The Influence of Exogenous CdS Nanoparticles on the Growth and Carbon Assimilation Efficiency of Escherichia coli
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Microbial Strain and Culture Conditions
2.2. Synthesis and Characterization of CdS NPs
2.3. Characterization of E. coli and CdS–E. coli
2.4. Methodology for Assessing Bacterial Growth in Response to CdS NPs Under Different Conditions
2.5. Determination of Key Carbon Cycle Enzyme Activities
2.6. Determination of Antioxidant Enzyme Activities
2.7. Determination of Energy Transfer Intermediates
2.8. Quantitative Real-Time Reverse Transcription PCR (qRT-PCR) Analysis
2.9. Electrochemistry Analysis
2.10. Encapsulation and Dye Degradation Experiments
3. Results
3.1. Characterization and Photoelectrochemical Properties of CdS NPs
3.2. Growth Characteristics, Antioxidant Enzyme Activity, and Carbon Metabolism in E. coli Under Different Conditions
3.3. Assessment of Antioxidant Enzyme Activity and Carbon Metabolic Gene Expression
3.4. Dye Degradation, Reusability, and Biological Safety Assessment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cestellos-Blanco, S.; Zhang, H.; Kim, J.M.; Shen, Y.-X.; Yang, P. Photosynthetic semiconductor biohybrids for solar-driven biocatalysis. Nat. Catal. 2020, 3, 245–255. [Google Scholar] [CrossRef]
- Huang, M.; Liu, C.; Cui, P.; Wu, T.; Feng, X.; Huang, H.; Zhou, J.; Wang, Y. Facet-Dependent Photoinduced Transformation of Cadmium Sulfide (CdS) Nanoparticles. Environ. Sci. Technol. 2021, 55, 13132–13141. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, S.; Yao, L.; Deng, L.; Bowen, C.; Zhang, Y.; Chen, S.; Lin, Z.; Peng, F.; Zhang, P. Recent advances in metal sulfides: From controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond. Chem. Soc. Rev. 2019, 48, 4178–4280. [Google Scholar] [CrossRef] [PubMed]
- Zirak, M.; Akhavan, O.; Moradlou, O.; Nien, Y.T.; Moshfegh, A.Z. Vertically aligned ZnO@CdS nanorod heterostructures for visible light photoinactivation of bacteria. J. Alloys Compd. 2014, 590, 507–513. [Google Scholar] [CrossRef]
- Emami Moghaddam, S.A.; Ghadam, P.; Rahimzadeh, F. Enhanced biomass growth of lactobacillus acidophilus with CdS-NPs under visible light irradiation: Semi-artificial biohybrid system. Mater. Chem. Phys. 2022, 292, 126860. [Google Scholar] [CrossRef]
- Tripathi, R.M.; Bhadwal, A.S.; Singh, P.; Shrivastav, A.; Singh, M.P.; Shrivastav, B.R. Mechanistic aspects of biogenic synthesis of CdS nanoparticles using Bacillus licheniformis. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 025006. [Google Scholar] [CrossRef]
- Pawar, V.; Kumar, A.R.; Zinjarde, S.; Gosavi, S. Bioinspired Inimitable Cadmium Telluride Quantum Dots for Bioimaging Purposes. J. Nanosci. Nanotechnol. 2013, 13, 3826–3831. [Google Scholar] [CrossRef]
- Gupta, A.D.; Gupta, A.; Reyes-Calderón, A.; Merupo, V.I.; Kalita, G.; Herrera-Celis, J.; Chandra, N.; Sharma, A.; Ramirez, J.T.; Arriaga, L.G.; et al. Biological Synthesis of PbS, As3S4, HgS, CdS Nanoparticles using Pseudomonas aeruginosa and their Structural, Morphological, Photoluminescence as well as Whole Cell Protein Profiling Studies. J. Fluoresc. 2021, 31, 1445–1459. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Ding, H.; Chen, G.; Shi, H.; Zhang, X.; Zhu, M.; Tan, W. Effects of cadmium sulfide nanoparticles on sulfate bioreduction and oxidative stress in Desulfovibrio desulfuricans. Bioresour. Bioprocess. 2022, 9, 35. [Google Scholar] [CrossRef]
