Codes between Poles: Linking Transcriptomic Insights into the Neurobiology of Bipolar Disorder
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Nature of the Dataset
2.2. Pre-Processing of Dataset
2.3. Intramodular Connectivity Analysis
2.4. Functional Annotation and Pathway Enrichment of Modules
2.5. Network Pharmacology Assessment of Disease-Associated Variants
3. Results
3.1. Intramodular Connectivity Analysis
3.2. Functional Annotation and Pathway Enrichment
3.3. Network Pharmacology Assessment of Disease-Associated Variants
4. Discussion
4.1. Genetic Evidence of Bipolar Disorder Occurrence
4.2. Deregulated Transcription of Neurotransmitters in the Nucleus Accumbens
4.3. Neurotransmission Impairment in the Dorsolateral Prefrontal Cortex
4.4. Risk Genes and Polymorphisms in Bipolar Disorder
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel-Ramsay, J.E.; Sharp, S.J.; Ulack, C.J.; Chiang, K.S.; di Scalea, T.L.; O’Hara, S.; Carberry, K.; Strakowski, S.M.; Suarez, J.; Teisberg, E.; et al. Experiences that matter in bipolar disorder: A qualitative study using the capability, comfort and calm framework. Int. J. Bipolar Disord. 2023, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Chen, Y.; Su, X.; Wang, M.; Li, Q.; Shao, Z.; Sun, L. Global, regional and national burdens of bipolar disorders in adolescents and young adults: A trend analysis from 1990 to 2019. Gen. Psychiatry 2024, 37, e101255. [Google Scholar] [CrossRef]
- Krebs, C.E.; Ori, A.P.S.; Vreeker, A.; Wu, T.; Cantor, R.M.; Boks, M.P.M.; Kahn, R.S.; Loohuis, L.M.O.; Ophoff, R.A. Whole blood transcriptome analysis in bipolar disorder reveals strong lithium effect. Psychol. Med. 2020, 50, 2575–2586. [Google Scholar] [CrossRef]
- Holmgren, A.; Akkouh, I.; O’Connell, K.S.; Osete, J.R.; Bjørnstad, P.M.; Djurovic, S.; Hughes, T. Bipolar patients display stoichiometric imbalance of gene expression in post-mortem brain samples. Mol. Psychiatry 2024, 29, 1128–1138. [Google Scholar] [CrossRef]
- Ardesch, D.J.; Libedinsky, I.; Scholtens, L.H.; Wei, Y.; van den Heuvel, M.P. Convergence of Brain Transcriptomic and Neuroimaging Patterns in Schizophrenia, Bipolar Disorder, Autism Spectrum Disorder, and Major Depressive Disorder. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2023, 8, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Wongkoblap, A.; Vadillo, M.A.; Curcin, V. Researching Mental Health Disorders in the Era of Social Media: Systematic Review. J. Med. Internet Res. 2017, 19, E228. [Google Scholar] [CrossRef] [PubMed]
- Malla, A.; Joober, R.; Garcia, A. “Mental illness is like any other medical illness”: A critical examination of the statement and its impact on patient care and society. J. Psychiatry Neurosci. 2015, 40, 147. [Google Scholar] [CrossRef] [PubMed]
- Lyu, N.; Wang, H.; Zhao, Q.; Fu, B.; Li, J.; Yue, Z.; Huang, J.; Yang, F.; Liu, H.; Zhang, L.; et al. Peripheral biomarkers to differentiate bipolar depression from major depressive disorder: A real-world retrospective study. BMC Psychiatry 2024, 24, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Stark, R.; Grzelak, M.; Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. 2019, 20, 631–656. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.P.T.; Tayo, L.L. Theoretical Studies of DNA Microarray Present Potential Molecular and Cellular Interconnectivity of Signaling Pathways in Immune System Dysregulation. Genes 2024, 15, 393. [Google Scholar] [CrossRef] [PubMed]
