Integrating Molecular Perspectives: Strategies for Comprehensive Multi-Omics Integrative Data Analysis and Machine Learning Applications in Transcriptomics, Proteomics, and Metabolomics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods for Integrating Multi-Omics Data
2.1. Correlation-Based Methods
2.1.1. Gene Co-Expression Analysis Integrated with Metabolomics Data
2.1.2. Gene–Metabolite Network
2.1.3. Similarity Network Fusion (SNF)
2.1.4. Enzyme and Metabolite-Based Network
2.2. Combined Omics Approaches
2.2.1. Pathway Enrichment from Differentially Expressed Genes and Metabolites
2.2.2. Integrating Genome-Scale Models with Metabolomics and Transcriptomics Data
2.2.3. Gecko Models
2.2.4. Strategies for Integrating Proteomics and Transcriptomics Data
Differentially Expressed Genes and Proteins
Observing Delays between Omics Data
Interactome Analysis
2.3. Machine Learning Methods Based on Omics Data
2.3.1. Transcriptomics Data
2.3.2. Proteomics Data
2.3.3. Metabolomics Data
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hasin, Y.; Seldin, M.; Lusis, A. Multi-Omics Approaches to Disease. Genome Biol. 2017, 18, 83. [Google Scholar] [CrossRef]
- Hasanzad, M.; Sarhangi, N.; Ehsani Chimeh, S.; Ayati, N.; Afzali, M.; Khatami, F.; Nikfar, S.; Aghaei Meybodi, H.R. Precision Medicine Journey through Omics Approach. J. Diabetes Metab. Disord. 2022, 21, 881–888. [Google Scholar] [CrossRef] [PubMed]
- Karczewski, K.J.; Snyder, M.P. Integrative Omics for Health and Disease. Nat. Rev. Genet. 2018, 19, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Picard, M.; Scott-Boyer, M.P.; Bodein, A.; Périn, O.; Droit, A. Integration Strategies of Multi-Omics Data for Machine Learning Analysis. Comput. Struct. Biotechnol. J. 2021, 19, 3735–3746. [Google Scholar] [CrossRef] [PubMed]
- Rozanova, S.; Barkovits, K.; Nikolov, M.; Schmidt, C.; Urlaub, H.; Marcus, K. Quantitative Mass Spectrometry-Based Proteomics: An Overview. Methods Mol. Biol. 2021, 2228, 85–116. [Google Scholar] [CrossRef] [PubMed]
- Reel, P.S.; Reel, S.; Pearson, E.; Trucco, E.; Jefferson, E. Using Machine Learning Approaches for Multi-Omics Data Analysis: A Review. Biotechnol. Adv. 2021, 49, 107739. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, L.M.; Borelli, G.; Camargo, A.P.; de Assis, M.A.; de Ferraz, S.M.F.; Fiamenghi, M.B.; José, J.; Mofatto, L.S.; Nagamatsu, S.T.; Persinoti, G.F.; et al. Bioinformatics Applied to Biotechnology: A Review towards Bioenergy Research. Biomass Bioenergy 2019, 123, 195–224. [Google Scholar] [CrossRef]
- Wang, R.; Li, B.; Lam, S.M.; Shui, G. Integration of Lipidomics and Metabolomics for In-Depth Understanding of Cellular Mechanism and Disease Progression. J. Genet. Genom. 2020, 47, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Idle, J.R.; Gonzalez, F.J. Metabolomics. Cell Metab. 2007, 6, 348–351. [Google Scholar] [CrossRef]
- Athieniti, E.; Spyrou, G.M. A Guide to Multi-Omics Data Collection and Integration for Translational Medicine. Comput. Struct. Biotechnol. J. 2023, 21, 134–149. [Google Scholar] [CrossRef]
- Budzinski, I.G.F.; de Moraes, F.E.; Cataldi, T.R.; Franceschini, L.M.; Labate, C.A. Network Analyses and Data Integration of Proteomics and Metabolomics from Leaves of Two Contrasting Varieties of Sugarcane in Response to Drought. Front. Plant Sci. 2019, 10, 446557. [Google Scholar] [CrossRef] [PubMed]
- Dimitrakopoulos, C.; Hindupur, S.K.; Hafliger, L.; Behr, J.; Montazeri, H.; Hall, M.N.; Beerenwinkel, N. Network-Based Integration of Multi-Omics Data for Prioritizing Cancer Genes. Bioinformatics 2018, 34, 2441–2448. [Google Scholar] [CrossRef] [PubMed]
- Misra, B.B.; Langefeld, C.; Olivier, M.; Cox, L.A. Integrated Omics: Tools, Advances and Future Approaches. J. Mol. Endocrinol. 2019, 62, R21–R45. [Google Scholar] [CrossRef] [PubMed]
- Cambiaghi, A.; Ferrario, M.; Masseroli, M. Analysis of Metabolomic Data: Tools, Current Strategies and Future Challenges for Omics Data Integration. Brief. Bioinform. 2017, 18, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Bersanelli, M.; Mosca, E.; Remondini, D.; Giampieri, E.; Sala, C.; Castellani, G.; Milanesi, L. Methods for the Integration of Multi-Omics Data: Mathematical Aspects. BMC Bioinform. 2016, 17, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, A.; Kusano, M.; Redestig, H.; Arita, M.; Saito, K. Integrated Omics Approaches in Plant Systems Biology. Curr. Opin. Chem. Biol. 2009, 13, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Hrovatin, K.; Fischer, D.S.; Theis, F.J. Toward Modeling Metabolic State from Single-Cell Transcriptomics. Mol. Metab. 2022, 57, 101396. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, Z.; Fu, Y.; Yang, Y.; Lu, J.; Pan, M.; Wen, T.; Xie, X.; Bai, Y.; Ge, Q. Single-Cell Multi-Omics Sequencing and Its Application in Tumor Heterogeneity. Brief. Funct. Genom. 2023, 22, 313–328. [Google Scholar] [CrossRef] [PubMed]
- Dimitriu, M.A.; Lazar-Contes, I.; Roszkowski, M.; Mansuy, I.M. Single-Cell Multiomics Techniques: From Conception to Applications. Front. Cell Dev. Biol. 2022, 10, 854317. [Google Scholar] [CrossRef]
- Flynn, E.; Almonte-Loya, A.; Fragiadakis, G.K. Single-cell multiomics. Annu. Rev. Biomed. Data Sci. 2023, 6, 313–337. [Google Scholar] [CrossRef]
