Effects of Aquatic Plant Coverage on Diversity and Resource Use Efficiency of Phytoplankton in Urban Wetlands: A Case Study in Jinan, China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods and Materials
2.1. Study Area
2.2. Phytoplankton Collection and Functional Group Analysis
2.3. Measurement of Water Environmental Factors and Aquatic Plant Coverage
2.4. Calculation of Phytoplankton Diversity and Dominance Degrees
2.5. Phytoplankton Resource Use Efficiency
2.6. Data Analysis
3. Results
3.1. Physicochemical Characteristics in Different Aquatic Plant Coverage Groups
3.2. Phytoplankton Community Composition and Functional Groups
3.3. Differences in Species Abundance and Biomass of Phytoplankton by Category among Different Aquatic Plant Coverage Groups
3.4. Results of Multiple Regression Analysis
3.5. The PLS-SEM Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gardner, R.; Finlayson, C. Global Wetland Outlook: State of the World’s Wetlands and Their Services to People. In Ramsar Convention Secretariat; Stetson University College of Law Research Paper No. 2020-5; Ramsar Convention Secretariat: Gland, Switzerland, 5 October 2018; Available online: https://ssrn.com/abstract=3261606 (accessed on 25 December 2023).
- Zedler, J.B.; Kercher, S. Wetland Resources: Status, Trends, Ecosystem Services, and Restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef]
- Davidson, N.C. How Much Wetland Has the World Lost? Long-Term and Recent Trends in Global Wetland Area. Mar. Freshw. Res. 2014, 65, 934. [Google Scholar] [CrossRef]
- Dar, S.A.; Rashid, I.; Bhat, S.U. Linking Land System Changes (1980–2017) with the Trophic Status of an Urban Wetland: Implications for Wetland Management. Environ. Monit Assess 2021, 193, 710. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.I. Review of The Ecology of Freshwater Phytoplankton. J. Ecol. 1985, 73, 722–723. [Google Scholar] [CrossRef]
- Mulderij, G.; Smolders, A.J.P.; Van Donk, E. Allelopathic Effect of the Aquatic Macrophyte, Stratiotes Aloides, on Natural Phytoplankton. Freshw. Biol. 2006, 51, 554–561. [Google Scholar] [CrossRef]
- Søndergaard, M.; Lauridsen, T.L.; Johansson, L.S.; Jeppesen, E. Nitrogen or Phosphorus Limitation in Lakes and Its Impact on Phytoplankton Biomass and Submerged Macrophyte Cover. Hydrobiologia 2017, 795, 35–48. [Google Scholar] [CrossRef]
- Lu, B.; Xu, Z.; Li, J.; Xiaoli, C. Removal of Water Nutrients by Different Aquatic Plant Species: An Alternative Way to Remediate Polluted Rural Rivers. Ecol. Eng. 2018, 110, 18–26. [Google Scholar] [CrossRef]
- De-Souza, V.-R.; Alves-Amorim, C.; Moura, A.-N.; De-Souza, V.-R.; Alves-Amorim, C.; Moura, A.-N. Effects of the Submerged Macrophyte Ceratophyllum Demersum (Ceratophyllaceae) and the Cladoceran Moina Micrura (Cladocera: Moinidae) on Microalgal Interactions. Rev. Biol. Trop. 2021, 69, 1276–1288. [Google Scholar] [CrossRef]
- Jiang, F.Y.; Chen, X.; Luo, A.C. A Comparative Study on the Growth and Nitrogen and Phosphorus Uptake Characteristics of 15 Wetland Species. Chem. Ecol. 2011, 27, 263–272. [Google Scholar] [CrossRef]
- Żbikowski, J.; Simčič, T.; Pajk, F.; Poznańska-Kakareko, M.; Kakareko, T.; Kobak, J. Respiration Rates in Shallow Lakes of Different Types: Contribution of Benthic Microorganisms, Macrophytes, Plankton and Macrozoobenthos. Hydrobiologia 2019, 828, 117–136. [Google Scholar] [CrossRef]
- Gross, E.M.; Hilt (nee Körner), S.; Lombardo, P.; Mulderij, G. Searching for Allelopathic Effects of Submerged Macrophytes on Phytoplankton—State of the Art and Open Questions. Hydrobiologia 2007, 584, 77–88. [Google Scholar] [CrossRef]
- De Tezanos Pinto, P.; O’Farrell, I. Regime Shifts between Free-Floating Plants and Phytoplankton: A Review. Hydrobiologia 2014, 740, 13–24. [Google Scholar] [CrossRef]