- Pujalté, I.; Passagne, I.; Brouillaud, B.; Tréguer, M.; Durand, E.; Ohayon-Courtès, C.; L’Azou, B. Cytotoxicity and oxidative stress induced by different metallic nanoparticles on human kidney cells. Part. Fibre Toxicol. 2011, 8, 10. [Google Scholar] [CrossRef]
- Cai, W.; Xiong Chen, Z.; Rane, G.; Satendra Singh, S.; Choo, Z.; Wang, C.; Yuan, Y.; Zea Tan, T.; Arfuso, F.; Yap, C.T.; et al. Wanted DEAD/H or Alive: Helicases Winding up in Cancers. JNCI J. Natl. Cancer Inst. 2017, 109, djw278. [Google Scholar] [CrossRef] [PubMed]
- Martins, S.G.; Zilhão, R.; Thorsteinsdóttir, S.; Carlos, A.R. Linking Oxidative Stress and DNA Damage to Changes in the Expression of Extracellular Matrix Components. Front. Genet. 2021, 12, 673002. [Google Scholar] [CrossRef] [PubMed]
- Prouteau, M.; Loewith, R. Regulation of Cellular Metabolism through Phase Separation of Enzymes. Biomolecules 2018, 8, 160. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, B.S.; Dassanayake, R.P.; Briggs, R.E.; Kanipe, C.R.; Boggiatto, P.M.; Crawford, L.S.; Olsen, S.C.; Menghwar, H.; Casas, E.; Tatum, F.M. An injectable subunit vaccine containing Elongation Factor Tu and Heat Shock Protein 70 partially protects American bison from Mycoplasma bovis infection. Front. Vet. Sci. 2024, 11, 673002. [Google Scholar] [CrossRef]
- Sachadyn, P. Conservation and diversity of MutS proteins. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2010, 694, 20–30. [Google Scholar] [CrossRef]
- Calloni, G.; Chen, T.; Schermann, S.M.; Chang, H.-c.; Genevaux, P.; Agostini, F.; Tartaglia, G.G.; Hayer-Hartl, M.; Hartl, F.U. DnaK Functions as a Central Hub in the E. coli Chaperone Network. Cell Rep. 2012, 1, 251–264. [Google Scholar] [CrossRef]
- Rosano, G.L.; Ceccarelli, E.A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 2014, 5, 172. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O.; Hashemi, E.; Zare, H.; Shamsara, M.; Taghavinia, N.; Heidari, F. Influence of heavy nanocrystals on spermatozoa and fertility of mammals. Mater. Sci. Eng. C 2016, 69, 52–59. [Google Scholar] [CrossRef]
- Bian, B.; Alqahtani, M.F.; Katuri, K.P.; Liu, D.; Bajracharya, S.; Lai, Z.; Rabaey, K.; Saikaly, P.E. Porous nickel hollow fiber cathodes coated with CNTs for efficient microbial electrosynthesis of acetate from CO2 using Sporomusa ovata. J. Mater. Chem. A 2018, 6, 17201–17211. [Google Scholar] [CrossRef]
- Campodonico, M.A.; Vaisman, D.; Castro, J.F.; Razmilic, V.; Mercado, F.; Andrews, B.A.; Feist, A.M.; Asenjo, J.A. Acidithiobacillus ferrooxidans’s comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications. Metab. Eng. Commun. 2016, 3, 84–96. [Google Scholar] [CrossRef]
- Lu, A.; Li, Y.; Ding, H.; Xu, X.; Li, Y.; Ren, G.; Liang, J.; Liu, Y.; Hong, H.; Chen, N.; et al. Photoelectric conversion on Earth’s surface via widespread Fe- and Mn-mineral coatings. Proc. Natl. Acad. Sci. USA 2019, 116, 9741–9746. [Google Scholar] [CrossRef] [PubMed]
- Sakimoto, K.K.; Wong, A.B.; Yang, P. Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 2016, 351, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Xiao, K.; Jiang, Z.; Wang, J.; Yu, J.C.; Wong, P.K. Biohybrid photoheterotrophic metabolism for significant enhancement of biological nitrogen fixation in pure microbial cultures. Energy Environ. Sci. 2019, 12, 2185–2191. [Google Scholar] [CrossRef]