- Adossa, N.; Khan, S.; Rytkönen, K.T.; Elo, L.L. Computational Strategies for Single-Cell Multi-Omics Integration. Comput. Struct. Biotechnol. J. 2021, 19, 2588–2596. [Google Scholar] [CrossRef]
- Baysoy, A.; Bai, Z.; Satija, R.; Fan, R. The Technological Landscape and Applications of Single-Cell Multi-Omics. Nat. Rev. Mol. Cell Biol. 2023, 24, 695–713. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Yu, R.; Chen, X. Editorial: Integrative Analysis of Single-Cell and/or Bulk Multi-Omics Sequencing Data. Front. Genet. 2023, 13, 1121999. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Mohanty, V.; Dede, M.; Tsai, K.; Daher, M.; Li, L.; Rezvani, K.; Chen, K. Characterizing Cancer Metabolism from Bulk and Single-Cell RNA-Seq Data Using METAFlux. Nat. Commun. 2023, 14, 4883. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Chen, W.; Jin, H.; Chen, X. A Review of Single-Cell RNA-Seq Annotation, Integration, and Cell-Cell Communication. Cells 2023, 12, 1970. [Google Scholar] [CrossRef] [PubMed]
- Serin, E.A.R.; Nijveen, H.; Hilhorst, H.W.M.; Ligterink, W. Learning from Co-Expression Networks: Possibilities and Challenges. Front. Plant Sci. 2016, 7, 185898. [Google Scholar] [CrossRef]
- Zeng, F.; Shi, M.; Xiao, H.; Chi, X. WGCNA-Based Identification of Hub Genes and Key Pathways Involved in Nonalcoholic Fatty Liver Disease. BioMed Res. Int. 2021, 2021, 5633211. [Google Scholar] [CrossRef]
- Choi, H.; Na, K.J. Integrative Analysis of Imaging and Transcriptomic Data of the Immune Landscape Associated with Tumor Metabolism in Lung Adenocarcinoma: Clinical and Prognostic Implications. Theranostics 2018, 8, 1956–1965. [Google Scholar] [CrossRef]
- Liu, P.; Luo, J.; Zheng, Q.; Chen, Q.; Zhai, N.; Xu, S.; Xu, Y.; Jin, L.; Xu, G.; Lu, X.; et al. Integrating Transcriptome and Metabolome Reveals Molecular Networks Involved in Genetic and Environmental Variation in Tobacco. DNA Res. 2020, 27, dsaa006. [Google Scholar] [CrossRef]
- Amiri, F.; Moghadam, A.; Tahmasebi, A.; Niazi, A. Identification of Key Genes Involved in Secondary Metabolite Biosynthesis in Digitalis Purpurea. PLoS ONE 2023, 18, e0277293. [Google Scholar] [CrossRef]
- Moghadam, A.; Foroozan, E.; Tahmasebi, A.; Taghizadeh, M.S.; Bolhassani, M.; Jafari, M. System Network Analysis of Rosmarinus Officinalis Transcriptome and Metabolome—Key Genes in Biosynthesis of Secondary Metabolites. PLoS ONE 2023, 18, e0282316. [Google Scholar] [CrossRef]
- Ponsuksili, S.; Trakooljul, N.; Hadlich, F.; Methling, K.; Lalk, M.; Murani, E.; Wimmers, K. Genetic Regulation of Liver Metabolites and Transcripts Linking to Biochemical-Clinical Parameters. Front. Genet. 2019, 10, 419414. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Mordaunt, C.E.; Durbin-Johnson, B.P.; Caudill, M.A.; Malysheva, O.V.; Miller, J.W.; Green, R.; James, S.J.; Melnyk, S.B.; Fallin, M.D.; et al. Expression Changes in Epigenetic Gene Pathways Associated with One-Carbon Nutritional Metabolites in Maternal Blood from Pregnancies Resulting in Autism and Non-Typical Neurodevelopment. Autism Res. 2021, 14, 11–28. [Google Scholar] [CrossRef] [PubMed]
- Hoang, L.T.; Domingo-Sabugo, C.; Starren, E.S.; Willis-Owen, S.A.G.; Morris-Rosendahl, D.J.; Nicholson, A.G.; Cookson, W.O.C.M.; Moffatt, M.F. Metabolomic, Transcriptomic and Genetic Integrative Analysis Reveals Important Roles of Adenosine Diphosphate in Haemostasis and Platelet Activation in Non-Small-Cell Lung Cancer. Mol. Oncol. 2019, 13, 2406–2421. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, X.; He, S.; Rehman, A.; Jia, Y.; Li, H.; Pan, Z.; Geng, X.; Gao, Q.; Wang, L.; et al. Transcriptome Co-Expression Network and Metabolome Analysis Identifies Key Genes and Regulators of Proanthocyanidins Biosynthesis in Brown Cotton. Front. Plant Sci. 2022, 12, 822198. [Google Scholar] [CrossRef] [PubMed]
- Green, R.E.; Lord, J.; Scelsi, M.A.; Xu, J.; Wong, A.; Naomi-James, S.; Handy, A.; Gilchrist, L.; Williams, D.M.; Parker, T.D.; et al. Investigating Associations between Blood Metabolites, Later Life Brain Imaging Measures, and Genetic Risk for Alzheimer’s Disease. Alzheimer’s Res. Ther. 2023, 15, 38. [Google Scholar] [CrossRef] [PubMed]
- Green, R.; Lord, J.; Xu, J.; Maddock, J.; Kim, M.; Dobson, R.; Legido-Quigley, C.; Wong, A.; Richards, M.; Proitsi, P. Metabolic Correlates of Late Midlife Cognitive Outcomes: Findings from the 1946 British Birth Cohort. Brain Commun. 2022, 4, fcab291. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.; Lawson, H.A. Genetic Background and Diet Affect Brown Adipose Gene Coexpression Networks Associated with Metabolic Phenotypes. Physiol. Genom. 2020, 52, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ge, W.; Miao, Z. Integrative Metabolomic and Transcriptomic Analyses Reveals the Accumulation Patterns of Key Metabolites Associated with Flavonoids and Terpenoids of Gynostemma pentaphyllum (Thunb.) Makino. Sci. Rep. 2024, 14, 8644. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, J.; Wang, W.; Wang, Y.; Xu, J.; Li, Z.; Zhao, X.; Fu, B. Integrated Analysis of the Transcriptome and Metabolome Revealed the Molecular Mechanisms Underlying the Enhanced Salt Tolerance of Rice Due to the Application of Exogenous Melatonin. Front. Plant Sci. 2021, 11, 618680. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, J.; Meng, W.; Sun, Z.; Tan, Y.; Liu, Y.; Tan, M.; Wang, B.; Yang, J. Integrated Analysis of Transcriptome and Metabolome Reveals Molecular Mechanisms of Rice with Different Salinity Tolerances. Plants 2023, 12, 3359. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Zhang, Y.; Ren, H.; Shi, Y.; Dong, D.; Li, Z.; Cui, G.; Shen, Y.; Mou, Z.; Kennelly, E.J.; et al. Multi-Omics Analysis Reveals the Evolutionary Origin of Diterpenoid Alkaloid Biosynthesis Pathways in Aconitum. J. Integr. Plant Biol. 2023, 65, 2320–2335. [Google Scholar] [CrossRef] [PubMed]
