Quantifying the Ecological Performance of Migratory Bird Conservation: Evidence from Poyang Lake Wetlands in China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Map Data
2.2.2. Land Use Data
2.2.3. Migratory Bird Footprint Line Observation Data
2.3. Analytical Methods
2.3.1. InVEST Habitat Quality Model
2.3.2. Construction of Ecological Resistance Surface
- Ecological Resistance Assessment Indicators.
- Minimum Cumulative Resistance (MCR) Model.
- Morphological Spatial Pattern Analysis (MSPA).
2.3.3. Construction of Ecological Network Based on Circuit Theory
- Circuit Theory
- Extraction of ecological corridor
- Identification of Ecological Pinch Points and Ecological Barrier Points
3. Results
3.1. Spatiotemporal Changes in Habitat Quality
3.2. Formation of Ecological Resistance Surface and Identification of Ecological Corridors
3.3. Construction and Quality Analysis of the Ecological Network
4. Discussion
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Afonso, E.; Fu, R.; Dupaix, A.; Goydadin, A. Creating small food-habituated groups might alter genetic diversity in the endangered Yunnan snub-nosed monkey. Glob. Ecol. Conserv. 2021, 26, e01422. [Google Scholar] [CrossRef]
- Roberts, K.E.; Smith, B.J.; Burkholder, D.; Hart, K.M. Evaluating the use of marine protected areas by endangered species: A habitat selection approach. Ecol. Solut. Evid. 2021, 2, e12035. [Google Scholar] [CrossRef]
- Wong, M.H.G.; Mo, Y.; Chan, B.P.L. Past, present and future of the globally endangered Eld’s deer (Rucervus eldii) on Hainan Island, China. Glob. Ecol. Conserv. 2021, 26, e01505. [Google Scholar] [CrossRef]
- Alcocer-Rodríguez, M.; Arroyo-Rodríguez, V.; Galán-Acedo, C.; Cristóbal-Azkarate, J.; Asensio, N.; Rito, K.F.; Hawes, J.E.; Veà, J.J.; Jacob, D.C. Evaluating extinction debt in fragmented forests: The rapid recovery of a critically endangered primate. Anim. Conserv. 2021, 24, 432–444. [Google Scholar] [CrossRef]
- Van Helden, B.E.; Close, P.G.; Stewart, B.A.; Speldewinde, P.C.; Comer, S.J. Critically endangered marsupial calls residential gardens home. Anim. Conserv. 2021, 24, 445–456. [Google Scholar] [CrossRef]
- Shen, Y.; Tu, Z.; Zhang, Y.; Zhong, W.; Xia, H.; Hao, Z.; Zhang, C.; Li, H. Predicting the impact of climate change on the distribution of two relict Liriodendron species by coupling the MaxEnt model and actual physiological indicators in relation to stress tolerance. J. Environ. Manag. 2022, 322, 116024. [Google Scholar] [CrossRef]
- Santorufo, L.; Ienco, A.; Scalercio, S. Climate warming drives divergence of montane butterfly communities in Southern Italy. Reg. Environ. Chang. 2021, 21, 56. [Google Scholar] [CrossRef]
- Yan, X.; Wang, R.; Niu, Z. Response of China’s Wetland NDVI to Climate Changes. Wetlands 2021, 42, 55. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Zhu, Y. The Effects of Climate Change on Birds and Approaches to Response. IOP Conf. Ser. Earth. Environ. Sci. 2022, 1011, 012054. [Google Scholar] [CrossRef]
- Penn, J.L.; Deutsch, C. Avoiding ocean mass extinction from climate warming. Science 2022, 376, 524–526. [Google Scholar] [CrossRef]
- Zhang, P. Climate Change and Global Biodiversity. Ecol. Econ. 2023, 39, 5–8. [Google Scholar]
- Bănăduc, D.; Simić, V.; Cianfaglione, K.; Doru, B.; Vladica, S.; Cianfaglione, K.; Barinova, S.; Afanasyev, S.; Öktener, A.; McCall, G.; et al. Freshwater as a sustainable resource and generator of secondary resources in the 21st century: Stressors, threats, risks, management and protection strategies, and conservation approaches. Int. J. Environ. Res. Public Health 2022, 19, 16570. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Deng, Z.; Hu, X.; Ding, Z.; Xiao, R.; Xiu, C.; Wu, Z.; Wang, G.; Han, D.; Zhang, Y.; et al. Impact of Urbanization in the Guangdong-Hong Kong-Macao Greater Bay Area on Regional Bird Distribution and Habitat Connectivity. Biol. Sci. 2023, 31, 72–84. [Google Scholar] [CrossRef]