- Dong, G.; Wang, H.; Yan, Z.; Zhang, J.; Ji, X.; Lin, M.; Dahlgren, R.A.; Shang, X.; Zhang, M.; Chen, Z. Cadmium sulfide nanoparticles-assisted intimate coupling of microbial and photoelectrochemical processes: Mechanisms and environmental applications. Sci. Total Environ. 2020, 740, 140080. [Google Scholar] [CrossRef]
- Lin, Y.; Shi, J.; Feng, W.; Yue, J.; Luo, Y.; Chen, S.; Yang, B.; Jiang, Y.; Hu, H.; Zhou, C.; et al. Periplasmic biomineralization for semi-artificial photosynthesis. Sci. Adv. 2023, 9, eadg5858. [Google Scholar] [CrossRef]
- Suryawanshi, V.K.; Patil, S.R.; Suryawanshi, K.E.; Isai, K.A.; Sonawane, M.S.; Patil, P.N.; Nandre, S.S. Synthesis and Characterization of CdS Nanoparticles and Study of its Antibacterial Activity Against Methicillin-Resistant Staphylococcus aureus (MRSA). Chem. Afr. 2023, 6, 2537–2549. [Google Scholar] [CrossRef]
- Dong, H.; Huang, L.; Zhao, L.; Zeng, Q.; Liu, X.; Sheng, Y.; Shi, L.; Wu, G.; Jiang, H.; Li, F.; et al. A critical review of mineral–microbe interaction and co-evolution: Mechanisms and applications. Natl. Sci. Rev. 2022, 9, nwac128. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Xu, J.; Yang, L.; Yuan, Z.; Xiao, S.; Zhang, Y.; Liang, C.; He, M.; Guo, Y. Production of C4 and C5 branched-chain alcohols by engineered Escherichia. coli. J. Ind. Microbiol. Biotechnol. 2015, 42, 1473–1479. [Google Scholar] [CrossRef]
- Kim, M.R.; Park, S.-Y.; Jang, D.-J. Facile Controlled Synthesis and Spectroscopy of CdS1−xSex Alloy and (CdS)1−x@(CdSe)x Core–Shell Nanotetrapods. Adv. Funct. Mater. 2009, 19, 3910–3916. [Google Scholar] [CrossRef]
- Dwivedi, M.; Tripathi, V.; Kumar, D.; Gupta, K.D. Structural and Morphological Characterization of CdS Nanoparticles. Curr. Phys. Chem. 2021, 11, 69–79. [Google Scholar] [CrossRef]
- Li, M.; Xu, H.; Hou, J.; Yang, F.; Sun, J.; Hou, C.; Liu, J. Enhanced Energy Transfer in the Co-assembly of Donor-Receptor Polymer Nanoparticles: An Artificial Light Capture System to Trigger Effective Photodynamic Antibacterial Processes. ChemistrySelect 2023, 8, e202301081. [Google Scholar] [CrossRef]
- Kato, S.; Hashimoto, K.; Watanabe, K. Microbial interspecies electron transfer via electric currents through conductive minerals. Proc. Natl. Acad. Sci. USA 2012, 109, 10042–10046. [Google Scholar] [CrossRef] [PubMed]
- Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2015, 46, 7787–7812. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Bo, W.; Yu, J.C.; Wang, J.; Wong, P.K. AglnS2/In2S3 heterostructure sensitization of Escherichia coli for sustainable hydrogen production. Nano Energy 2018, 46, 234–240. [Google Scholar] [CrossRef]
- Ren, G.; Sun, Y.; Ding, Y.; Lu, A.; Li, Y.; Wang, C.; Ding, H. Enhancing extracellular electron transfer between Pseudomonas aeruginosa PAO1 and light driven semiconducting birnessite. Bioelectrochemistry 2018, 123, 233–240. [Google Scholar] [CrossRef]
- Bassett, S.; Ding, Y.; Roy, M.K.; Reisz, J.A.; D’Alessandro, A.; Nagpal, P.; Chatterjee, A. Light-Driven Metabolic Pathways in Non-Photosynthetic Biohybrid Bacteria. ChemBioChem 2024, 25, e202300572. [Google Scholar] [CrossRef]
- Ciebiada, M.; Kubiak, K.; Daroch, M. Modifying the Cyanobacterial Metabolism as a Key to Efficient Biopolymer Production in Photosynthetic Microorganisms. Int. J. Mol. Sci. 2020, 21, 7204. [Google Scholar] [CrossRef]