- Sakrajda, K.; Bilska, K.; Czerski, P.M.; Narożna, B.; Dmitrzak-Węglarz, M.; Heilmann-Heimbach, S.; Brockschmidt, F.F.; Herms, S.; Nöthen, M.M.; Cichon, S.; et al. Abelson Helper Integration Site 1 haplotypes and peripheral blood expression associates with lithium response and immunomodulation in bipolar patients. Psychopharmacology 2024, 241, 727–738. [Google Scholar] [CrossRef] [PubMed]
- Petty, F.; Kramer, G.L.; Fulton, M.; Moeller, F.G.; Rush, A.J. Low Plasma GABA Is a Trait-Like Marker for Bipolar Illness. Neuropsychopharmacology 1993, 9, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Bella, F.; Muscatello, M.R.A.; D’Ascola, A.; Campo, S. Gene Expression Analysis of nc-RNAs in Bipolar and Panic Disorders: A Pilot Study. Genes 2023, 14, 1778. [Google Scholar] [CrossRef] [PubMed]
- Luykx, J.; Giuliani, F.; Veldink, J.; Kahn, R. RNA Sequencing in Bipolar Disorder: From Long Non-coding to Circular rnas. Eur. Psychiatry 2017, 41, S56. [Google Scholar] [CrossRef]
- Darby, M.M.; Yolken, R.H.; Sabunciyan, S. Consistently altered expression of gene sets in postmortem brains of individuals with major psychiatric disorders. Transl. Psychiatry 2016, 6, e890. [Google Scholar] [CrossRef] [PubMed]
- Ellis, S.E.; Panitch, R.; West, A.B.; Arking, D.E. Transcriptome analysis of cortical tissue reveals shared sets of downregulated genes in autism and schizophrenia. Transl. Psychiatry 2016, 6, e817. [Google Scholar] [CrossRef] [PubMed]
- Liharska, L.E.; Park, Y.J.; Ziafat, K.; Wilkins, L.; Silk, H.; Linares, L.M.; Thompson, R.C.; Vornholt, E.; Sullivan, B.; Cohen, V.; et al. A study of gene expression in the living human brain. MedRxiv 2023, 2, 23288916. [Google Scholar] [CrossRef]
- Fromer, M.; Roussos, P.; Sieberts, S.K.; Johnson, J.S.; Kavanagh, D.H.; Perumal, T.M.; Ruderfer, D.M.; Oh, E.C.; Topol, A.; Shah, H.R.; et al. Gene Expression Elucidates Functional Impact of Polygenic Risk for Schizophrenia. Nat. Neurosci. 2016, 19, 1442. [Google Scholar] [CrossRef] [PubMed]
- Raj, T.; Li, Y.I.; Wong, G.; Humphrey, J.; Wang, M.; Ramdhani, S.; Wang, Y.C.; Ng, B.; Gupta, I.; Haroutunian, V.; et al. Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility. Nat. Genet. 2018, 50, 1584–1592. [Google Scholar] [CrossRef]
- Gandal, M.J.; Zhang, P.; Hadjimichael, E.; Walker, R.L.; Chen, C.; Liu, S.; Won, H.; Van Bakel, H.; Varghese, M.; Wang, Y.; et al. Transcriptome-wide isoform-level dysregulation in ASD, schizophrenia, and bipolar disorder. Science 2018, 362, eaat8127. [Google Scholar] [CrossRef]
- Ramaker, R.C.; Bowling, K.M.; Lasseigne, B.N.; Hagenauer, M.H.; Hardigan, A.A.; Davis, N.S.; Gertz, J.; Cartagena, P.M.; Walsh, D.M.; Vawter, M.P.; et al. Post-mortem molecular profiling of three psychiatric disorders. Genome Med. 2017, 9, 72. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Jung, D.; Yao, R. ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 2021, 49, D545–D551. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Brouwer, C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics 2013, 29, 1830–1831. [Google Scholar] [CrossRef] [PubMed]
- Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020, 48, D845–D855. [Google Scholar] [CrossRef]
- Stahl, E.A.; Breen, G.; Forstner, A.J.; McQuillin, A.; Ripke, S.; Trubetskoy, V.; Mattheisen, M.; Wang, Y.; Coleman, J.R.I.; Gaspar, H.A.; et al. Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder. Nat. Genet. 2019, 51, 793. [Google Scholar] [CrossRef] [PubMed]
- Mullins, N.; Forstner, A.J.; O’Connell, K.S.; Coombes, B.; Coleman, J.R.I.; Qiao, Z.; Als, T.D.; Bigdeli, T.B.; Børte, S.; Bryois, J.; et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat. Genet. 2021, 53, 817–829. [Google Scholar] [CrossRef] [PubMed]