- Nikiforova, V.J.; Daub, C.O.; Hesse, H.; Willmitzer, L.; Hoefgen, R. Integrative Gene-Metabolite Network with Implemented Causality Deciphers Informational Fluxes of Sulphur Stress Response. J. Exp. Bot. 2005, 56, 1887–1896. [Google Scholar] [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498. [Google Scholar] [CrossRef]
- Csárdi, G.; Nepusz, T.; Müller, K.; Horvát, S.; Traag, V.; Zanini, F.; Noom, D. Igraph for R: R Interface of the Igraph Library for Graph Theory and Network Analysis, Version 1.4. Zenodo 2023. [Google Scholar] [CrossRef]
- Rai, A.; Rai, M.; Kamochi, H.; Mori, T.; Nakabayashi, R.; Nakamura, M.; Suzuki, H.; Saito, K.; Yamazaki, M. Multiomics-Based Characterization of Specialized Metabolites Biosynthesis in Cornus Officinalis. DNA Res. 2020, 27, dsaa009. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Hirai, M.Y.; Yonekura-Sakakibara, K. Decoding Genes with Coexpression Networks and Metabolomics—“Majority Report by Precogs”. Trends Plant Sci. 2008, 13, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Cline, M.S.; Smoot, M.; Cerami, E.; Kuchinsky, A.; Landys, N.; Workman, C.; Christmas, R.; Avila-Campilo, I.; Creech, M.; Gross, B.; et al. Integration of Biological Networks and Gene Expression Data Using Cytoscape. Nat. Protoc. 2007, 2, 2366–2382. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Ming, Y.N.; Zhang, J.Y.; Chen, X.Y.; Zeng, M.D.; Mao, Y.M. Gene-Metabolite Network Analysis in Different Nonalcoholic Fatty Liver Disease Phenotypes. Exp. Mol. Med. 2017, 49, e283. [Google Scholar] [CrossRef]
- Mounet, F.; Moing, A.; Garcia, V.; Petit, J.; Maucourt, M.; Deborde, C.; Bernillon, S.; Le Gall, G.; Colquhoun, I.; Defernez, M.; et al. Gene and Metabolite Regulatory Network Analysis of Early Developing Fruit Tissues Highlights New Candidate Genes for the Control of Tomato Fruit Composition and Development. Plant Physiol. 2009, 149, 1505–1528. [Google Scholar] [CrossRef]
- Mercatelli, D.; Lopez-Garcia, G.; Giorgi, F.M. Corto: A Lightweight R Package for Gene Network Inference and Master Regulator Analysis. Bioinformatics 2020, 36, 3916–3917. [Google Scholar] [CrossRef] [PubMed]
- Cavicchioli, M.V.; Santorsola, M.; Balboni, N.; Mercatelli, D.; Giorgi, F.M. Prediction of Metabolic Profiles from Transcriptomics Data in Human Cancer Cell Lines. Int. J. Mol. Sci. 2022, 23, 3867. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Mezlini, A.M.; Demir, F.; Fiume, M.; Tu, Z.; Brudno, M.; Haibe-Kains, B.; Goldenberg, A. Similarity Network Fusion for Aggregating Data Types on a Genomic Scale. Nat. Methods 2014, 11, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Miranda, J.; Paules, C.; Noell, G.; Youssef, L.; Paternina-Caicedo, A.; Crovetto, F.; Cañellas, N.; Garcia-Martín, M.L.; Amigó, N.; Eixarch, E.; et al. Similarity Network Fusion to Identify Phenotypes of Small-for-Gestational-Age Fetuses. iScience 2023, 26, 107620. [Google Scholar] [CrossRef] [PubMed]
- Raphael, B.J.; Hruban, R.H.; Aguirre, A.J.; Moffitt, R.A.; Yeh, J.J.; Stewart, C.; Robertson, A.G.; Cherniack, A.D.; Gupta, M.; Getz, G.; et al. Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell 2017, 32, 185–203.e13. [Google Scholar] [CrossRef]
- Blimkie, T.; Lee, A.H.Y.; Hancock, R.E.W. MetaBridge: An Integrative Multi-Omics Tool for Metabolite-Enzyme Mapping. Curr. Protoc. Bioinform. 2020, 70, e98. [Google Scholar] [CrossRef]
- Caspi, R.; Billington, R.; Keseler, I.M.; Kothari, A.; Krummenacker, M.; Midford, P.E.; Ong, W.K.; Paley, S.; Subhraveti, P.; Karp, P.D. The MetaCyc Database of Metabolic Pathways and Enzymes—A 2019 Update. Nucleic Acids Res. 2020, 48, D445–D453. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. ClusterProfiler 4.0: A Universal Enrichment Tool for Interpreting Omics Data. Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Fang, Z.; Liu, X.; Peltz, G. GSEApy: A Comprehensive Package for Performing Gene Set Enrichment Analysis in Python. Bioinformatics 2023, 39, btac757. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.; Chong, J.; Zhou, G.; De Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.É.; Li, S.; Xia, J. MetaboAnalyst 5.0: Narrowing the Gap between Raw Spectra and Functional Insights. Nucleic Acids Res. 2021, 49, W388–W396. [Google Scholar] [CrossRef]
- Luo, W.; Brouwer, C. Pathview: An R/Bioconductor Package for Pathway-Based Data Integration and Visualization. Bioinformatics 2013, 29, 1830–1831. [Google Scholar] [CrossRef] [PubMed]
- Argelaguet, R.; Velten, B.; Arnol, D.; Dietrich, S.; Zenz, T.; Marioni, J.C.; Buettner, F.; Huber, W.; Stegle, O. Multi-Omics Factor Analysis—A Framework for Unsupervised Integration of Multi-Omics Data Sets. Mol. Syst. Biol. 2018, 14, 8124. [Google Scholar] [CrossRef] [PubMed]