- Liu, J.; Guo, X.; He, L.; Jiang, L.-P.; Zhou, Y.; Zhu, J.-J. Enhanced photocatalytic CO2 reduction on biomineralized CdS via an electron conduit in bacteria. Nanoscale 2023, 15, 10755–10762. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.; Wang, J.; Wang, H.; Yang, Y.; Zhao, M. The cytotoxicity of endogenous CdS and Cd2+ ions during CdS NPs biosynthesis. J. Hazard. Mater. 2021, 409, 124485. [Google Scholar] [CrossRef]
- Liu, B.; Persons, L.; Lee, L.; de Boer, P.A.J. Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Mol. Microbiol. 2015, 95, 945–970. [Google Scholar] [CrossRef]
- Siddiquee, K.A.; Arauzo-Bravo, M.J.; Shimizu, K. Effect of a pyruvate kinase (pykF-gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli. FEMS Microbiol. Lett. 2004, 235, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Sepehri, S.; Kotlowski, R.; Bernstein, C.N.; Krause, D.O. Phylogenetic analysis of inflammatory bowel disease associated Escherichia coli and the fimH virulence determinant. Inflamm. Bowel Dis. 2009, 15, 1737–1745. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, B.; French, C.E.; Wainwright, I.; Bruce, N.C. The udhA Gene of Escherichia coli Encodes a Soluble Pyridine Nucleotide Transhydrogenase. J. Bacteriol. 1999, 181, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Al-Attar, S.; Sahebdin, S.; de Vries, S. Cytochrome bd oxidase from Escherichia coli is a quinol peroxidase mechanistically adjusted to protecting the cell from hydrogen peroxide. Biochim. Biophys. Acta (BBA)-Bioenerg. 2014, 1837, e95–e96. [Google Scholar] [CrossRef]
- Shimizu, K.; Matsuoka, Y. Redox rebalance against genetic perturbations and modulation of central carbon metabolism by the oxidative stress regulation. Biotechnol. Adv. 2019, 37, 107441. [Google Scholar] [CrossRef]
- Li, P.; Jiang, Y.; Song, R.-B.; Zhang, J.-R.; Zhu, J.-J. Layer-by-layer assembly of Au and CdS nanoparticles on the surface of bacterial cells for photo-assisted bioanodes in microbial fuel cells. J. Mater. Chem. B 2021, 9, 1638–1646. [Google Scholar] [CrossRef]
- Valenzuela-Ibaceta, F.; Torres-Olea, N.; Ramos-Zúñiga, J.; Dietz-Vargas, C.; Navarro, C.A.; Pérez-Donoso, J.M. Minicells as an Escherichia coli mechanism for the accumulation and disposal of fluorescent cadmium sulphide nanoparticles. J. Nanobiotechnol. 2024, 22, 78. [Google Scholar] [CrossRef] [PubMed]
- Ventura, E.; Marín, A.; Gámez-Pérez, J.; Cabedo, L. Recent advances in the relationships between biofilms and microplastics in natural environments. World J. Microbiol. Biotechnol. 2024, 40, 220. [Google Scholar] [CrossRef]
- Jia, Y.; Gu, D.; Du, X.; Yang, W.; Yin, X.; Li, Q.; Kong, X.; Gao, Y.; Kong, Q.; Liu, T. ZnO Nanoparticles and Soil Fauna Affect Nutrient Transfer via Effects on Soil Fungal Community During Returned Wheat Straw Decomposition. Int. J. Environ. Res. 2024, 18, 63. [Google Scholar] [CrossRef]
- Don, A.; Böhme, I.H.; Dohrmann, A.B.; Poeplau, C.; Tebbe, C.C. Microbial community composition affects soil organic carbon turnover in mineral soils. Biol. Fertil. Soils 2017, 53, 445–456. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano 2010, 4, 5731–5736. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, O.; Ghaderi, E.; Esfandiar, A. Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation. J. Phys. Chem. B 2011, 115, 6279–6288. [Google Scholar] [CrossRef] [PubMed]