- Zhang, P.; Ding, Y.; Cai, Y.; Zhang, G.; Wu, Y.; Fu, C.; Wang, H. Research progress on methods of river ecological corridor extraction and their application. Acta Ecol. Sin. 2022, 42, 2010–2021. [Google Scholar]
- Kietzka, G.J.; Pryke, J.S.; Gaigher, R.; Sanways, M.G. Webs of well-designed conservation corridors maintain river ecosystem integrity and biodiversity in plantation mosaics. Biol. Conserv. 2021, 254, 108965. [Google Scholar] [CrossRef]
- Chen, J.; Hao, L. Simulation of Water Connectivity in Qinhuai River Basin Based on Circuit Theory. J. China Hydrol. 2023, 43, 11–16. [Google Scholar] [CrossRef]
- Bosso, L.; Panzuto, R.; Balestrieri, R.; Smeraldo, S.; Chiusano, M.L.; Raffini, F.; Canestelli, D.; Musco, L.; Gili, C. Integrating citizen science and spatial ecology to inform management and conservation of the Italian seahorses. Ecol. Econ. 2024, 79, 102402. [Google Scholar] [CrossRef]
- Rego, M.A.; Del-Rio, G.; Brumfield, R.T. Subspecies-level distribution maps for birds of the Amazon basin and adjacent areas. J. Biogeogr. 2024, 51, 14–28. [Google Scholar] [CrossRef]
- Eline, D.V.; Cohen, J.B.; Whipps, C.M.; Cheeseman, A.E. Habitat management to reduce competitive interactions: Case study of native and invading cottontails. J. Wildlife Manag. 2023, 87, e22327. [Google Scholar] [CrossRef]
- Kor, L.; O’Hickey, B.; Hanson, M.; Coroi, M. Assessing habitat connectivity in environmental impact assessment: A case-study in the UK context. Impact. Assess. Project. Appraisal. 2022, 40, 495–506. [Google Scholar] [CrossRef]
- Li, F.; Zhang, D.; Wang, M.; Chen, F.; Zhai, H.; Yang, H.; Zhang, K. Suitability Assessment of Fish Habitat in the Riverine Section at Xulong Hydropower Station on Jinsha River. J. Hydroecol. 2023, 44, 53–62. [Google Scholar] [CrossRef]
- Tang, Z.; Luo, H.; Wang, J.; Liu, J.; You, Z. Potential suitable habitat and protection gap analysis of white-lipped deer (Cervus albirostris) based on GIS and Maxent model. Acta Ecol. Sin. 2022, 42, 9394–9403. [Google Scholar] [CrossRef]
- Berkström, C.; Wennerström, L.; Bergström, U. Ecological connectivity of the marine protected area network in the Baltic Sea, Kattegat and Skagerrak: Current knowledge and management needs. Ambio 2022, 51, 1485–1503. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Van, M.E.S.; Hillebrand, J.; Rose, L.; Klau, G.W. Coco: Conservation Design for Optimal Ecological Connectivity. Front. Ecol. Evol. 2023, 11, 1149571. [Google Scholar] [CrossRef]
- Zhang, X.; Ren, Y. Identification of Key Regions for Ecological Restoration of Territorial Space in Nanchang from the Perspective of Ecological Security Patterns. Modern. Urban. Res. 2023, 8, 105–112. [Google Scholar]
- Mao, Z.; Hong, Y.; Wang, Y.; Fu, L.; Luo, H.; Huang, Y.; Liu, T.; Bai, W.; Zhang, J.; Zhou, C. Dynamic patterns of habitat connectivity of local giant panda populations in Liangshan Mountains. Chin. J. Ecol. 2023, 42, 8–715. [Google Scholar] [CrossRef]
- Li, Y.; Song, Z. Have protected areas in China achieved the ecological and economic “win-win” goals? Evidence from the Giant Panda Reserves of the Min Mont Range. For. Policy Econ. 2022, 144, 102845. [Google Scholar] [CrossRef]
- Xu, Q.; Zhou, L.; Xia, S.; Zhou, J. Impact of urbanisation intensity on bird diversity in river wetlands around Chaohu Lake, China. Animals 2022, 12, 473. [Google Scholar] [CrossRef]