- Dutta, N.K.; Tornheim, J.A.; Fukutani, K.F.; Paradkar, M.; Tiburcio, R.T.; Kinikar, A.; Valvi, C.; Kulkarni, V.; Pradhan, N.; Shivakumar, S.V.B.Y.; et al. Integration of Metabolomics and Transcriptomics Reveals Novel Biomarkers in the Blood for Tuberculosis Diagnosis in Children. Sci. Rep. 2020, 10, 19527. [Google Scholar] [CrossRef]
- Clark, C.; Dayon, L.; Masoodi, M.; Bowman, G.L.; Popp, J. An Integrative Multi-Omics Approach Reveals New Central Nervous System Pathway Alterations in Alzheimer’s Disease. Alzheimer’s Res. Ther. 2021, 13, 71. [Google Scholar] [CrossRef]
- Wang, H.; Liu, C.; Xie, X.; Niu, M.; Wang, Y.; Cheng, X.; Zhang, B.; Zhang, D.; Liu, M.; Sun, R.; et al. Multi-Omics Blood Atlas Reveals Unique Features of Immune and Platelet Responses to SARS-CoV-2 Omicron Breakthrough Infection. Immunity 2023, 56, 1410–1428.e8. [Google Scholar] [CrossRef] [PubMed]
- Cavill, R.; Jennen, D.; Kleinjans, J.; Briedé, J.J. Transcriptomic and Metabolomic Data Integration. Brief. Bioinform. 2016, 17, 891–901. [Google Scholar] [CrossRef]
- Gu, C.; Kim, G.B.; Kim, W.J.; Kim, H.U.; Lee, S.Y. Current Status and Applications of Genome-Scale Metabolic Models. Genome Biol. 2019, 20, 121. [Google Scholar] [CrossRef]
- Larsson, I.; Uhlén, M.; Zhang, C.; Mardinoglu, A. Genome-Scale Metabolic Modeling of Glioblastoma Reveals Promising Targets for Drug Development. Front. Genet. 2020, 11, 459644. [Google Scholar] [CrossRef] [PubMed]
- Karakitsou, E.; Foguet, C.; Contreras Mostazo, M.G.; Kurrle, N.; Schnütgen, F.; Michaelis, M.; Cinatl, J.; Marin, S.; Cascante, M. Genome-Scale Integration of Transcriptome and Metabolome Unveils Squalene Synthase and Dihydrofolate Reductase as Targets against AML Cells Resistant to Chemotherapy. Comput. Struct. Biotechnol. J. 2021, 19, 4059–4066. [Google Scholar] [CrossRef]
- Sen, P.; Orešič, M. Integrating Omics Data in Genome-Scale Metabolic Modeling: A Methodological Perspective for Precision Medicine. Metabolites 2023, 13, 855. [Google Scholar] [CrossRef]
- Kim, M.K.; Lun, D.S. Methods for Integration of Transcriptomic Data in Genome-Scale Metabolic Models. Comput. Struct. Biotechnol. J. 2014, 11, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Roshanzamir, F.; Robinson, J.L.; Cook, D.; Karimi-Jafari, M.H.; Nielsen, J. Metastatic Triple Negative Breast Cancer Adapts Its Metabolism to Destination Tissues While Retaining Key Metabolic Signatures. Proc. Natl. Acad. Sci. USA 2022, 119, e2205456119. [Google Scholar] [CrossRef] [PubMed]
- Orth, J.D.; Thiele, I.; Palsson, B.O. What Is Flux Balance Analysis? Nat. Biotechnol. 2010, 28, 245. [Google Scholar] [CrossRef]
- Lewis, N.E.; Hixson, K.K.; Conrad, T.M.; Lerman, J.A.; Charusanti, P.; Polpitiya, A.D.; Adkins, J.N.; Schramm, G.; Purvine, S.O.; Lopez-Ferrer, D.; et al. Omic Data from Evolved E. coli Are Consistent with Computed Optimal Growth from Genome-Scale Models. Mol. Syst. Biol. 2010, 6, 390. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.; Cruz, F.; Rocha, M. MEWpy: A Computational Strain Optimization Workbench in Python. Bioinformatics 2021, 37, 2494–2496. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Li, F.; Sánchez, B.J.; Zhu, Z.; Li, G.; Domenzain, I.; Marcišauskas, S.; Anton, P.M.; Lappa, D.; Lieven, C.; et al. A Consensus S. cerevisiae Metabolic Model Yeast8 and Its Ecosystem for Comprehensively Probing Cellular Metabolism. Nat. Commun. 2019, 10, 3586. [Google Scholar] [CrossRef]
- Robinson, J.L.; Kocabaş, P.; Wang, H.; Cholley, P.E.; Cook, D.; Nilsson, A.; Anton, M.; Ferreira, R.; Domenzain, I.; Billa, V.; et al. An Atlas of Human Metabolism. Sci. Signal. 2020, 13, eaaz1482. [Google Scholar] [CrossRef] [PubMed]
- Monk, J.M.; Lloyd, C.J.; Brunk, E.; Mih, N.; Sastry, A.; King, Z.; Takeuchi, R.; Nomura, W.; Zhang, Z.; Mori, H.; et al. IML1515, a Knowledgebase That Computes Escherichia Coli Traits. Nat. Biotechnol. 2017, 35, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Domenzain, I.; Sánchez, B.; Anton, M.; Kerkhoven, E.J.; Millán-Oropeza, A.; Henry, C.; Siewers, V.; Morrissey, J.P.; Sonnenschein, N.; Nielsen, J. Reconstruction of a Catalogue of Genome-Scale Metabolic Models with Enzymatic Constraints Using GECKO 2.0. Nat. Commun. 2022, 13, 3766. [Google Scholar] [CrossRef]
- Sánchez, B.J.; Zhang, C.; Nilsson, A.; Lahtvee, P.; Kerkhoven, E.J.; Nielsen, J. Improving the Phenotype Predictions of a Yeast Genome-scale Metabolic Model by Incorporating Enzymatic Constraints. Mol. Syst. Biol. 2017, 13, 935. [Google Scholar] [CrossRef]
- Zhou, J.; Zhuang, Y.; Xia, J. Integration of Enzyme Constraints in a Genome-Scale Metabolic Model of Aspergillus Niger Improves Phenotype Predictions. Microb. Cell Factories 2021, 20, 125. [Google Scholar] [CrossRef] [PubMed]
- Arend, M.; Zimmer, D.; Xu, R.; Sommer, F.; Mühlhaus, T.; Nikoloski, Z. Proteomics and Constraint-Based Modelling Reveal Enzyme Kinetic Properties of Chlamydomonas Reinhardtii on a Genome Scale. Nat. Commun. 2023, 14, 4781. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Mao, Z.; Mao, Y.; Niu, J.; Cai, J.; Yuan, Q.; Yun, L.; Liao, X.; Wang, Z.; Ma, H. EcBSU1: A Genome-Scale Enzyme-Constrained Model of Bacillus Subtilis Based on the ECMpy Workflow. Microorganisms 2023, 11, 178. [Google Scholar] [CrossRef] [PubMed]