- Guildford, S.J.; Hecky, R.E. Total Nitrogen, Total Phosphorus, and Nutrient Limitation in Lakes and Oceans: Is There a Common Relationship? Limnol. Oceanogr. 2000, 45, 1213–1223. [Google Scholar] [CrossRef]
- De Tezanos Pinto, P.; Allende, L.; O’Farrell, I. Influence of Free-Floating Plants on the Structure of a Natural Phytoplankton Assemblage: An Experimental Approach. J. Plankton Res. 2006, 29, 47–56. [Google Scholar] [CrossRef]
- Ji, G.; Xu, Z.-X.; Wang, L.-Q. Effects of Floating-Leaved Macrophytes on Water Quality and Phytoplankton: An in Situ Experiment in a Chinese Shallow Lake. Desalination Water Treat. 2016, 57, 27519–27530. [Google Scholar] [CrossRef]
- Srivastava, D.S.; Cardinale, B.J.; Downing, A.L.; Duffy, J.E.; Jouseau, C.; Sankaran, M.; Wright, J.P. Diversity Has Stronger Top-down than Bottom-up Effects on Decomposition. Ecology 2009, 90, 1073–1083. [Google Scholar] [CrossRef]
- Otero, J.; Álvarez-Salgado, X.A.; Bode, A. Phytoplankton Diversity Effect on Ecosystem Functioning in a Coastal Upwelling System. Front. Mar. Sci. 2020, 7, 592255. [Google Scholar] [CrossRef]
- Hodapp, D.; Hillebrand, H.; Striebel, M. “Unifying” the Concept of Resource Use Efficiency in Ecology. Front. Ecol. Evol. 2019, 6, 233. [Google Scholar] [CrossRef]
- Ptacnik, R.; Solimini, A.G.; Andersen, T.; Tamminen, T.; Brettum, P.; Lepistö, L.; Willén, E.; Rekolainen, S. Diversity Predicts Stability and Resource Use Efficiency in Natural Phytoplankton Communities. Proc. Natl. Acad. Sci. USA 2008, 105, 5134–5138. [Google Scholar] [CrossRef]
- Filstrup, C.T.; Hillebrand, H.; Heathcote, A.J.; Harpole, W.S.; Downing, J.A. Cyanobacteria Dominance Influences Resource Use Efficiency and Community Turnover in Phytoplankton and Zooplankton Communities. Ecol. Lett. 2014, 17, 464–474. [Google Scholar] [CrossRef]
- Tilman, D.; Lehman, C.L.; Thomson, K.T. Plant Diversity and Ecosystem Productivity: Theoretical Considerations. Proc. Natl. Acad. Sci. USA 1997, 94, 1857–1861. [Google Scholar] [CrossRef]
- McGill, B.J.; Enquist, B.J.; Weiher, E.; Westoby, M. Rebuilding Community Ecology from Functional Traits. Trends Ecol. Evol. 2006, 21, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Gross, N.; Bagousse-Pinguet, Y.L.; Liancourt, P.; Berdugo, M.; Gotelli, N.J.; Maestre, F.T. Functional Trait Diversity Maximizes Ecosystem Multifunctionality. Nat. Ecol. Evol. 2017, 1, 132. [Google Scholar] [CrossRef] [PubMed]
- Gerhard, M.; Schlenker, A.; Hillebrand, H.; Striebel, M. Environmental Stoichiometry Mediates Phytoplankton Diversity Effects on Communities’ Resource Use Efficiency and Biomass. J. Ecol. 2022, 110, 430–442. [Google Scholar] [CrossRef]
- Wall, S.; Ballek, L. Newsome Creek, Idaho: Revegetation Plan for a Floodplain Impacted by Historic Dredge Mining. ASMR 2009, 2009, 1497–1511. [Google Scholar] [CrossRef]
- Thomaz, S.M. Ecosystem Services Provided by Freshwater Macrophytes. Hydrobiologia 2023, 850, 2757–2777. [Google Scholar] [CrossRef]
- Wang, G.X.; Zhang, L.M.; Chua, H.; Li, X.D.; Xia, M.F.; Pu, P.M. A Mosaic Community of Macrophytes for the Ecological Remediation of Eutrophic Shallow Lakes. Ecol. Eng. 2009, 35, 582–590. [Google Scholar] [CrossRef]
- Sun, X. Research on the Characteristics of Urban Climate Change and the Impact from Urbanization in Jinan; Lanzhou University: Lanzhou, China, 2017. [Google Scholar]
- Ma, J. Study on Ecological Value and Planning Regulation of Spring-city Cultural Landscape Heritage in Jinan. Landsc. Des. 2023, 19–21. [Google Scholar] [CrossRef]
- Liu, Z. Construction and Application of Recreation Opportunity Spectrum in Wetland Natural Parks in Jinan. Master’s Thesis, Shandong Normal University, Jinan, China, 2023. [Google Scholar]
- Hu, H.; Wei, Y. The Freshwater Algae of China [Chinese]: Systematics, Taxonomy and Ecology. Available online: https://www.nhbs.com/the-freshwater-algae-of-china-chinese-book (accessed on 16 September 2023).
