arthropod, the giant robber crab Birgus latro (Crustacea, Anomura, Coenobitidae): Evidence for a prominent central olfactory pathway? Front. Zool. 2010, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Sandeman, D.C.; Beltz, B.S.; Sandeman, R.E. Crayfish brain interneurons that converge with serotonin giant cells in accessory lobe glomeruli. J. Comp. Neurol. 1995, 352, 263–279. [Google Scholar] [CrossRef] [PubMed]
- Vilpoux, K.; Sandeman, R.; Harzsch, S. Early embryonic development of the central nervous system in the Australian crayfish and the Marbled crayfish (Marmorkrebs). Dev. Genes Evol. 2006, 216, 209–223. [Google Scholar] [CrossRef] [PubMed]
- Schachtner, J.; Schmidt, M.; Homberg, U. Organization and evolutionary trends of primary olfactory brain centers in Tetraconata (Crustacea + Hexapoda). Arthropod Struc. Dev. 2005, 34, 257–299. [Google Scholar] [CrossRef]
- Harzsch, S.; Krieger, J. Crustacean olfactory systems: A comparative review and a crustacean perspective on olfaction in insects. Prog. Neurobiol. 2018, 161, 23–60. [Google Scholar] [CrossRef] [PubMed]
- Allayie, S.A.; Ravichandran, S.; Bhat, B.A. Organization of the nervous systems of the brachyuran crab Charybdis hellerii (Miline Edwards, 1867). World J. Zool. 2010, 5, 103–105. [Google Scholar]
- Kornthong, N.; Tinikul, Y.; Khornchatri, K.; Saeton, J.; Magerd, S.; Suwansa-Ard, S.; Kruangkum, T.; Hanna, P.J.; Sobhon, P. Neuronal classification and distribution in the central nervous system of the female mud crab, Scylla olivacea. Microsc. Res. Tech. 2014, 77, 189–200. [Google Scholar] [CrossRef]
- Harzsch, S.; Miller, J.; Benton, J.; Dawirs, R.R.; Beltz, B. Neurogenesis in the thoracic neuromeres of two crustaceans with different types of metamorphic development. J. Exp. Biol. 1998, 201, 2465–2479. [Google Scholar] [CrossRef]
- Harzsch, S.; Dawirs, R.R. Neurogenesis in larval stages of the spider crab Hyas araneus (Decapoda, Brachyura): Proliferation of neuroblasts in the ventral nerve cord. Roux’ Arch Dev. Biol. 1994, 204, 93–100. [Google Scholar] [CrossRef]
- Tinikul, Y.; Poljaroen, J.; Kornthong NChotwiwatthanakun, C.; Anuracpreeda, P.; Poomtong, T.; Hanna, P.J.; Sobhon, P. Distribution and changes of serotonin and dopamine levels in the central nervous system and ovary of the Pacific white shrimp, Litopenaeus vannamei, during ovarian maturation cycle. Cell Tissue Res. 2011, 345, 103–124. [Google Scholar] [CrossRef]
- Khornchatri, K.; Kornthong, N.; Saetan, J.; Tinikul, Y.; Chotwiwatthanakun, C.; Cummins, S.F.; Hanna, P.J.; Sobhon, P. Distribution of serotonin and dopamine in the central nervous system of the female mud crab, Scylla olivacea (Herbst). Acta Histochem. 2015, 117, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Elofsson, R. 5-HT immunoreactivity in the central nervous system of the crayfish, Pacifastacus leniusculus. Cell Tissue Res. 1983, 232, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Antonsen, B.L.; Paul, D.H. Serotonergic and octopaminergic systems in the squat lobster Munida quadrispina (Anomura, Galatheidae). J. Comp. Neurol. 2001, 439, 450–468. [Google Scholar] [CrossRef] [PubMed]
- Utting, M.; Agricola, H.; Sandeman, R.E.; Sandeman, D.C. Central complex in the brain of crayfish and its possible homology with that of insects. J. Comp. Neurol. 2000, 416, 245–261. [Google Scholar] [CrossRef]
- Harzsch, S. Neurophylogeny: Architecture of the nervous system and a fresh view on arthropod phylogeny. Integr. Comp. Biol. 2006, 46, 182–194. [Google Scholar] [CrossRef] [PubMed]