- Dong, T.; Huang, M.; Wei, X.; Ma, S.; Yue, H.; Liu, W.; Zheng, J.; Wang, G.; Ma, R.; Ding, Y.; et al. Potential spatial distribution pattern and landscape connectivity of Pelophylax plancyi in Shanghai, China. Biodivers. Sci. 2023, 31, 49–59. [Google Scholar]
- Galtbalt, B.; Natsagdorj, T.; Sukhbaatar, T.; Mirande, C.; Archibald, G.; Batbayar, N.; Klaassen, M. Breeding and migration performance metrics highlight challenges for White-naped Cranes. Sci. Rep. 2022, 12, 18261. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Shen, J.; Xiao, Y.; Li, S.; Cao, M. Habitat suitability and potential biological corridors for waterbirds in Yancheng coastal wetland of China. Ecol. Indic. 2023, 148, 110090. [Google Scholar] [CrossRef]
- Tan, W.C.; Herrel, A.; Rödder, D. A global analysis of habitat fragmentation research in reptiles and amphibians: What have we done so far? Biodivers. Conserv. 2023, 32, 439–468. [Google Scholar] [CrossRef]
- Zhao, G.; Li, Y.; Zhou, L.; Gao, H. Evaporative water loss of 1.42 million global lakes. Nat. Commun. 2022, 13, 3686. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, J.; Li, M. Analysis on spatial and temporal changes of regional habitat quality based on the spatial pattern reconstruction of land use. Acta Geographica. Sin. 2020, 75, 160–178. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Qian, F.; Ma, K. Historical Evolution of Habitat Suitabilityof Oriental White Stork Stop over at the Yellow River Delta during Spring Migration. J. Northeast. For. Univ. 2022, 50, 93–99. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, S.; Wen, H.; Fan, X. Research on Multi-Scale Ecological Network Connectivity—Taking the Guangdong–Hong Kong–Macao Greater Bay Area as a Case Study. Int. J. Environ. 2022, 19, 15268. [Google Scholar] [CrossRef]
- Wu, Q.; Aubret, F.; Wu, L.; Ding, P. Sex-specific shifts in morphology and diet in a frog after 50 years of anthropogenic habitat fragmentation. Divers. Distrib. 2022, 28, 2200–2214. [Google Scholar] [CrossRef]
- Xie, J.; Xie, B.; Zhou, K.; Li, J.; Xiao, J.; Liu, C.; Zhang, X. Evolution of bird habitat quality driving mechanisms and ecological network weights. Glob. Ecol. Conserv. 2023, 46, e02618. [Google Scholar] [CrossRef]
- Gao, Z. Impacts of Land Use Changes on the Habitat of Red Crowned crane in Songnen Plain under the Background of Intensive Agriculture; Northeast Forestry University: Harbin, China, 2023. [Google Scholar]
- Almenar, J.B.; Bolowich, A.; Elliot, T.; Geneletti, D.; Rugani, B. Assessing habitat loss, fragmentation and ecological connectivity in Luxembourg to support spatial planning. Landscape Urban Plan. 2019, 189, 335–351. [Google Scholar] [CrossRef]
- Beger, M.; Metaxas, A.; Balbar, A.C.; McGowan, J.A.; Daigle, R.; Kuempel, C.D.; Treml, E.A.; Possingham, H.P. Demystifying ecological connectivity for actionable spatial conservation planning. Trends Ecol. Evol. 2022, 37, 1079–1091. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Tang, Y.; Yang, S.; Wu, W.; Feng, X.; Ma, Q.; Niu, D.; Ma, J.; Ma, Z. Changes in wintering Hooded Cranes and their habitats at Chongming Dongtan over the past 20 years. Avian Res. 2023, 14, 119–125. [Google Scholar] [CrossRef]
- Deng, G. Response of Siberian Crane Population to Hydrological and Vegetation Changes in Transit Stopover; Northeast Normal University: Harbin, China, 2021. [Google Scholar]
- Hu, B.; Zou, L.; Qi, S.; Yin, Q.; Luo, J.; Zuo, L.; Meng, Y. Evaluating the vulnerability of siberian crane habitats and the influences of water level intervals in Poyang Lake wetland, China. Remote Sens. 2022, 14, 2774. [Google Scholar] [CrossRef]