- Placzek, S.; Schomburg, I.; Chang, A.; Jeske, L.; Ulbrich, M.; Tillack, J.; Schomburg, D. BRENDA in 2017: New Perspectives and New Tools in BRENDA. Nucleic Acids Res. 2017, 45, D380–D388. [Google Scholar] [CrossRef] [PubMed]
- Bateman, A.; Martin, M.J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; et al. UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [Google Scholar] [CrossRef]
- Chen, J.; Luo, P.; Wang, C.; Yang, C.; Bai, Y.; He, X.; Zhang, Q.; Zhang, J.; Yang, J.; Wang, S.; et al. Integrated Single-Cell Transcriptomics and Proteomics Reveal Cellular-Specific Responses and Microenvironment Remodeling in Aristolochic Acid Nephropathy. JCI Insight 2022, 7, e157360. [Google Scholar] [CrossRef] [PubMed]
- Alsagaby, S.A. Integration of Proteomics and Transcriptomics Data Sets Identifies Prognostic Markers in Chronic Lymphocytic Leukemia. Majmaah J. Health Sci. 2019, 7, 1. [Google Scholar] [CrossRef]
- Higdon, R.; Kala, J.; Wilkins, D.; Yan, J.F.; Sethi, M.K.; Lin, L.; Liu, S.; Montague, E.; Janko, I.; Choiniere, J.; et al. Integrated Proteomic and Transcriptomic-Based Approaches to Identifying Signature Biomarkers and Pathways for Elucidation of Daoy and UW228 Subtypes. Proteomes 2017, 5, 5. [Google Scholar] [CrossRef]
- Gygi, S.P.; Rochon, Y.; Franza, B.R.; Aebersold, R. Correlation between Protein and MRNA Abundance in Yeast. Mol. Cell. Biol. 1999, 19, 1720–1730. [Google Scholar] [CrossRef]
- Yue, X.; Huan, P.; Hu, Y.; Liu, B. Integrated Transcriptomic and Proteomic Analyses Reveal Potential Mechanisms Linking Thermal Stress and Depressed Disease Resistance in the Turbot Scophthalmus Maximus. Sci. Rep. 2018, 8, 1896. [Google Scholar] [CrossRef]
- Li, G.; Zhang, B.; Zhang, H.; Xu, A.; Qian, H. Integration of Transcriptomic and Proteomic Analyses Reveals New Insights into the Regulation of Immune Pathways in Midgut of Samia Ricini upon SariNPV Infection. Insects 2022, 13, 294. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Liu, Y.; He, X.; Di, R.; Wang, X.; Ren, C.; Zhang, Z.; Chu, M. Integrative Proteomics and Transcriptomics Profiles of the Oviduct Reveal the Prolificacy-Related Candidate Biomarkers of Goats (Capra hircus) in Estrous Periods. Int. J. Mol. Sci. 2022, 23, 14888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, Y.; Sun, L.; Chu, S.; Xu, H.; Zhou, X. Integration of Transcriptomic and Proteomic Analyses of Rhododendron chrysanthum Pall. in Response to Cold Stress in the Changbai Mountains. Mol. Biol. Rep. 2023, 50, 3607–3616. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Yang, Z.; Guo, W.; Liu, L.; Song, P.; Ding, C.; Guan, W. Integrative Analysis of the Proteome and Transcriptome in Gastric Cancer Identified LRP1B as a Potential Biomarker. Biomark. Med. 2022, 16, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Colak, D.; Alaiya, A.A.; Kaya, N.; Muiya, N.P.; AlHarazi, O.; Shinwari, Z.; Andres, E.; Dzimiri, N. Integrated Left Ventricular Global Transcriptome and Proteome Profiling in Human End-Stage Dilated Cardiomyopathy. PLoS ONE 2016, 11, e0162669. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Clair, G.C.; Al Alam, D.; Danopoulos, S.; Schnell, D.; Kitzmiller, J.A.; Misra, R.S.; Bhattacharya, S.; Warburton, D.; Mariani, T.J.; et al. Integration of Transcriptomic and Proteomic Data Identifies Biological Functions in Cell Populations from Human Infant Lung. Am. J. Physiol. Cell. Mol. Physiol. 2019, 317, L347. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; He, S.; Gong, W.; Xu, F.; Pan, Z.; Jia, Y.; Geng, X.; Du, X. Integration of Proteomic and Transcriptomic Profiles Reveals Multiple Levels of Genetic Regulation of Salt Tolerance in Cotton. BMC Plant Biol. 2018, 18, 128. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Zhang, Y.; Sun, C.; Ge, S.; Tan, Y.; Shen, H.; Yang, P. A Multi-Omics Study of Human Testis and Epididymis. Molecules 2021, 26, 3345. [Google Scholar] [CrossRef]
- Liu, Y.; Beyer, A.; Aebersold, R. On the Dependency of Cellular Protein Levels on MRNA Abundance. Cell 2016, 165, 535–550. [Google Scholar] [CrossRef]
- Zhang, G.; Zhong, F.; Chen, L.; Qin, P.; Li, J.; Zhi, F.; Tian, L.; Zhou, D.; Lin, P.; Chen, H.; et al. Integrated Proteomic and Transcriptomic Analyses Reveal the Roles of Brucella Homolog of BAX Inhibitor 1 in Cell Division and Membrane Homeostasis of Brucella Suis S2. Front. Microbiol. 2021, 12, 632095. [Google Scholar] [CrossRef]
- Griss, J.; Viteri, G.; Sidiropoulos, K.; Nguyen, V.; Fabregat, A.; Hermjakob, H. ReactomeGSA-Efficient Multi-Omics Comparative Pathway Analysis. Mol. Cell. Proteom. 2020, 19, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Stark, C.; Breitkreutz, B.J.; Reguly, T.; Boucher, L.; Breitkreutz, A.; Tyers, M. BioGRID: A General Repository for Interaction Datasets. Nucleic Acids Res. 2006, 34, D535. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING V11: Protein–Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef]
- Wang, X.W.; Wang, T.; Schaub, D.P.; Chen, C.; Sun, Z.; Ke, S.; Hecker, J.; Maaser-Hecker, A.; Zeleznik, O.A.; Zeleznik, R.; et al. Benchmarking Omics-Based Prediction of Asthma Development in Children. Respir. Res. 2023, 24, 62. [Google Scholar] [CrossRef] [PubMed]
- Arjmand, B.; Hamidpour, S.K.; Tayanloo-Beik, A.; Goodarzi, P.; Aghayan, H.R.; Adibi, H.; Larijani, B. Machine Learning: A New Prospect in Multi-Omics Data Analysis of Cancer. Front. Genet. 2022, 13, 824451. [Google Scholar] [CrossRef]