- Fanenbruck, M.; Harzsch, S.; Wägele, J.W. The brain of the Remipedia (Crustacea) and an alternative hypothesis on their phylogenetic relationships. Proc. Natl. Acad. Sci. USA 2004, 101, 3868–3873. [Google Scholar] [CrossRef] [PubMed]
- Polanska, M.; Yasuda, A.; Harzsch, S. Immunolocalisation of crustacean- SIFamide in the median brain and eyestalk neuropils of the marbled crayfish. Cell Tissue Res. 2007, 330, 331–344. [Google Scholar] [CrossRef]
- Soonthornsumrith, B.; Saetan, J.; Kruangkum, T.; Thongbuakaew, T.; Senarai, T.; Palasoon, R.; Sobhon, P.; Sretarugsa, P. Three-dimensional organization of the brain and distribution of serotonin in the brain and ovary, and its effects on ovarian steroidogenesis in the giant freshwater prawn, Macrobrachium rosenbergii. Invertig. Neurosci. 2018, 18, 5. [Google Scholar] [CrossRef]
- Nakeim, J.; Kornthong, N.; Saetan, J.; Duangprom, S.; Sobhon, P.; Sretarugsa, P. Presence of serotonin and its receptor in the central nervous system and ovary and molecular cloning of the novel crab serotonin receptor of the blue swimming crab, Portunus. Acta Histochem. 2020, 122, 151457. [Google Scholar] [CrossRef]
- Harzsch, S.; Glötzner, J. An immunohistochemical study of structure and development of the nervous system in the brine shrimp Artemia salina Linnaeus, 1758 (Branchiopoda, Annostraca) with remarks of the arthropod brain. Arthropod Struct. Dev. 2002, 30, 251–270. [Google Scholar] [CrossRef]
- Sandeman, D.C.; Sandeman, R.E. Electrical responses and synaptic connections of giant serotonin-immunoreactive neurons in crayfish olfactory and accessory lobes. J. Comp Neurol. 1994, 341, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M. The olfactory pathway of decapod crustaceans—An invertebrate model for life-long neurogenesis. Chem. Senses. 2007, 32, 365–384. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Mellon, D.F. Neuronal processing of chemical information in crustaceans. In Chemical Communication in Crustaceans; Breithaupt, T., Thiel, M., Eds.; Springer: New York, NY, USA, 2011; pp. 123–147. [Google Scholar]
- Tautz, J.; Müller-Tautz, R. Antennal neuropile in the brain of the crayfish: Morphology of neurons. J. Comp. Neurol. 1983, 218, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Stemme, T.; Iliffe, T.M.; von Reumont, B.M.; Koenemann, S.; Harzsch, S.; Bicker, G. Serotonin-immunoreactive neurons in the ventral nerve cord of Remipedia (Crustacea): Support for a sister group relationship of Remipedia and Hexapoda? BMC Evol. Biol. 2013, 13, 119. [Google Scholar] [CrossRef]
- Faulkes, Z. Turning loss into opportunity: The key deletion of an escape circuit in decapod crustaceans. Brain Behav. Evol. 2008, 72, 251–261. [Google Scholar] [CrossRef]
- Livingstone, M.S.; Harris-Warrick, R.M.; Kravitz, E.A. Serotonin and octopamine produce opposite postures in lobsters. Science 1980, 208, 76–79. [Google Scholar] [CrossRef]
- Ma, P.M.; Beltz, B.S.; Kravitz, E.A. Serotonin-containing neurons in lobsters: Their role as ‘‘gain-setters’’ in postural control mechanisms. J. Neurophysiol. 1992, 68, 36–54. [Google Scholar] [CrossRef]
- Hörner, M.; Weiger, W.A.; Edwards, D.H.; Kravitz, E.A. Excitation of identified serotonergic neurons by escape command neurons in lobsters. J. Exp. Biol. 1997, 200, 2017–2033. [Google Scholar] [CrossRef]
- Hooper, S.L.; DiCaprio, R.A. Crustacean motor pattern generator networks. Neurosignals 2000, 13, 50–69. [Google Scholar] [CrossRef]