- Dai, G.; Zhong, J.; Hu, J.; Yang, P.; Fang, Y. Atlas of Major Algae in the Poyang Lake Basin; Science Press: Beijing, China, 2019; ISBN 978-7-03-061447-6. [Google Scholar]
- Wuxi Research Institute of Environmental. Most Common Algal Images of Taihu; Wuxi Research Institute of Environmental: Wuxi, China, 2017; ISBN 978-7-5111-3226-0. [Google Scholar]
- Wang, Q.; Pang, W. Atlas of Common Phytoplankton in the Lower Yangtze River; Science Press: Beijing, China, 2023; ISBN 978-7-03-075790-6. [Google Scholar]
- Hillebrand, H.; Dürselen, C.-D.; Kirschtel, D.; Pollingher, U.; Zohary, T. Biovolume Calculation for Pelagic and Benthic Microalgae. J. Phycol. 1999, 35, 403–424. [Google Scholar] [CrossRef]
- Reynolds, C.S.; Huszar, V.; Kruk, C.; Naselli-Flores, L.; Melo, S. Towards a Functional Classification of the Freshwater Phytoplankton. J. Plankton Res. 2002, 24, 417–428. [Google Scholar] [CrossRef]
- Padisák, J.; Crossetti, L.O.; Naselli-Flores, L. Use and Misuse in the Application of the Phytoplankton Functional Classification: A Critical Review with Updates. Hydrobiologia 2009, 621, 1–19. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, Y.; Tao, J.; Ye, L.; Wang, H.; Shan, K.; Jeppesen, E.; Song, L. Water Depth and Land-Use Intensity Indirectly Determine Phytoplankton Functional Diversity and Further Regulate Resource Use Efficiency at a Multi-Lake Scale. Sci. Total Environ. 2022, 834, 155303. [Google Scholar] [CrossRef]
- Cui, X.; Chen, J.; Li, W. Survey methods on aquatic macrophyte vegetation in lakes in the middle and lower reaches of Changjiang River. J. Wuhan Bot. Res. 1999, 17, 357–361. [Google Scholar]
- Villéger, S.; Mason, N.W.H.; Mouillot, D. New Multidimensional Functional Diversity Indices for a Multifaceted Framework in Functional Ecology. Ecology 2008, 89, 2290–2301. [Google Scholar] [CrossRef]
- Abonyi, A.; Horváth, Z.; Ptacnik, R. Functional Richness Outperforms Taxonomic Richness in Predicting Ecosystem Functioning in Natural Phytoplankton Communities. Freshw. Biol. 2018, 63, 178–186. [Google Scholar] [CrossRef]
- Mcnaughton, S.J. Relationships among Functional Properties of Californian Grassland. Nature 1967, 216, 168–169. [Google Scholar] [CrossRef]
- Weithoff, G. The Concepts of ‘Plant Functional Types’ and ‘Functional Diversity’ in Lake Phytoplankton—A New Understanding of Phytoplankton Ecology? Freshw. Biol. 2003, 48, 1669–1675. [Google Scholar] [CrossRef]
- Litchman, E.; Klausmeier, C.A. Trait-Based Community Ecology of Phytoplankton. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 615–639. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P. A Distance-Based Framework for Measuring Functional Diversity from Multiple Traits. Ecology 2010, 91, 299–305. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P.; Shipley, B.; Laliberté, M.E. Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology; R Package Version; R Foundation for Statistical Computing: Vienna, Austria, 2014; Volume 1, pp. 1–12. [Google Scholar]
- Esposito Vinzi, V.; Trinchera, L.; Squillacciotti, S.; Tenenhaus, M. REBUS-PLS: A Response-Based Procedure for Detecting Unit Segments in PLS Path Modelling. Appl. Stoch. Models Bus. Ind. 2008, 24, 439–458. [Google Scholar] [CrossRef]