- Palmer, D.S.; Howrigan, D.P.; Chapman, S.B.; Adolfsson, R.; Bass, N.; Blackwood, D.; Boks, M.P.M.; Chen, C.Y.; Churchhouse, C.; Corvin, A.P.; et al. Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nat. Genet. 2022, 54, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Scofield, M.D.; Heinsbroek, J.A.; Gipson, C.D.; Kupchik, Y.M.; Spencer, S.; Smith, A.C.W.; Roberts-Wolfe, D.; Kalivas, P.W. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol. Rev. 2016, 68, 816. [Google Scholar] [CrossRef]
- Shivacharan, R.S.; Rolle, C.E.; Barbosa, D.A.N.; Cunningham, T.N.; Feng, A.; Johnson, N.D.; Safer, D.L.; Bohon, C.; Keller, C.; Buch, V.P.; et al. Pilot study of responsive nucleus accumbens deep brain stimulation for loss-of-control eating. Nat. Med. 2022, 28, 1791–1796. [Google Scholar] [CrossRef]
- Harris, H.; Peng, Y. Evidence and explanation for the involvement of the nucleus accumbens in pain processing. Neural Regen. Res. 2020, 15, 597. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, M.; Xiao, L.; Gui, L.; Zheng, W.; Bai, L.; Su, B.; Li, B.; Xu, Y.; Pan, W.; et al. Potential therapeutic mechanism of deep brain stimulation of the nucleus accumbens in obsessive-compulsive disorder. Front. Cell. Neurosci. 2023, 16, 1057887. [Google Scholar] [CrossRef] [PubMed]
- Shirayama, Y.; Chaki, S. Neurochemistry of the Nucleus Accumbens and its Relevance to Depression and Antidepressant Action in Rodents. Curr. Neuropharmacol. 2006, 4, 277. [Google Scholar] [CrossRef] [PubMed]
- Koob, G.F.; Volkow, N.D. Neurocircuitry of Addiction. Neuropsychopharmacology 2010, 35, 217–238. [Google Scholar] [CrossRef]
- Liu, R.; Wang, Y.; Chen, X.; Zhang, Z.; Xiao, L.; Zhou, Y. Anhedonia correlates with functional connectivity of the nucleus accumbens subregions in patients with major depressive disorder. Neuroimage Clin. 2021, 30, 102599. [Google Scholar] [CrossRef]
- Misaki, M.; Suzuki, H.; Savitz, J.; Drevets, W.C.; Bodurka, J. Individual Variations in Nucleus Accumbens Responses Associated with Major Depressive Disorder Symptoms. Sci. Rep. 2016, 6, 21227. [Google Scholar] [CrossRef] [PubMed]
- Wolfenberger, T.; Diaz, A.P.; Bockmann, T.; Selvaraj, S.; Sanches, M.; Soares, J.C. Predominant polarity and associated post-traumatic stress disorder in patients with comorbid bipolar disorder and borderline personality disorder: A cross-sectional study. Braz. J. Psychiatry 2022, 44, 557. [Google Scholar] [CrossRef] [PubMed]
- Azorin, J.M.; Kaladjian, A.; Adida, M.; Fakra, E.; Belzeaux, R.; Hantouche, E.; Lancrenon, S. Factors associated with borderline personality disorder in major depressive patients and their relationship to bipolarity. Eur. Psychiatry 2013, 28, 463–468. [Google Scholar] [CrossRef]
- Shen, J.; Tomar, J.S. Elevated Brain Glutamate Levels in Bipolar Disorder and Pyruvate Carboxylase-Mediated Anaplerosis. Front. Psychiatry 2021, 12, 640977. [Google Scholar] [CrossRef]
- Brady, R.O.; Mccarthy, J.M.; Prescot, A.P.; Jensen, J.E.; Cooper, A.J.; Cohen, B.M.; Renshaw, P.F.; Ongür, D. Brain gamma-aminobutyric acid (GABA) abnormalities in bipolar disorder. Bipolar Disord. 2013, 15, 434. [Google Scholar] [CrossRef]
- Martinho, R.; Oliveira, A.; Correia, G.; Marques, M.; Seixas, R.; Serrão, P.; Moreira-Rodrigues, M. Epinephrine May Contribute to the Persistence of Traumatic Memories in a Post-traumatic Stress Disorder Animal Model. Front. Mol. Neurosci. 2020, 13, 588802. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.J.; Hsu, L.S.; Shia, Y.T.; Lin, M.W.; Lin, C.M. The β-catenin/TCF complex as a novel target of resveratrol in the Wnt/β-catenin signaling pathway. Biochem. Pharmacol. 2012, 84, 1143–1153. [Google Scholar] [CrossRef] [PubMed]