- Duan, H.; Yu, X.; Shan, K.; Zhang, C.; Liu, H. Effects of habitat loss on migratory shorebird community structure at stopover sites: A case study in the Yellow River Delta, China. Front. Mar. Sci. 2022, 9, 1049765. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Melville, D.S.; Choi, C.; Tan, K.; Liu, J.; Li, J.; Zhang, S.; Cao, L.; Ma, Z. Impacts of habitat loss on migratory shorebird populations and communities at stopover sites in the Yellow Sea. Biol. Conserv. 2022, 269, 109547. [Google Scholar] [CrossRef]
- Li, M.; Qian, F.; Wu, A.; Pan, K.; Wu, T. Identification of Important Stopover Sites for Siberian Cranes and Changes of Their Land Use Patterns. Wetland. Sci. 2021, 19, 304–316. [Google Scholar] [CrossRef]
- Ellis, K.S.; Pearse, A.T.; Brandt, D.A.; Bidwell, M.T.; Harrell, W.; Butler, M.J.; Burg, M.P. Balancing future renewable energy infrastructure siting and associated habitat loss for migrating whooping cranes. Front. Ecol. Evol. 2022, 10, 931260. [Google Scholar] [CrossRef]
- Timmers, R.; Kuijk, M.V.; Verweij, P.A.; Ghazoul, J.; Hautier, Y.; Laurance, W.F.; Arriaga-Weiss, S.L.; Askins, R.A.; Battisti, C.; Breg, A.; et al. Conservation of birds in fragmented landscapes requires protected areas. Front. Ecol. Environ. 2022, 20, 361–369. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, J.; Su, K.; Zhang, H.; Zhao, C.; Zhang, L. Community Structure of Macrobenthos and Benthic Habitat Health Assessment at the Mouth of Jiaozhou Bay. J. Guangdong Ocean. Univ. 2023, 43, 1–10. [Google Scholar] [CrossRef]
- Mérő, T.; Malbaša, D.; Šećerov, I.; Žuljević, A. Human disturbance affects distribution but not nesting success of the Great Reed Warbler in a semi-urban reed habitat. Acrocephalus 2021, 42, 71–78. [Google Scholar] [CrossRef]
- Caldeira, Y.M.; Casarim, R.; Pompeu, P.S. Natural variation of physical-habitat conditions among least-disturbed streams of a neotropical river basin in Brazil. Water Biol. Security 2023, 2, 100091. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Li, B.; Gao, Y.; Xia, L. Preliminary study on the construction of county ecological network in Northwest Shanxi Loess Plateau. Environ. Ecol. 2023, 5, 36–45, 81. [Google Scholar]
- Xue, J.; Li, Z.; Feng, Q.; Gui, J.; Zhang, B. Construction of ecological conservation pattern based on ecosystem services of Three River Headwaters, Western China. Glob. Ecol. Conserv. 2023, 44, e02491. [Google Scholar] [CrossRef]
- Miguel, M.; Catarina, F.; Marta, V.; Helena, C.; Artur, G. Spatial assessment of habitat conservation status in a macaronesian island based on the invest model: A case study of pico island (azores, portugal). Land Use Policy 2018, 78, 637–649. [Google Scholar]
- Lai, J.; Li, J.; Liu, L. Predicting Soil Erosion Using RUSLE and GeoSOS-FLUS Models: A Case Study in Kunming, China. Forests 2024, 15, 1039. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses. A Guide to Conservation Planning. In The USDA Agricultural Handbook No. 537, Maryland; USDA: Washington, DC, USA, 1978. [Google Scholar]
- Chen, X.; Ding, W. Identification of key areas for ecological restoration of territorial space based on ecological security pattern: A case of five plateau lake basins in central Yunnan. J. Environ. Eng. Technol. 2023, 13, 2248–2260. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R.; Liu, C.; Zhou, L. Simulation and Prediction of Habitat Guality in Qilian Mountain Nature Reserve. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2023, 47, 1–12. Available online: http://kns.cnki.net/kcms/detail/32.1161.s.20230705.0912.002.html (accessed on 1 August 2024).
- McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef]
- Yu, L.Y.; Zhang, Y.F. Humans and birds depend on each other to fry Heji-East Dongting Lake, Nature Reserve Bird Diary. China Qual. Miles Line 2001, Z1, 44–47. [Google Scholar]
- Zhang, X.Z.; Peng, G.H.; Yang, Y.; Li, X.Y.; Yang, S.J. The economic cost of human-bird conflict in the agricultural ecosystem of Lashihai. Ecol. Econ. 2008, 9, 130–132. [Google Scholar]
- Wu, D.W.; Hu, C.S.; Zhang, M.M.; Li, H.J. Spatial relevancy between foraging sites of overwintering Black-necked Cranes and farming lands in Caohai Wetland, Guizhou, China. Acta Ecol. Sin. 2021, 41, 3238–3247. [Google Scholar]
- Li, Y.B.; Chen, C.; Liu, B.W. Status of the Conflict Between the Resident and Wildlife and Damage Control in Hunchun Area Jilin Province. Chin. J. Wildlife 2018, 39, 962–965. [Google Scholar] [CrossRef]
- Liu, J.; Que, P.J.; Zhang, Z.W. Species Diversity and Suggestions for Adjustment of the National Protection Level of Waterbirds in China. Wetland. Sci. 2019, 17, 123–136. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.K.; Shan, J.H.; Tu, X.B.; Zhang, Y.H.; Li, Y.; Wang, L.F.; Ying, Q. Community structure, abundance and spatial distribution of water birds wintering in Poyang Lake wetland. J. Lake Sci. 2019, 31, 183–194. [Google Scholar]
- Zhang, G.Y.; Li, G.M.; Liu, L.T.; Yao, X.L. Assessment on Economic Loss of Farmers Caused by Overwintering Water Birds in Shengjin Lake Feeding in Surrounding Farmlands and Compensation. Wetland. Sci. 2019, 17, 504–510. [Google Scholar] [CrossRef]
- Fraissinet, M.; Ancillotto, L.; Migliozzi, A.; Capasso, S.; Bosso, L.; Chamberlain, D.E.; Russo, D. Responses of avian assemblages to spatiotemporal landscape dynamics in urban ecosystems. Landsc. Ecol. 2023, 38, 293–305. [Google Scholar] [CrossRef]
- Purwanto; Andradi-Brown, D.A.; Matualage, D.; Rumengan, I.; Awaludinnoer; Pada, D.; Hidayat, N.I.; Amkieltiela; Fox, H.E.; Fox, M.; et al. The Bird’s Head Seascape Marine Protected Area network—Preventing biodiversity and ecosystem service loss amidst rapid change in Papua, Indonesia. Conserv. Sci. Pract. 2021, 3, e393. [Google Scholar]
- Talukdar, S.; Khatun, R.; Pal, S. Wetland Habitat Health Condition Modeling Using Ensemble Machine Learning Algorithms. In Water Resource Management in Climate Change Scenario: Innovations in Geospatial Techniques and Models; Springer Nature: Cham, Switzerland, 2024; pp. 35–57. [Google Scholar] [CrossRef]
- Khatun, R.; Das, S. Analysing sensitivity of conditioning factors for wetland habitat quality modelling. Ecohydrol. Hydrobiol. 2024; in press. [Google Scholar] [CrossRef]