- Dutta, T.; Sarkar, R.; Pakhira, B.; Ghosh, S.; Sarkar, R.; Barui, A.; Sarkar, S. ROS generation by reduced graphene oxide (rGO) induced by visible light showing antibacterial activity: Comparison with graphene oxide (GO). RSC Adv. 2015, 5, 80192–80195. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E. Escherichia coli bacteria reduce graphene oxide to bactericidal graphene in a self-limiting manner. Carbon 2012, 50, 1853–1860. [Google Scholar] [CrossRef]
- Jannesari, M.; Akhavan, O.; Madaah Hosseini, H.R.; Bakhshi, B. Oxygen-Rich Graphene/ZnO2-Ag nanoframeworks with pH-Switchable Catalase/Peroxidase activity as O2 Nanobubble-Self generator for bacterial inactivation. J. Colloid Interface Sci. 2023, 637, 237–250. [Google Scholar] [CrossRef]
- Pi, S.; Yang, W.; Feng, W.; Yang, R.; Chao, W.; Cheng, W.; Cui, L.; Li, Z.; Lin, Y.; Ren, N.; et al. Solar-driven waste-to-chemical conversion by wastewater-derived semiconductor biohybrids. Nat. Sustain. 2023, 6, 1673–1684. [Google Scholar] [CrossRef]
- Tao, M.; Jin, C.; Lu, H.; Jin, K.; Yu, L.; Liu, J.; Zhang, J.; Zhu, X.; Wu, Y. Living and Regenerative Material Encapsulating Self-Assembled Shewanella oneidensis-CdS Hybrids for Photocatalytic Biodegradation of Organic Dyes. Microorganisms 2022, 10, 2501. [Google Scholar] [CrossRef]
- Vaishampayan, A.; Grohmann, E. Antimicrobials Functioning through ROS-Mediated Mechanisms: Current Insights. Microorganisms 2022, 10, 61. [Google Scholar] [CrossRef]
- Guan, N.; Li, J.; Shin, H.-d.; Du, G.; Chen, J.; Liu, L. Microbial response to environmental stresses: From fundamental mechanisms to practical applications. Appl. Microbiol. Biotechnol. 2017, 101, 3991–4008. [Google Scholar] [CrossRef]
- McBee, M.E.; Chionh, Y.H.; Sharaf, M.L.; Ho, P.; Cai, M.W.L.; Dedon, P.C. Production of Superoxide in Bacteria Is Stress- and Cell State-Dependent: A Gating-Optimized Flow Cytometry Method that Minimizes ROS Measurement Artifacts with Fluorescent Dyes. Front. Microbiol. 2017, 8, 459. [Google Scholar] [CrossRef]
- Sutton, N.B.; Atashgahi, S.; Saccenti, E.; Grotenhuis, T.; Smidt, H.; Rijnaarts, H.H.M. Microbial Community Response of an Organohalide Respiring Enrichment Culture to Permanganate Oxidation. PLoS ONE 2015, 10, e0134615. [Google Scholar] [CrossRef] [PubMed]
Components | mL L−1 |
---|---|
MgSO4·7H2O solution * | 2 mL |
CaCl2 solution ** | 100 μL |
5 × M9 salt solution *** | 200 mL |
Glucose solution **** | 20 mL |
HCl | Adjust pH to 7.0 |
MgSO4·7H2O | 246.47 |
CaCl2 | 111 |
Na2HPO4·12H2O | 19.6 |
KH2PO4 | 3 |
NaCl | 0.5 |
NH4Cl | 1 |
Glucose | 33.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Yang, Y.; Wang, J.; Huang, X.; Cui, D.; Zhao, M. The Influence of Exogenous CdS Nanoparticles on the Growth and Carbon Assimilation Efficiency of Escherichia coli. Biology 2024, 13, 847. https://doi.org/10.3390/biology13100847
Yang K, Yang Y, Wang J, Huang X, Cui D, Zhao M. The Influence of Exogenous CdS Nanoparticles on the Growth and Carbon Assimilation Efficiency of Escherichia coli. Biology. 2024; 13(10):847. https://doi.org/10.3390/biology13100847
Chicago/Turabian StyleYang, Kuo, Yue Yang, Jie Wang, Xiaomeng Huang, Daizong Cui, and Min Zhao. 2024. "The Influence of Exogenous CdS Nanoparticles on the Growth and Carbon Assimilation Efficiency of Escherichia coli" Biology 13, no. 10: 847. https://doi.org/10.3390/biology13100847
APA StyleYang, K., Yang, Y., Wang, J., Huang, X., Cui, D., & Zhao, M. (2024). The Influence of Exogenous CdS Nanoparticles on the Growth and Carbon Assimilation Efficiency of Escherichia coli. Biology, 13(10), 847. https://doi.org/10.3390/biology13100847