- Martin, P.M.; Yang, X.; Robin, N.; Lam, E.; Rabinowitz, J.S.; Erdman, C.A.; Quinn, J.; Weiss, L.A.; Hamilton, S.P.; Kwok, P.Y.; et al. A rare WNT1 missense variant overrepresented in ASD leads to increased Wnt signal pathway activation. Transl. Psychiatry 2013, 3, e301. [Google Scholar] [CrossRef] [PubMed]
- Levchenko, A.; Davtian, S.; Freylichman, O.; Zagrivnaya, M.; Kostareva, A.; Malashichev, Y. Beta-catenin in schizophrenia: Possibly deleterious novel mutation. Psychiatry Res. 2015, 228, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Grünblatt, E.; Nemoda, Z.; Werling, A.M.; Roth, A.; Angyal, N.; Tarnok, Z.; Thomsen, H.; Peters, T.; Hinney, A.; Hebebrand, J.; et al. The involvement of the canonical Wnt-signaling receptor LRP5 and LRP6 gene variants with ADHD and sexual dimorphism: Association study and meta-analysis. Am. J. Med. Genet. 2019, 180, 365. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Nyholt, D.R. Gene-based analyses reveal novel genetic overlap and allelic heterogeneity across five major psychiatric disorders. Hum. Genet. 2017, 136, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Wisniewska, M.B. Physiological Role of β-Catenin/TCF Signaling in Neurons of the Adult Brain. Neurochem. Res. 2013, 38, 1144–1155. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Xiao, Q.; Xiao, J.; Niu, C.; Li, Y.; Zhang, X.; Zhou, Z.; Shu, G.; Yin, G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- Hajek, T.; Kopecek, M.; Höschl, C.; Alda, M. Smaller hippocampal volumes in patients with bipolar disorder are masked by exposure to lithium: A meta-analysis. J. Psychiatry Neurosci. 2012, 37, 333. [Google Scholar] [CrossRef]
- Emrich, H.M. Possible Role of Opioids in Mental Disorders. In Psychoneuroendocrine Dysfunction; Springer, Boston, MA, USA, 1984; pp. 293–307. [CrossRef]
- Nakamoto, K.; Tokuyama, S. Stress-Induced Changes in the Endogenous Opioid System Cause Dysfunction of Pain and Emotion Regulation. Int. J. Mol. Sci. 2023, 24, 11713. [Google Scholar] [CrossRef]
- Lutz, P.E.; Kieffer, B.L. Opioid receptors: Distinct roles in mood disorders. Trends Neurosci. 2013, 36, 195. [Google Scholar] [CrossRef]
- Qi, X.; Wen, Y.; Li, P.; Liang, C.; Cheng, B.; Ma, M.; Cheng, S.; Zhang, L.; Liu, L.; Kafle, O.P.; et al. An integrative analysis of genome-wide association study and regulatory SNP annotation datasets identified candidate genes for bipolar disorder. Int. J. Bipolar Disord. 2020, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Lindtröm, L.H.; Winderlöv, E.; Gunne, L.-M.; Wahlström, A.; Terenius, L. Endorphins in human cerebrospinal fluid: Clinical correlations to some psychotic states. Acta Psychiatr. Scand. 1978, 57, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Genazzani, A.R.; Petraglia, F.; Facchinetti, F.; Monittola, C.; Scarone, S.; Brambilla, F. Opioid Plasma Levels in Primary Affective Disorders: Effect of Desimipramine Therapy. Neuropsychobiology 1984, 12, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, phenylalanine, and catecholamine synthesis and function in the brain. J. Nutr. 2007, 137, 1539S–1547S. [Google Scholar] [CrossRef]
- Daubner, S.C.; Le, T.; Wang, S. Tyrosine Hydroxylase and Regulation of Dopamine Synthesis. Arch. Biochem. Biophys. 2011, 508, 1. [Google Scholar] [CrossRef] [PubMed]
- Gamo, N.J.; Arnsten, A.F.T. Molecular Modulation of Prefrontal Cortex: Rational Development of Treatments for Psychiatric Disorders. Behav. Neurosci. 2011, 125, 282. [Google Scholar] [CrossRef]