- Chai, L.; Wei, L.; Cai, P.; Liu, J.; Kang, J.; Zhang, Z. Risk assessment of land subsidence based on GIS in the Yongqiao area, Suzhou City, China. Sci. Rep. 2024, 14, 11377. [Google Scholar] [CrossRef]
- Shi, Y.; Fan, X.; Ding, X.; Sun, M. An Assessment of Ecological Sensitivity and Landscape Pattern in Abandoned Mining Land. Sustainability 2024, 16, 1105. [Google Scholar] [CrossRef]
- Gu, Z.; Gong, J.; Wang, Y. Construction and evaluation of ecological networks among natural protected areas based on ”quality-structure–function”: A case study of the Qinghai-Tibet area. Ecol. Indic. 2023, 151, 110228. [Google Scholar] [CrossRef]
- Liang, T.; Huang, Q.; Yang, F.; Mao, Y.; Luo, Y. Evolution and Prediction of Habitat Quality in the Three Gorges Reservoir (Chongqing section) Based on the InVEST-PLUS Model. Resour. Environ. Yangtze Basin 2023, 32, 2184–2195. [Google Scholar]
- Zhang, X.R.; Zeng, H.; Zhang, H.; Huang, Q.; Zhang, L.Y. Heavy metal enrichment and migration characteristics in the mollusks from the river-lake ecosystems of the Poyang Lake. Acta Sci. Circumstantiae 2022, 42, 452–463. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; He, H. Analysis of Land Use Change and Habitat Quality Evolution Basedon InVEST and PLUS Models: Example from Hanzhong Basin. Northwestern Geol. 2024, 57, 271–284. [Google Scholar]
- Xiang, A.; Zhao, X.; Huang, P.; Yi, Q.; Pu, J.; Shi, X.; Chu, B. Diagnosis and restoration of priority area of territorial ecological restoration in Plateau Lake Watershed. Acta. Ecol. Sin. 2023, 43, 6143–6153. [Google Scholar]
- Cui, W.; Wei, Y.; Su, H.; Liu, X.; Wu, D.; Zhang, N.; Ji, N. Research on Ecological Security Pattern Construction of the Protection and Development Belt of Wuyishan National Park. Res. Environ. Sci. 2024, 37, 1–17. [Google Scholar] [CrossRef]
- Ding, M.; Liu, W.; Xiao, L.; Zhong, F.; Lu, N.; Zhang, J.; Zhang, Z.; Xu, X.; Wang, K. Construction and optimization strategy of ecological security pattern in a rapidly urbanizing region: A case study in central-south China. Ecol. Indic. 2022, 136, 108604. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, H.; Liu, Y. Urban ecological corridors construction: A review. Acta Ecol. Sin. 2017, 37, 23–30. [Google Scholar] [CrossRef]
- Zhang, H.; Ye, C.; Hu, M. Identification and Restoration Strategy of Key Areas of Ecological Restoration in Urban Agglomeration Around Poyang Lake Based on Ecological Security Pattern. Res. Soil Water Conserv. 2023, 30, 393–402. [Google Scholar] [CrossRef]
- Li, K.; Zhang, L.; Li, H.; Zhang, E.; Li, Y.; Song, C.; Liu, G. Identification of the Key Regions of Spatial Ecological Restoration in the Northwest Shanxi Based on the MSPA Model and Circuit Theory. Arid. Zone. Res. 2024, 41, 1–13. [Google Scholar] [CrossRef]
Threat Factor | Cultivated Land | Urban Land | Rural Settlements | Other Construction Land |