- Tenenhaus, M.; Vinzi, V.E.; Chatelin, Y.-M.; Lauro, C. PLS Path Modeling. Comput. Stat. Data Anal. 2005, 48, 159–205. [Google Scholar] [CrossRef]
- Diniz, A.S.; Dantas, Ê.W.; do Nascimento Moura, A. The Role of Floating and Submerged Macrophytes in the Phytoplankton Taxonomic and Functional Diversity in Two Tropical Reservoirs. Hydrobiologia 2023, 850, 347–363. [Google Scholar] [CrossRef]
- Dhir, B.; Sharmila, P.; Saradhi, P.P. Potential of Aquatic Macrophytes for Removing Contaminants from the Environment. Crit. Rev. Environ. Sci. Technol. 2009, 39, 754–781. [Google Scholar] [CrossRef]
- Mulderij, G.; Van Nes, E.H.; Van Donk, E. Macrophyte–Phytoplankton Interactions: The Relative Importance of Allelopathy versus Other Factors. Ecol. Model. 2007, 204, 85–92. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic Shifts in Ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef]
- Madsen, T.V.; Cedergreen, N. Sources of Nutrients to Rooted Submerged Macrophytes Growing in a Nutrient-Rich Stream. Freshw. Biol. 2002, 47, 283–291. [Google Scholar] [CrossRef]
- Liu, M.; Chen, K.-N. Purification Effect of Submerged Macrophyte System with Different Plants Combinations and C/N Ratios. Huan Jing Ke Xue 2018, 39, 2706–2714. [Google Scholar] [CrossRef]
- Huang, R.; Yang, W.; Cheng, J.; Ni, D.; Shi, P.; Wang, Y. Effects of Potamogeton crispus L. and Elodea nuttallii on Phosphorus Migration and Transformation between Water and Sediment. Res. Environ. Sci. 2019, 32, 1204–1212. [Google Scholar] [CrossRef]
- Huang, P.; Zhang, D.; Bai, S.; Qin, S. Application of Combined Emergent Plants in Floating Bed for Phytoremediation of Landscape Pond in South China. Int. J. Environ. Technol. Manag. 2017, 20, 22–36. [Google Scholar] [CrossRef]
- Shi-rong, Z. Comparison of the Potential Water Purification by 39 Usually Used Ornamental Emerged Plants in the Artificial Floating Island. North. Hortic. 2013, 6, 72–75. [Google Scholar]
- Song, C.; Chen, J.; Ge, X.; Wu, W.; Fan, L.; Meng, S.; Hu, G. The Control of Nitrogen and Phosphorus to Tilapia Fish Pond by Floating-Bed-Grown Water Spinach (Ipomoea Aquatica). Chin. Agric. Sci. Bull. 2011, 27, 70. [Google Scholar]
- Alvarado, S.; Guédez, M.; Lué-Merú, M.P.; Nelson, G.; Alvaro, A.; Jesús, A.C.; Gyula, Z. Arsenic Removal from Waters by Bioremediation with the Aquatic Plants Water Hyacinth (Eichhornia Crassipes) and Lesser Duckweed (Lemna Minor). Bioresour. Technol. 2008, 99, 8436–8440. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Han, B.; Liu, Z. Floating-Leaved Macrophyte (Trapa Quadrispinosa Roxb) Beds Have Significant Effects on Sediment Resuspension in Lake Taihu, China. Hydrobiologia 2007, 581, 189–193. [Google Scholar] [CrossRef]
- Yao, L.; Zhao, X.; Zhou, G.-J.; Liang, R.; Gou, T.; Xia, B.; Li, S.; Liu, C. Seasonal Succession of Phytoplankton Functional Groups and Driving Factors of Cyanobacterial Blooms in a Subtropical Reservoir in South China. Water 2020, 12, 1167. [Google Scholar] [CrossRef]
- Machado, K.B.; Vieira, L.C.G.; Nabout, J.C. Predicting the Dynamics of Taxonomic and Functional Phytoplankton Compositions in Different Global Warming Scenarios. Hydrobiologia 2019, 830, 115–134. [Google Scholar] [CrossRef]