- Klumpp, H.; Deldin, P. Review of brain functioning in depression for semantic processing and verbal fluency. Int. J. Psychophysiol. 2010, 75, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Pomarol-Clotet, E.; Alonso-Lana, S.; Moro, N.; Sarró, S.; Bonnin, M.C.; Goikolea, J.M.; Fernández-Corcuera, P.; Amann, B.L.; Romaguera, A.; Vieta, E.; et al. Brain functional changes across the different phases of bipolar disorder. Br. J. Psychiatry 2015, 206, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.C.; Scheller, R.H. Mechanisms of Synaptic Vesicle Exocytosis. Annu. Rev. Cell Dev. Biol. 2000, 16, 19–49. [Google Scholar] [CrossRef]
- Ramakrishnan, N.A.; Drescher, M.J.; Drescher, D.G. The SNARE complex in neuronal and sensory cells. Mol. Cell Neurosci. 2012, 50, 58. [Google Scholar] [CrossRef] [PubMed]
- Cupertino, R.B.; Kappel, D.B.; Bandeira, C.E.; Schuch, J.B.; da Silva, B.S.; Müller, D.; Bau, C.H.D.; Mota, N.R. SNARE complex in developmental psychiatry: Neurotransmitter exocytosis and beyond. J. Neural Transm. 2016, 123, 867–883. [Google Scholar] [CrossRef] [PubMed]
- de Bartolomeis, A.; De Simone, G.; De Prisco, M.; Barone, A.; Napoli, R.; Beguinot, F.; Billeci, M.; Fornaro, M. Insulin effects on core neurotransmitter pathways involved in schizophrenia neurobiology: A meta-analysis of preclinical studies. Implic. Treat. Mol. Psychiatry 2023, 28, 2811. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, C.R.; Finnell, J.E. Beyond the hypothalamus: Roles for insulin as a regulator of neurotransmission, motivation, and feeding. Neuropsychopharmacology 2023, 48, 232–233. [Google Scholar] [CrossRef]
- Blum, K.; Bowirrat, A.; Elman, I.; Baron, D.; Thanos, P.K.; Gold, M.S.; Hanna, C.; Makale, M.T.; Sunder, K.; Jafari, N.; et al. Evidence for the DRD2 Gene as a Determinant of Reward Deficiency Syndrome (RDS). Clin. Exp. Psychol. 2023, 9, 8. [Google Scholar] [PubMed]
- Huang, C.C.; Chang, Y.H.; Lee, S.Y.; Chen, S.L.; Chen, S.H.; Chu, C.H.; Huang, S.Y.; Tzeng, N.S.; Lee, I.H.; Yeh, T.L.; et al. The interaction between BDNF and DRD2 in Bipolar II disorder but not in bipolar i disorder. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2012, 159B, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Chen, S.L.; Chang, Y.H.; Chen, S.H.; Chu, C.H.; Huang, S.Y.; Tzeng, N.S.; Wang, C.L.; Lee, I.H.; Yeh, T.L.; et al. The ALDH2 and DRD2/ANKK1 genes interacted in bipolar II but not bipolar I disorder. Pharmacoge. Genom. 2010, 20, 500–506. [Google Scholar] [CrossRef]
- Sun, Q.; Yuan, F.; Yuan, R.; Ren, D.; Zhu, Y.; Bi, Y.; Hu, J.; Guo, Z.; Xu, F.; Niu, W.; et al. GRIK4 and GRM7 gene may be potential indicator of venlafaxine treatment reponses in Chinese of Han ethnicity. Medicine 2019, 98, e15456. [Google Scholar] [CrossRef] [PubMed]
- Knight, H.M.; Walker, R.; James, R.; Porteous, D.J.; Muir, W.J.; Blackwood, D.H.R.; Pickard, B.S. GRIK4/KA1 protein expression in human brain and correlation with bipolar disorder risk variant status. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2012, 159B, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Pickard, B.S.; Knight, H.M.; Hamilton, R.S.; Soares, D.C.; Walker, R.; Boyd, J.K.F.; Machell, J.; Maclean, A.; McGhee, K.A.; Condie, A.; et al. A common variant in the 3′UTR of the GRIK4 glutamate receptor gene affects transcript abundance and protects against bipolar disorder. Proc. Natl. Acad. Sci. USA 2008, 105, 14940–14945. [Google Scholar] [CrossRef]
- Li, T.; Forbes, M.E.; Fuller, G.N.; Li, J.; Yang, X.; Zhang, W. IGFBP2: Integrative hub of developmental and oncogenic signaling network. Oncogene 2020, 39, 2243. [Google Scholar] [CrossRef] [PubMed]