---|---|---|---|---|
Weight | 0.15 | 1 | 1 | 0.5 |
Maximum stress distance/km | 1 | 5 | 3 | 3 |
Decay type | Linear | Exponential | Exponential | Exponential |
Land Use Type | Habitat Suitability | Threat Factors | |||
---|---|---|---|---|---|
Cultivated Land | Urban Land | Rural Settlements | Other Construction Land | ||
Paddy field | 0.3 | 0.2 | 0.8 | 0.8 | 0.6 |
Dry land | 0.2 | 0.3 | 0.7 | 0.7 | 0.5 |
Forest land | 1 | 0.3 | 0.7 | 0.8 | 0.8 |
Shrub wood | 0.7 | 0.3 | 0.8 | 0.7 | 0.8 |
Sparse wood | 0.4 | 0.2 | 0.7 | 0.6 | 0.5 |
Other forest land | 0.6 | 0.2 | 0.7 | 0.6 | 0.5 |
High-coverage grassland | 0.7 | 0.3 | 0.7 | 0.7 | 0.6 |
Medium-coverage grassland | 0.5 | 0.4 | 0.7 | 0.7 | 0.6 |
Low-coverage grassland | 0.3 | 0.5 | 0.7 | 0.7 | 0.6 |
River and canals | 0.8 | 0.3 | 0.8 | 0.6 | 0.8 |
Lakes | 0.8 | 0.3 | 0.8 | 0.6 | 0.8 |
Reservoirs and ponds | 0.7 | 0.5 | 0.8 | 0.5 | 0.7 |
Mudflat | 0.6 | 0.6 | 0.8 | 0.7 | 0.7 |
Urban land | 0 | 0 | 0 | 0 | 0 |
Rural settlements | 0 | 0 | 0 | 0 | 0 |
Other construction land | 0 | 0 | 0 | 0 | 0 |
Marshland | 0.5 | 0.4 | 0.4 | 0.2 | 0.3 |
Bare land | 0 | 0 | 0 | 0 | 0 |
Bare rock texture | 0 | 0 | 0 | 0 | 0 |
Resistance Assessment Indicators (Weights) | Grading of Indicators | Landscape Resistance |
---|---|---|
Land use type (0.5) | Forest | 5 |
Bush | 10 | |
Grass | 20 | |
Water | 20 | |
Arable land | 50 | |
Bare land | 70 | |
Other land | 100 | |
Elevation (0.2) | <50 m | 20 |
50~100 m | 40 | |
100~500 m | 60 | |
500~1000 m | 80 | |
>1000 m | 100 | |
NDVI (0.2) | <0.2 | 20 |
0.2~0.4 | 40 | |
0.4~0.6 | 60 | |
0.6~0.8 | 80 | |
>0.8 | 100 | |
Slope (0.1) | <5° | 20 |
5°~10° | 40 | |
10°~20° | 60 | |
20°~30° | 80 | |
>30° | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Gao, S.; Leng, M.; Zhou, B.; Wu, B. Quantifying the Ecological Performance of Migratory Bird Conservation: Evidence from Poyang Lake Wetlands in China. Biology 2024, 13, 786. https://doi.org/10.3390/biology13100786
Song Z, Gao S, Leng M, Zhou B, Wu B. Quantifying the Ecological Performance of Migratory Bird Conservation: Evidence from Poyang Lake Wetlands in China. Biology. 2024; 13(10):786. https://doi.org/10.3390/biology13100786
Chicago/Turabian StyleSong, Zhenjiang, Shichao Gao, Mingni Leng, Bo Zhou, and Baoshu Wu. 2024. "Quantifying the Ecological Performance of Migratory Bird Conservation: Evidence from Poyang Lake Wetlands in China" Biology 13, no. 10: 786. https://doi.org/10.3390/biology13100786
APA StyleSong, Z., Gao, S., Leng, M., Zhou, B., & Wu, B. (2024). Quantifying the Ecological Performance of Migratory Bird Conservation: Evidence from Poyang Lake Wetlands in China. Biology, 13(10), 786. https://doi.org/10.3390/biology13100786