- Redfield, A.C. The Biological Control of Chemical Factors in the Environment. Am. Sci. 1958, 46, 230A-221. [Google Scholar]
- Escaravage, V.; Prins, T.C.; Smaal, A.C.; Peeters, J.C.H. The Response of Phytoplankton Communities to Phosphorus Input Reduction in Mesocosm Experiments. J. Exp. Mar. Biol. Ecol. 1996, 198, 55–79. [Google Scholar] [CrossRef]
- Gopal, B. Natural and Constructed Wetlands for Wastewater Treatement: Potentials and Problems. Water Sci. Technol. 1999, 40, 27–35. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Geng, Y.; Hu, H.; Yin, C.; Ouyang, Y.; Gui, J. Effect of N, P Concentration on Growth Rate. Acta Ecol. Sin. 2006, 26, 317–325. [Google Scholar] [CrossRef]
- Swift, T.J.; Perez-Losada, J.; Schladow, S.G.; Reuter, J.E.; Jassby, A.D.; Goldman, C.R. Water Clarity Modeling in Lake Tahoe: Linking Suspended Matter Characteristics to Secchi Depth. Aquat. Sci. 2006, 68, 1–15. [Google Scholar] [CrossRef]
- Striebel, M.; Behl, S.; Stibor, H. The Coupling of Biodiversity and Productivity in Phytoplankton Communities: Consequences for Biomass Stoichiometry. Ecology 2009, 90, 2025–2031. [Google Scholar] [CrossRef]
- Cadotte, M.W.; Carscadden, K.; Mirotchnick, N. Beyond Species: Functional Diversity and the Maintenance of Ecological Processes and Services. J. Appl. Ecol. 2011, 48, 1079–1087. [Google Scholar] [CrossRef]
- Klais, R.; Norros, V.; Lehtinen, S.; Tamminen, T.; Olli, K. Community Assembly and Drivers of Phytoplankton Functional Structure. Funct. Ecol. 2017, 31, 760–767. [Google Scholar] [CrossRef]
- Ye, L.; Chang, C.-W.; Matsuzaki, S.S.; Takamura, N.; Widdicombe, C.E.; Hsieh, C. Functional Diversity Promotes Phytoplankton Resource Use Efficiency. J. Ecol. 2019, 107, 2353–2363. [Google Scholar] [CrossRef]
- Gagic, V.; Bartomeus, I.; Jonsson, T.; Taylor, A.; Winqvist, C.; Fischer, C.; Slade, E.M.; Steffan-Dewenter, I.; Emmerson, M.; Potts, S.G.; et al. Functional Identity and Diversity of Animals Predict Ecosystem Functioning Better than Species-Based Indices. Proc. R. Soc. B Biol. Sci. 2015, 282, 20142620. [Google Scholar] [CrossRef]
- Filstrup, C.T.; King, K.B.S.; McCullough, I.M. Evenness Effects Mask Richness Effects on Ecosystem Functioning at Macro-Scales in Lakes. Ecol. Lett. 2019, 22, 2120–2129. [Google Scholar] [CrossRef]
Coverage (%) | Range (%) | Sample (n) |
---|---|---|
Low coverage group (LCG) | 0–25% | 32 |
Medium coverage group (MCG) | 26–35% | 24 |
High coverage group (HCG) | 36–66% | 22 |
Traits | Categories | Code |
---|---|---|
Morphological traits | ||
Biovolume (μm3) | <100, 100–1000, 1000–10,000, >10,000 | Sma, Med, Lar, Xla |
Greatest axial linear dimension (GALD) | <35 μm or >35 μm | Gal |
Life form | Single-celled, colonial, filamentous | Sin, Col, Fil |
Behavioral traits | ||
Motility | Presence/absence of flagella | Fla |
Vacuolated | Yes/no | Vac |
Physiological traits | ||
N2 fixation | Yes/no | N2f |
Si requirements | Yes/no | Sil |
Mixotrophy (phagotrophy) | Yes/no | Mix |
Heterotrophy | Yes/no | Het |
Pigment composition | Chl-b, Chl-c, phycobiliproteins | ChlB, ChlC, Phy |
Variable | Low Coverage Group | Medium Coverage Group | High Coverage Group | p | χ2 |
---|---|---|---|---|---|
Total aquatic plant coverage (%) | 0.127 ± 0.084 | 0.273 ± 0.041 | 0.42 ± 0.087 | <0.001 | 63.018 |