- Bezchlibnyk, Y.B.; Xu, L.; Wang, J.F.; Young, L.T. Decreased expression of insulin-like growth factor binding protein 2 in the prefrontal cortex of subjects with bipolar disorder and its regulation by lithium treatment. Brain Res. 2007, 1147, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, A.M.; Torres-Alemán, I. The many faces of insulin-like peptide signalling in the brain. Nat. Rev. Neurosci. 2012, 13, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Mikhalitskaya, E.V.; Vyalova, N.M.; Ermakov, E.A.; Levchuk, L.A.; Simutkin, G.G.; Bokhan, N.A.; Ivanova, S.A. Association of Single Nucleotide Polymorphisms of Cytokine Genes with Depression, Schizophrenia and Bipolar Disorder. Genes 2023, 14, 1460. [Google Scholar] [CrossRef]
- de Marco, A.; Scozia, G.; Manfredi, L.; Conversi, D. A Systematic Review of Genetic Polymorphisms Associated with Bipolar Disorder Comorbid to Substance Abuse. Genes 2022, 13, 1303. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.S.; Liu, X.F.; Aragam, N. A genome-wide meta-analysis identifies novel loci associated with schizophrenia and bipolar disorder. Schizophr. Res. 2010, 124, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Kohshour, M.O.; Papiol, S.; Ching, C.R.K.; Schulze, T.G. Genomic and neuroimaging approaches to bipolar disorder. BJPsych Open 2022, 8, e36. [Google Scholar] [CrossRef] [PubMed]
- Nadal, R. Pharmacology of the Atypical Antipsychotic Remoxipride, a Dopamine D2 Receptor Antagonist. CNS Drug Rev. 2001, 7, 265. [Google Scholar] [CrossRef]
- Simmons, B.; Kuo, A. Analgesics, Tranquilizers, and Sedatives, Cardiac Intensive Care; Elsevier: Amsterdam, The Netherlands, 2019; pp. 421–431.e5. [Google Scholar] [CrossRef]
- Mecasermin for primary insulin-like growth factor-1 deficiency. Aust. Prescr. 2022, 45, 215. [CrossRef]
- Scheller, E.L.; Krebsbach, P.H. Gene Therapy: Design and Prospects for Craniofacial Regeneration. J. Dent. Res. 2009, 88, 585. [Google Scholar] [CrossRef]
- Chanchal, D.K.; Chaudhary, J.S.; Kumar, P.; Agnihotri, N.; Porwal, P. CRISPR-Based Therapies: Revolutionizing Drug Development and Precision Medicine. Curr. Gene Ther. 2024, 24, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Madigan, V.; Zhang, F.; Dahlman, J.E. Drug delivery systems for CRISPR-based genome editors. Nat. Rev. Drug Discov. 2023, 22, 875–894. [Google Scholar] [CrossRef] [PubMed]
Sample | Gene | Variant | Type |
---|---|---|---|
nAcc | DRD2 | rs1801028 | missense variant |
GFRA2 | rs7833426 | intron variant | |
DCBLD1 | rs62433108 | intron variant | |
AnCg | ST8SIA2 | rs4777989 | intron variant |
ADAMTS16 | rs16875288 | intron variant | |
DLPFC | FOXO3 | rs1536057 | intron variant |
rs1935952 | |||
rs2802292 | |||
ITGA9 | rs166508 | intron variant | |
CUBN | rs7904579 | intron variant | |
PLCB4 | rs2299682 | intron variant | |
RORB | rs1327836 | intron variant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, J.P.T.; Tayo, L.L. Codes between Poles: Linking Transcriptomic Insights into the Neurobiology of Bipolar Disorder. Biology 2024, 13, 787. https://doi.org/10.3390/biology13100787
Garcia JPT, Tayo LL. Codes between Poles: Linking Transcriptomic Insights into the Neurobiology of Bipolar Disorder. Biology. 2024; 13(10):787. https://doi.org/10.3390/biology13100787
Chicago/Turabian StyleGarcia, Jon Patrick T., and Lemmuel L. Tayo. 2024. "Codes between Poles: Linking Transcriptomic Insights into the Neurobiology of Bipolar Disorder" Biology 13, no. 10: 787. https://doi.org/10.3390/biology13100787
APA StyleGarcia, J. P. T., & Tayo, L. L. (2024). Codes between Poles: Linking Transcriptomic Insights into the Neurobiology of Bipolar Disorder. Biology, 13(10), 787. https://doi.org/10.3390/biology13100787