- Wekesa, J.S.; Kimwele, M. A Review of Multi-Omics Data Integration through Deep Learning Approaches for Disease Diagnosis, Prognosis, and Treatment. Front. Genet. 2023, 14, 1199087. [Google Scholar] [CrossRef]
- Li, R.; Li, L.; Xu, Y.; Yang, J. Machine Learning Meets Omics: Applications and Perspectives. Brief. Bioinform. 2022, 23, bbab460. [Google Scholar] [CrossRef] [PubMed]
- Leite, D.M.C.; Brochet, X.; Resch, G.; Que, Y.A.; Neves, A.; Peña-Reyes, C. Computational Prediction of Inter-Species Relationships through Omics Data Analysis and Machine Learning. BMC Bioinform. 2018, 19, 151–159. [Google Scholar] [CrossRef]
- Alharbi, F.; Vakanski, A. Machine Learning Methods for Cancer Classification Using Gene Expression Data: A Review. Bioengineering 2023, 10, 173. [Google Scholar] [CrossRef]
- Bashiri, A.; Ghazisaeedi, M.; Safdari, R.; Shahmoradi, L.; Ehtesham, H. Improving the Prediction of Survival in Cancer Patients by Using Machine Learning Techniques: Experience of Gene Expression Data: A Narrative Review. Iran. J. Public Health 2017, 46, 165. [Google Scholar]
- Hijazi, H.; Chan, C. A Classification Framework Applied to Cancer Gene Expression Profiles. J. Healthc. Eng. 2013, 4, 255–283. [Google Scholar] [CrossRef]
- Khalsan, M.; MacHado, L.R.; Al-Shamery, E.S.; Ajit, S.; Anthony, K.; Mu, M.; Agyeman, M.O. A Survey of Machine Learning Approaches Applied to Gene Expression Analysis for Cancer Prediction. IEEE Access 2022, 10, 27522–27534. [Google Scholar] [CrossRef]
- Ravindran, U.; Gunavathi, C. A Survey on Gene Expression Data Analysis Using Deep Learning Methods for Cancer Diagnosis. Prog. Biophys. Mol. Biol. 2023, 177, 1–13. [Google Scholar] [CrossRef]
- Tabares-Soto, R.; Orozco-Arias, S.; Romero-Cano, V.; Bucheli, V.S.; Rodríguez-Sotelo, J.L.; Jiménez-Varón, C.F. A Comparative Study of Machine Learning and Deep Learning Algorithms to Classify Cancer Types Based on Microarray Gene Expression Data. PeerJ Comput. Sci. 2020, 2020, e270. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Lu, L.; Zou, Q. Analysis of Gene Expression Profiles of Lung Cancer Subtypes with Machine Learning Algorithms. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2020, 1866, 165822. [Google Scholar] [CrossRef]
- He, B.; Thomson, M.; Subramaniam, M.; Perez, R.; Ye, C.J.; Zou, J. CloudPred: Predicting Patient Phenotypes from Single-Cell RNA-Seq. Pac. Symp. Biocomput. 2022, 2021, 337–348. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, J.; Wang, T.; Zhang, L.; Xu, X.; Qiu, Y.; Xiang, A.P.; Huang, W. Accurate Machine Learning Model to Diagnose Chronic Autoimmune Diseases Utilizing Information From B Cells and Monocytes. Front. Immunol. 2022, 13, 870531. [Google Scholar] [CrossRef] [PubMed]
- Galdos, F.X.; Xu, S.; Goodyer, W.R.; Duan, L.; Huang, Y.V.; Lee, S.; Zhu, H.; Lee, C.; Wei, N.; Lee, D.; et al. DevCellPy Is a Machine Learning-Enabled Pipeline for Automated Annotation of Complex Multilayered Single-Cell Transcriptomic Data. Nat. Commun. 2022, 13, 5271. [Google Scholar] [CrossRef]
- Liu, J.; Fan, Z.; Zhao, W.; Zhou, X. Machine Intelligence in Single-Cell Data Analysis: Advances and New Challenges. Front. Genet. 2021, 12, 655536. [Google Scholar] [CrossRef]
- Patil, A.R.; Schug, J.; Liu, C.; Lahori, D.; Descamps, H.C.; Naji, A.; Kaestner, K.H.; Faryabi, R.B.; Vahedi, G. Modeling Type 1 Diabetes Progression Using Machine Learning and Single-Cell Transcriptomic Measurements in Human Islets. Cell Rep. Med. 2024, 5, 101535. [Google Scholar] [CrossRef]
- Hu, Y.; Hase, T.; Li, H.P.; Prabhakar, S.; Kitano, H.; Ng, S.K.; Ghosh, S.; Wee, L.J.K. A Machine Learning Approach for the Identification of Key Markers Involved in Brain Development from Single-Cell Transcriptomic Data. BMC Genom. 2016, 17, 1025. [Google Scholar] [CrossRef] [PubMed]
- Vrahatis, A.G.; Tasoulis, S.K.; Maglogiannis, I.; Plagianakos, V.P. Recent Machine Learning Approaches for Single-Cell RNA-Seq Data Analysis. Stud. Comput. Intell. 2020, 891, 65–79. [Google Scholar] [CrossRef]
- Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for Functional Genomics Data Sets—Update. Nucleic Acids Res. 2013, 41, D991–D995. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.M.; Ozenberger, B.A.; Ellrott, K.; Sander, C.; Stuart, J.M.; Chang, K.; Creighton, C.J.; et al. The Cancer Genome Atlas Pan-Cancer Analysis Project. Nat. Genet. 2013, 45, 1113–1120. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.T.; Dhroso, A.; Hughes, K.J.; Korkin, D. Biological Classification with RNA-Seq Data: Can Alternatively Spliced Transcript Expression Enhance Machine Learning Classifiers? RNA 2018, 24, 1119–1132. [Google Scholar] [CrossRef] [PubMed]
- Kuo, W.P.; Kim, E.Y.; Trimarchi, J.; Jenssen, T.K.; Vinterbo, S.A.; Ohno-Machado, L. A Primer on Gene Expression and Microarrays for Machine Learning Researchers. J. Biomed. Inform. 2004, 37, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Kelchtermans, P.; Bittremieux, W.; De Grave, K.; Degroeve, S.; Ramon, J.; Laukens, K.; Valkenborg, D.; Barsnes, H.; Martens, L. Machine Learning Applications in Proteomics Research: How the Past Can Boost the Future. Proteomics 2014, 14, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Swan, A.L.; Mobasheri, A.; Allaway, D.; Liddell, S.; Bacardit, J. Application of Machine Learning to Proteomics Data: Classification and Biomarker Identification in Postgenomics Biology. OMICS 2013, 17, 595–610. [Google Scholar] [CrossRef] [PubMed]