- Kravitz, E.A. Serotonin and aggression: Insights gained from a lobster model system and speculations on the role of amine neurons in a complex behavior. J. Comp. Physiol. A 2000, 186, 221–238. [Google Scholar] [CrossRef]
- Ponzoni, S. Tyrosine hydroxylase protein expression in ventral nerve cord of Neotropical freshwater crab. Tissue Cell. 2014, 46, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Wood, D.E.; Derby, C.D. Distribution of dopamine-like immunoreactivity suggests a role for dopamine in the courtship display behavior of the blue crab Callinectes sapidus. Cell Tissue Res. 1996, 285, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Tierney, A.J.; Kim, T.; Abrams, R. Dopamine in crayfish and other crustaceans: Distribution in the central nervous system and physiological functions. Microsc. Res. Tech. 2003, 60, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Beltz, B.S. Distribution and functional anatomy of amine-containing neurons in decapod crustaceans. Microsc. Res. Tech. 1999, 44, 105–120. [Google Scholar] [CrossRef]
- Fort, T.J.; Brezina, V.; Miller, M.W. Modulation of an integrated central pattern generator-effector system: Dopaminergic regulation of cardiac activity in the blue crab Callinectes sapidus. J. Neurophysiol. 2004, 92, 3455–3470. [Google Scholar] [CrossRef]
- Robertson, R.M.; Moulins, M. A corollary discharge of total foregut motor activity is monitored by a single interneuron in the lobster Homarus gammarus. J. Physiol. 1981, 77, 823–827. [Google Scholar]
- Mercier, A.J.; Orchard, I.; Schmoeckel, A. Catecholaminergic neurons sup-plying the hindgut of the crayfish Procambarus clarkii. Can. J. Zool. 1991, 69, 2778–2785. [Google Scholar] [CrossRef]
Stages | Duration | Organs of Locomotion | Habit of Life | Carapace Length (±SD) mm |
---|---|---|---|---|
zoea I | 8–9 days | Exopodites of maxillipeds I–II | Planktonic | 1.39 ± 0.08 |
zoea II | 7–8 days | Exopodites of maxillipeds I–III | Planktonic | 1.43 ± 0.07 |
zoea III | 9–11 days | Exopodites of maxillipeds I–III | Planktonic | 1.83 ± 0.1 |
zoea IV | 10–13 days | Exopodites of maxillipeds I–III | Planktonic | 2.07 ± 0.12 |
glaucothoe | 14–17 days | Pleopods | Plankton– benthic | 1.85 ± 0.13 |
first juvenile | 18–20 days | Pereiopods II–IV | Benthic | 1.91 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotsyuba, E.; Pahlevaniane, A.; Maslennikov, S.; Dyachuk, V. Development of Serotonergic and Dopaminergic Neuronal Networks of the Central Nervous System in King Crab, Paralithodes camtschaticus. Biology 2024, 13, 35. https://doi.org/10.3390/biology13010035
Kotsyuba E, Pahlevaniane A, Maslennikov S, Dyachuk V. Development of Serotonergic and Dopaminergic Neuronal Networks of the Central Nervous System in King Crab, Paralithodes camtschaticus. Biology. 2024; 13(1):35. https://doi.org/10.3390/biology13010035
Chicago/Turabian StyleKotsyuba, Elena, Arman Pahlevaniane, Sergei Maslennikov, and Vyacheslav Dyachuk. 2024. "Development of Serotonergic and Dopaminergic Neuronal Networks of the Central Nervous System in King Crab, Paralithodes camtschaticus" Biology 13, no. 1: 35. https://doi.org/10.3390/biology13010035
APA StyleKotsyuba, E., Pahlevaniane, A., Maslennikov, S., & Dyachuk, V. (2024). Development of Serotonergic and Dopaminergic Neuronal Networks of the Central Nervous System in King Crab, Paralithodes camtschaticus. Biology, 13(1), 35. https://doi.org/10.3390/biology13010035