Submerged plant coverage (%) | 0.023 ± 0.044 | 0.046 ± 0.053 | 0.036 ± 0.053 | 0.106 | 4.486 |
Floating plant coverage (%) | 0.006 ± 0.017 | 0.009 ± 0.038 | 0.029 ± 0.064 | 0.132 | 4.047 |
Floating-leaved plants | 0.01 ± 0.027 | 0.046 ± 0.06 | 0.038 ± 0.06 | 0.004 | 10.941 |
Emergent plant coverage (%) | 0.087 ± 0.074 | 0.171 ± 0.077 | 0.317 ± 0.099 | <0.001 | 44.521 |
Water depth (WD) (m) | 1.658 ± 0.668 | 1.518 ± 0.833 | 1.5 ± 0.769 | 0.557 | 1.172 |
pH | 8.139 ± 0.452 | 8.268 ± 0.508 | 8.111 ± 0.336 | 0.492 | 1.42 |
Electrical conductivity (EC) (s/cm) | 1127.424 ± 829.96 | 1149.455 ± 718.367 | 890.5 ± 499.538 | 0.519 | 1.31 |
Dissolved oxygen concentration (DO) (mg/L) | 8.267 ± 2.525 | 8.75 ± 1.565 | 8.706 ± 1.355 | 0.768 | 0.527 |
Ammonium nitrogen (NH4+–N) (mg/L) | 0.279 ± 0.397 | 0.153 ± 0.182 | 0.167 ± 0.153 | 0.201 | 3.208 |
Nitrate nitrogen (NO3–N) (mg/L) | 3.018 ± 2.274 | 1.615 ± 1.865 | 1.738 ± 2.051 | 0.026 | 7.286 |
Total nitrogen (TN) (mg/L) | 4.175 ± 2.818 | 2.595 ± 2.799 | 2.92 ± 3.214 | 0.029 | 7.109 |
Total phosphorus (TP) (mg/L) | 0.065 ± 0.037 | 0.051 ± 0.023 | 0.051 ± 0.016 | 0.431 | 1.681 |
Phosphate (PO43−–P) (mg/L) | 0.029 ± 0.043 | 0.015 ± 0.014 | 0.014 ± 0.024 | 0.099 | 9.047 |
Suspended solids (SSs) (mg/L) | 81.091 ± 119.642 | 31.182 ± 27.150 | 20.056 ± 18.574 | 0.178 | 3.454 |
Chlorophyll-a (Chl–a) (μg/L) | 0.014 ± 0.01 | 0.011 ± 0.007 | 0.011 ± 0.007 | 0.474 | 1.491 |
Coverage | Dominance | Dominant Species |
---|---|---|
Low coverage group (LCG) | 0.153 | Phormidium tenue |
Medium coverage group (MCG) | 0.099 | Phormidium tenue |
0.025 | Merismopedia tenuissima | |
High coverage group (HCG) | 0.071 | Phormidium tenue |
0.097 | Anabaena circinalis |
Code | Habitat Template | Representative Genus/Species |
---|---|---|
A | Clear, deep-water oligotrophic lakes, usually well-mixed and phosphorus-deficient | Cyclotella comensis |
B | Mesotrophic, small to large, shallow lakes with vertical mixing | Cyclotella spp. |
C | Eutrophic small and medium lakes | Cyclotella meneghiniana |
D | Shallow, eutrophic, well-aerated waters, typically turbid | Synedra spp., Nitzschia spp. |
F | Clear mesotrophic lakes | Dictyosphaerium spp., Kirchneriella spp., Oocystis spp. |
G | Small, eutrophic, still lakes | Eudorina spp., Pandorina spp. |
H1 | Eutrophic, both stratified and shallow lakes with low nitrogen content | Anabaena flos-aquae, Anabaena circinalis |
J | Eutrophic shallow freshwaters, including low-gradient rivers | Pediastrum spp., Coelastrum spp., Crucigenia spp., Scenedesmus spp. |
K | Eutrophic shallow water | Aphanocapsa spp., Aphanothece spp. |
LM | Small–medium eutrophic–hypereutrophic, low-carbon waters | Microcystis spp. |
LO | Stratified mesotrophic lakes | Peridinium spp., Merismopedia spp., Ceratium spp., Ceratium spp. |
M | Eutrophication to severe eutrophication, small- and medium-sized water bodies | Microcystis spp. |
MP | Frequently churned, turbid, shallow lakes | Cocconeis spp., Dictyosphaerium spp., Surirella spp. Nitzschia spp., Chlorococcum spp., Oscillatoria spp. |
N | Summer in low-latitude or temperate lakes | Cosmarium spp. |
NA | Poor to mesotrophic, hydrostatic, low-latitude regions | Cosmarium spp. |