- Barla, A.; Jurman, G.; Riccadonna, S.; Merler, S.; Chierici, M.; Furlanello, C. Machine Learning Methods for Predictive Proteomics. Brief. Bioinform. 2008, 9, 119–128. [Google Scholar] [CrossRef]
- Neely, B.A.; Dorfer, V.; Martens, L.; Bludau, I.; Bouwmeester, R.; Degroeve, S.; Deutsch, E.W.; Gessulat, S.; Käll, L.; Palczynski, P.; et al. Toward an Integrated Machine Learning Model of a Proteomics Experiment. J. Proteome Res. 2023, 22, 681–696. [Google Scholar] [CrossRef]
- Desaire, H.; Go, E.P.; Hua, D. Advances, Obstacles, and Opportunities for Machine Learning in Proteomics. Cell Rep. Phys. Sci. 2022, 3, 101069. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Sonsare, P.M.; Gunavathi, C. Investigation of Machine Learning Techniques on Proteomics: A Comprehensive Survey. Prog. Biophys. Mol. Biol. 2019, 149, 54–69. [Google Scholar] [CrossRef] [PubMed]
- Vishnoi, S.; Matre, H.; Garg, P.; Pandey, S.K. Artificial Intelligence and Machine Learning for Protein Toxicity Prediction Using Proteomics Data. Chem. Biol. Drug Des. 2020, 96, 902–920. [Google Scholar] [CrossRef]
- Mann, M.; Kumar, C.; Zeng, W.F.; Strauss, M.T. Artificial Intelligence for Proteomics and Biomarker Discovery. Cell Syst. 2021, 12, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, K.; Mu, B. Machine Learning for Mass Spectrometry Data Analysis in Proteomics. Curr. Proteom. 2020, 18, 620–634. [Google Scholar] [CrossRef]
- Wen, B.; Zeng, W.F.; Liao, Y.; Shi, Z.; Savage, S.R.; Jiang, W.; Zhang, B. Deep Learning in Proteomics. Proteomics 2020, 20, 1900335. [Google Scholar] [CrossRef] [PubMed]
- Hindson, J. Proteomics and Machine-Learning Models for Alcohol-Related Liver Disease Biomarkers. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 488. [Google Scholar] [CrossRef] [PubMed]
- Cox, J. Prediction of Peptide Mass Spectral Libraries with Machine Learning. Nat. Biotechnol. 2022, 41, 33–43. [Google Scholar] [CrossRef]
- Sengupta, A.; Naresh, G.; Mishra, A.; Parashar, D.; Narad, P. Proteome Analysis Using Machine Learning Approaches and Its Applications to Diseases. Adv. Protein Chem. Struct. Biol. 2021, 127, 161–216. [Google Scholar] [CrossRef]
- Tilocca, B.; Britti, D.; Urbani, A.; Roncada, P. Computational Immune Proteomics Approach to Target COVID-19. J. Proteome Res. 2020, 19, 4233–4241. [Google Scholar] [CrossRef]
- Bernardes, J.S.; Pedreira, C.E. A Review of Protein Function Prediction Under Machine Learning Perspective. Recent Pat. Biotechnol. 2013, 7, 122–141. [Google Scholar] [CrossRef] [PubMed]
- Worley, B.; Powers, R. Multivariate Analysis in Metabolomics. Curr. Metabolomics 2013, 1, 92. [Google Scholar] [CrossRef]
- Sinha, N.; Viswan, A.; Singh, C.; Rai, R.K.; Azim, A.; Baronia, A.K. Metabolomics Based Predictive Biomarker Model of ARDS: A Systemic Measure of Clinical Hypoxemia. PLoS ONE 2017, 12, e0187545. [Google Scholar] [CrossRef]
- Martín-Blázquez, A.; Díaz, C.; González-Flores, E.; Franco-Rivas, D.; Jiménez-Luna, C.; Melguizo, C.; Prados, J.; Genilloud, O.; Vicente, F.; Caba, O.; et al. Untargeted LC-HRMS-Based Metabolomics to Identify Novel Biomarkers of Metastatic Colorectal Cancer. Sci. Rep. 2019, 9, 20198. [Google Scholar] [CrossRef]
- Goldberg, E.; Ievari-Shariati, S.; Kidane, B.; Kim, J.; Banerji, S.; Qing, G.; Srinathan, S.; Murphy, L.; Aliani, M. Comparative Metabolomics Studies of Blood Collected in Streck and Heparin Tubes from Lung Cancer Patients. PLoS ONE 2021, 16, e0249648. [Google Scholar] [CrossRef] [PubMed]
- French, C.D.; Willoughby, R.E.; Pan, A.; Wong, S.J.; Foley, J.F.; Wheat, L.J.; Fernandez, J.; Encarnacion, R.; Ondrush, J.M.; Fatteh, N.; et al. NMR Metabolomics of Cerebrospinal Fluid Differentiates Inflammatory Diseases of the Central Nervous System. PLoS Negl. Trop. Dis. 2018, 12, e0007045. [Google Scholar] [CrossRef] [PubMed]
- Collakova, E.; Aghamirzaie, D.; Fang, Y.; Klumas, C.; Tabataba, F.; Kakumanu, A.; Myers, E.; Heath, L.S.; Grene, R. Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine Max) Embryos. Metabolites 2013, 3, 347–372. [Google Scholar] [CrossRef]
- You, J.; Zhang, Y.; Liu, A.; Li, D.; Wang, X.; Dossa, K.; Zhou, R.; Yu, J.; Zhang, Y.; Wang, L.; et al. Transcriptomic and Metabolomic Profiling of Drought-Tolerant and Susceptible Sesame Genotypes in Response to Drought Stress. BMC Plant Biol. 2019, 19, 267. [Google Scholar] [CrossRef]
- Alreshidi, M.M. Selected Metabolites Profiling of Staphylococcus Aureus Following Exposure to Low Temperature and Elevated Sodium Chloride. Front. Microbiol. 2020, 11, 512774. [Google Scholar] [CrossRef]
- Broughton-Neiswanger, L.E.; Rivera-Velez, S.M.; Suarez, M.A.; Slovak, J.E.; Piñeyro, P.E.; Hwang, J.K.; Villarino, N.F. Urinary Chemical Fingerprint Left behind by Repeated NSAID Administration: Discovery of Putative Biomarkers Using Artificial Intelligence. PLoS ONE 2020, 15, e0228989. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Pan, T.; Qi, X.; Tan, R.; Wang, X.; Liu, Z.; Tao, Z.; Qu, H.; Zhang, Y.; Chen, H.; et al. Increased Mortality of Acute Respiratory Distress Syndrome Was Associated with High Levels of Plasma Phenylalanine. Respir. Res. 2020, 21, 99. [Google Scholar] [CrossRef] [PubMed]
- Monteleone, A.M.; Troisi, J.; Serena, G.; Fasano, A.; Grave, R.D.; Cascino, G.; Marciello, F.; Calugi, S.; Scala, G.; Corrivetti, G.; et al. The Gut Microbiome and Metabolomics Profiles of Restricting and Binge-Purging Type Anorexia Nervosa. Nutrients 2021, 13, 507. [Google Scholar] [CrossRef] [PubMed]
- Caterino, M.; Costanzo, M.; Fedele, R.; Cevenini, A.; Gelzo, M.; Di Minno, A.; Andolfo, I.; Capasso, M.; Russo, R.; Annunziata, A.; et al. The Serum Metabolome of Moderate and Severe COVID-19 Patients Reflects Possible Liver Alterations Involving Carbon and Nitrogen Metabolism. Int. J. Mol. Sci. 2021, 22, 9548. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.A.R.; Cardoso, M.R.; Cardoso De Oliveira, D.; Godoy, P.; Cecília, M.; Talarico, R.; Marrero Gutiérrez, J.; Rodrigues Peres, R.M.; De Carvalho, L.M.; Angelo Da, N.; et al. Plasma Metabolome Signatures to Predict Responsiveness to Neoadjuvant Chemotherapy in Breast Cancer. Cancers 2024, 16, 2473. [Google Scholar] [CrossRef] [PubMed]
- Galal, A.; Talal, M.; Moustafa, A. Applications of Machine Learning in Metabolomics: Disease Modeling and Classification. Front. Genet. 2022, 13, 1017340. [Google Scholar] [CrossRef] [PubMed]
- Auslander, N.; Yizhak, K.; Weinstock, A.; Budhu, A.; Tang, W.; Wang, X.W.; Ambs, S.; Ruppin, E. A Joint Analysis of Transcriptomic and Metabolomic Data Uncovers Enhanced Enzyme-Metabolite Coupling in Breast Cancer. Sci. Rep. 2016, 6, 29662. [Google Scholar] [CrossRef]
- Ghosh, T.; Zhang, W.; Ghosh, D.; Kechris, K. Predictive Modeling for Metabolomics Data. Methods Mol. Biol. 2020, 2104, 313. [Google Scholar] [CrossRef]
Integration Approach | Strategy or Method | Possible Omics Data | Main Idea |
---|---|---|---|
Correlation-based | Gene co-expression analysis | Transcriptomics and metabolomics | Identify co-expressed gene modules with metabolite similarity patterns under the same biological conditions |
Gene–metabolite network | Transcriptomics and metabolomics | Perform a correlation network of genes and metabolites | |
Similarity Network Fusion | Transcriptomics, proteomics, and metabolomics | Builds a similarity network for each omics data separately, and subsequently, all networks are merged, and the edges with high associations in each omics network are highlighted | |
Enzyme and metabolite-based network | Proteomics and metabolomics | Identify a network of protein–metabolite or enzyme–metabolite interactions using genome-scale models or pathways databases |
Integration Approach | Strategy or Method | Possible Omics Data | Main Idea |
---|---|---|---|
Combined omics | Pathway enrichment from differentially expressed genes and metabolites | Transcriptomics and metabolomics | Identify pathways enriched in both types of omics data and perform a post-analysis with these results |
Integrating genome-scale models with omics data | Transcriptomics and metabolomics | Integrate metabolic and transcriptomic data to create content-specific models and perform specific metabolic simulations | |
Gecko models | Proteomics and metabolomics | Integrate proteomics data into an enzyme model, which can be validated with metabolomics data under the same biological conditions. | |
Differentially expressed genes and proteins | Transcriptomics and proteomics | Identify similarities between the lists of differentials in the two omics data sets | |
Observing delays between omics data | Transcriptomics and proteomics | Identify whether there is a temporal delay in the acquisition of omics data based on gene expression and protein abundance | |
Interactome analysis | Transcriptomics and proteomics | Identify functional relationships between different proteins and genes using interactome databases and fold-change values |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanches, P.H.G.; de Melo, N.C.; Porcari, A.M.; de Carvalho, L.M. Integrating Molecular Perspectives: Strategies for Comprehensive Multi-Omics Integrative Data Analysis and Machine Learning Applications in Transcriptomics, Proteomics, and Metabolomics. Biology 2024, 13, 848. https://doi.org/10.3390/biology13110848
Sanches PHG, de Melo NC, Porcari AM, de Carvalho LM. Integrating Molecular Perspectives: Strategies for Comprehensive Multi-Omics Integrative Data Analysis and Machine Learning Applications in Transcriptomics, Proteomics, and Metabolomics. Biology. 2024; 13(11):848. https://doi.org/10.3390/biology13110848
Chicago/Turabian StyleSanches, Pedro H. Godoy, Nicolly Clemente de Melo, Andreia M. Porcari, and Lucas Miguel de Carvalho. 2024. "Integrating Molecular Perspectives: Strategies for Comprehensive Multi-Omics Integrative Data Analysis and Machine Learning Applications in Transcriptomics, Proteomics, and Metabolomics" Biology 13, no. 11: 848. https://doi.org/10.3390/biology13110848
APA StyleSanches, P. H. G., de Melo, N. C., Porcari, A. M., & de Carvalho, L. M. (2024). Integrating Molecular Perspectives: Strategies for Comprehensive Multi-Omics Integrative Data Analysis and Machine Learning Applications in Transcriptomics, Proteomics, and Metabolomics. Biology, 13(11), 848. https://doi.org/10.3390/biology13110848