P | Eutrophic low-latitude or temperate lakes | Melosira spp., Closterium spp., Staurastrum spp. |
S1 | Turbid mixed environments | Phormidium spp., Lyngbya spp. |
S2 | Warm, shallow, highly alkaline waters | Spirulina spp. |
SN | Warm mixed epilimnia | Raphidiopsis spp. |
T | Continuously mixed epilimnia | Tribonema spp. |
TB | Highly lotic environments, rapids | Achnanthes spp., Fragilaria spp., Gomphonema spp., Melosira varians, Navicula spp., Nitzschia spp., Surirella spp. |
TC | Eutrophic lentic waters, or low-gradient lotic systems | Oscillatoria spp., Phormidium spp. |
W1 | Shallow waters with organic pollution | Euglena spp., Phacus spp., Lepocinclis spp. |
W2 | Mesotrophic pools, temporary shallow lakes | Trachelomonas spp., Strombomonas spp. |
X1 | Eutrophic shallow waters | Ochromonas spp. |
X2 | Moderately eutrophic to eutrophic shallow waters | Chrysocromulina spp. |
X3 | Shallow, clean mixed water bodies | Schroederia spp., Chlorella spp., Chromulina spp. |
Y | Medium to eutrophic, low-light still-water bodies | Cryptomonas spp., Teleaulax spp., Komma spp., Gymnodinium spp., Glenodinium spp. |
Variable | Regression Coefficient | Standard Error | t-Value | p-Value | R2 | p-Value | |
---|---|---|---|---|---|---|---|
Water depth (WD) | Submerged plants | −0.089 | 0.124 | −0.716 | 0.476 | 0.028 | 0.729 |
Floating-leaved plant | −0.054 | 0.121 | −0.445 | 0.658 | |||
Emergent plant | 0.05 | 0.12 | 0.417 | 0.678 | |||
Floating plant | −0.112 | 0.117 | −0.955 | 0.343 | |||
Total nitrogen (TN) | Submerged plants | −0.136 | 0.118 | −1.15 | 0.254 | 0.111 | 0.073 |
Floating-leaved plant | 0.026 | 0.115 | 0.224 | 0.823 | |||
Emergent plant | −0.307 | 0.114 | −2.68 | 0.009 | |||
Floating plant | 0.149 | 0.112 | 1.332 | 0.187 | |||
Chlorophyll-a (Chl-a) | Submerged plants | 0.163 | 0.122 | 1.332 | 0.187 | 0.048 | 0.461 |
Floating-leaved plant | −0.119 | 0.119 | −0.994 | 0.323 | |||
Emergent plant | 0.106 | 0.118 | 0.893 | 0.375 | |||
Floating plant | −0.115 | 0.116 | −0.991 | 0.325 | |||
Suspended solids (SSs) | Submerged plants | 0.003 | 0.114 | 0.027 | 0.978 | 0.18 | 0.006 |
Floating-leaved plant | −0.154 | 0.111 | −1.388 | 0.17 | |||
Emergent plant | −0.407 | 0.11 | −3.701 | <0.001 | |||
Floating plant | 0.009 | 0.107 | 0.08 | 0.937 | |||
Phosphate (PO43−–P) | Submerged plants | −0.089 | 0.121 | −0.743 | 0.46 | 0.066 | 0.29 |
Floating-leaved plant | 0.263 | 0.118 | 0.222 | 0.03 | |||
Emergent plant | −0.002 | 0.117 | −0.015 | 0.988 | |||
Floating plant | −0.029 | 0.114 | −0.261 | 0.795 |
Variable | Regression Coefficient | Standard Error | t-Value | p-Value | R2 | p-Value | |
---|---|---|---|---|---|---|---|
Species richness (SR) | Submerged plants | 0.133 | 0.116 | 1.147 | 0.255 | 0.048 | 0.197 |
Floating-leaf plant | 0.024 | 0.113 | 0.214 | 0.831 | |||
Emergent plant | 0.392 | 0.112 | 3.502 | <0.001 | |||
Floating plant | −0.021 | 0.109 | −0.191 | 0.849 | |||
FRic | Submerged plants | 0.141 | 0.116 | 1.218 | 0.227 | 0.145 | 0.022 |
Floating-leaf plant | −0.011 | 0.113 | −0.1 | 0.921 | |||
Emergent plant | 0.384 | 0.112 | 3.418 | 0.001 | |||
Floating plant | −0.075 | 0.11 | −0.683 | 0.497 | |||
Species richness (SR) | Water depth (WD) | 0.186 | 0.094 | 1.98 | 0.052 | 0.383 | <0.001 |
Total nitrogen (TN) | −0.042 | 0.103 | −0.405 | 0.686 | |||
Chlorophyll-a (Chl-a) | 0.353 | 0.094 | 3.743 | <0.001 | |||
Suspended solids (SSs) | −0.284 | 0.098 | −2.9 | 0.005 | |||
Phosphate (PO43−–P) | 0.366 | 0.1 | 3.673 | <0.001 | |||
FRic | Water depth (WD) | 0.186 | 0.093 | 2.005 | 0.049 | 0.399 | <0.001 |
Total nitrogen (TN) | −0.459 | 0.102 | −4.514 | <0.001 | |||
Chlorophyll-a (Chl-a) | 0.323 | 0.093 | 3.467 | 0.001 | |||
Suspended solids (SSs) | −0.071 | 0.097 | −0.737 | 0.463 | |||
Phosphate (PO43−–P) | 0.324 | 0.098 | 3.292 | 0.002 |
Variable | Regression Coefficient | Standard Error | t-Value | p-Value | R2 | p-Value | |
---|---|---|---|---|---|---|---|
RUE_TN | Submerged plants | 0.168 | 0.091 | 1.848 | 0.069 | 0.072 | 0.242 |
Floating-leaf plant | 0.021 | 0.089 | 0.241 | 0.81 | |||
Emergent plant | 0.138 | 0.088 | 1.565 | 0.122 | |||
Floating plant | −0.046 | 0.086 | −0.536 | 0.593 | |||
RUE_TP | Submerged plants | 0.047 | 0.029 | 1.636 | 0.106 | 0.06 | 0.339 |
Floating-leaf plant | 0.013 | 0.028 | 0.46 | 0.647 | |||
Emergent plant | −0.017 | 0.028 | −0.625 | 0.534 | |||
Floating plant | 0.005 | 0.027 | 0.198 | 0.844 | |||
RUE_TN | Water depth (WD) | −0.069 | 0.068 | −1.012 | 0.315 | 0.439 | <0.001 |
Total nitrogen (TN) | −0.461 | 0.074 | −6.218 | <0.001 | |||
Chlorophyll-a (Chl-a) | 0.203 | 0.068 | 2.982 | 0.004 | |||
Suspended solids (SSs) | 0.107 | 0.07 | 1.515 | 0.134 | |||
Phosphate (PO43−–P) | 0.163 | 0.072 | 2.278 | 0.026 | |||
RUE_TP | Water depth (WD) | −0.051 | 0.026 | −1.964 | 0.053 | 0.153 | 0.034 |
Total nitrogen (TN) | −0.03 | 0.029 | −1.052 | 0.297 | |||
Chlorophyll-a (Chl-a) | 0.057 | 0.026 | 2.199 | 0.031 | |||
Suspended solids (SSs) | 0.002 | 0.027 | 0.069 | 0.945 | |||
Phosphate (PO43−–P) | 0.04 | 0.028 | 1.462 | 0.148 | |||
RUE_TN | Species richness (SR) | −0.031 | 0.112 | −0.275 | 0.784 | 0.236 | <0.001 |
FRic | 0.389 | 0.112 | 3.457 | <0.001 | |||
RUE_TP | Species richness (SR) | 0.05 | 0.039 | 1.29 | 0.201 | 0.085 | 0.038 |
FRic | 0.024 | 0.039 | 0.61 | 0.544 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Lu, A.; Li, J.; Ma, M.; Meng, G.; Chen, Q.; Liu, G.; Yin, X. Effects of Aquatic Plant Coverage on Diversity and Resource Use Efficiency of Phytoplankton in Urban Wetlands: A Case Study in Jinan, China. Biology 2024, 13, 44. https://doi.org/10.3390/biology13010044
Jiang H, Lu A, Li J, Ma M, Meng G, Chen Q, Liu G, Yin X. Effects of Aquatic Plant Coverage on Diversity and Resource Use Efficiency of Phytoplankton in Urban Wetlands: A Case Study in Jinan, China. Biology. 2024; 13(1):44. https://doi.org/10.3390/biology13010044
Chicago/Turabian StyleJiang, Hongjingzheng, Aoran Lu, Jiaxin Li, Mengdi Ma, Ge Meng, Qi Chen, Gang Liu, and Xuwang Yin. 2024. "Effects of Aquatic Plant Coverage on Diversity and Resource Use Efficiency of Phytoplankton in Urban Wetlands: A Case Study in Jinan, China" Biology 13, no. 1: 44. https://doi.org/10.3390/biology13010044
APA StyleJiang, H., Lu, A., Li, J., Ma, M., Meng, G., Chen, Q., Liu, G., & Yin, X. (2024). Effects of Aquatic Plant Coverage on Diversity and Resource Use Efficiency of Phytoplankton in Urban Wetlands: A Case Study in Jinan, China. Biology, 13(1), 44. https://doi.org/10.3390/biology13010044