The Change Rate of the Fbxl21 Gene and the Amino Acid Composition of Its Protein Correlate with the Species-Specific Lifespan in Placental Mammals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Relationship between MRLS (and Body Eeight) and the Substitution Accumulation Rate in the Genes Involved in Circadian Rhythm Regulation
3.2. Pseudogenization and Fbxl21 Gene Loss
3.3. Amino Acid Substitutions in the Fbxl21 Protein
3.4. MRLS and Asparagine at the 19th Position of the Fbxl21 Cry-Binding Domain (CBD)
4. Conclusions
- (1)
- The proposed method consists in determining the relationship between the species traits and a genomic characteristic, harnessing the methods of statistical analysis. The genomic characteristic is considered as the median dN/dS ratio.
- (2)
- For certain genes (such as Fbxl21), the accumulation of amino acid substitutions up to pseudogenization or gene loss, as well as the preference for certain amino acids in the encoded protein, is an effective way to achieve a significant phylogenetic change.
- (3)
- The Fbxl21 gene and the species-specific maximal reported lifespan (MRLS), together with body weight, are examples of such a phylogenetic change in Euarchontoglires and Afrotheria, which is also observed in relatively small taxonomic groups, as, for example, in anthropoid apes and the Cercopithecidae.
- (4)
- In the Fbxl21 protein, changes were identified not only in the gene change rate for orders and superorders of mammals but also in the nature of the accumulated amino acid substitutions. For this protein, the stabilizing selection and the positive selection clearly prevail in Laurasiatheria (a sufficiently large p-value indicates the absence of correlation) and Euarchontoglires together with Afrotheria, where the p-value approximately equals 10−10, respectively.
- (5)
- In contrast, for proteins such as Fbxl3, β-TrCP, Fbxw11, GSK3α and GSK3β, CK1δ, and CK1ε, which are also closely related to circadian rhythm regulation in mammals, the stabilizing selection is characteristic of all mentioned superorders. The Bmal1, Clock, Pers, and Crys proteins, like many other circadian rhythm proteins, are highly conserved. For example, when cryptochrome circadian regulator 1 proteins were aligned in humans (586 aa) and mice (606 aa), 96% of the human protein and 93% of the mouse protein matched. The authors focused on studying circadian rhythm proteins, which change markedly during evolution.
- (6)
- We proposed a methodology to study the relationship between any genomic characteristics and species traits and illustrated its application on a number of circadian rhythm proteins. The authors hope that this methodology may be useful in other circadian rhythm proteins and within a different context.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonaconsa, M.; Malpeli, G.; Montaruli, A.; Carandente, F.; Grassi-Zucconi, G.; Bentivoglio, M. Differential modulation of clock gene expression in the suprachiasmatic nucleus, liver and heart of aged mice. Exp. Gerontol. 2014, 5, 7079. [Google Scholar] [CrossRef] [PubMed]
- Kolarski, D.; Miró-Vinyals, C.; Sugiyama, A.; Srivastava, A.; Ono, D.; Nagai, Y.; Iida, M.; Itami, K.; Tama, F.; Szymanski, W.; et al. Reversible modulation of circadian time with chronophotopharmacology. Nat. Commun. 2021, 12, 3164. [Google Scholar] [CrossRef] [PubMed]
- Solovev, I.A.; Shaposhnikov, M.V.; Moskalev, A.A. Chronobiotics KL001 and KS15 extend lifespan and modify circadian rhythms of Drosophila melanogaster. Clocks Sleep 2021, 3, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Gul, S.; Akyel, Y.K.; Gul, Z.M.; Isin, S.; Ozcan, O.; Korkmaz, T.; Selvi, S.; Danis, I.; Ipek, O.S.; Aygenli, F.; et al. Discovery of a small molecule that selectively destabilizes Cryptochrome 1 and enhances life span in p53 knockout mice. Nat. Commun. 2022, 13, 6742. [Google Scholar] [CrossRef]
- Korotkova, D.D.; Lyubetsky, V.A.; Ivanova, A.S.; Rubanov, L.I.; Seliverstov, A.V.; Zverkov, O.A.; Martynova, N.Y.; Nesterenko, A.M.; Tereshina, M.B.; Peshkin, L.; et al. Bioinformatics screening of genes specific for well-regenerating vertebrates reveals c-answer, a regulator of brain development and regeneration. Cell Rep. 2019, 29, 1027–1040.e6. [Google Scholar] [CrossRef]
- Rubanov, L.I.; Zaraisky, A.G.; Shilovsky, G.A.; Seliverstov, A.V.; Zverkov, O.A.; Lyubetsky, V.A. Screening for mouse genes lost in mammals with long lifespans. BioData Min. 2019, 12, 20. [Google Scholar] [CrossRef]
- Rubanov, L.I.; Zverkov, O.A.; Shilovsky, G.A.; Seliverstov, A.V.; Lyubetsky, V.A. Protein-coding genes in Euarchontoglires with pseudogene homologs in humans. Life 2020, 10, 192. [Google Scholar] [CrossRef]
- Lyubetsky, V.A.; Rubanov, L.I.; Tereshina, M.B.; Ivanova, A.S.; Araslanova, K.R.; Uroshlev, L.A.; Goremykina, G.I.; Yang, J.-R.; Kanovei, V.G.; Zverkov, O.A.; et al. Wide-scale identification of novel/eliminated genes responsible for evolutionary transformations. Biol. Direct 2023, 18, 45. [Google Scholar] [CrossRef]
- von Schantz, M. Phenotypic effects of genetic variability in human clock genes on circadian and sleep parameters. Rev. J. Genet. 2008, 87, 513–519. [Google Scholar] [CrossRef]
- Bunger, M.K.; Wilsbacher, L.D.; Moran, S.M.; Clendenin, C.; Radcliffe, L.A.; Hogenesch, J.B.; Simon, M.C.; Takahashi, J.S.; Bradfield, C.A. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 2000, 103, 1009–1017. [Google Scholar] [CrossRef]
- Okamura, H. Integration of mammalian circadian clock signals: From molecule to behavior. J. Endocrinol. 2003, 177, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Young, M.W.; Kay, S.A. Time zones: A comparative genetics of circadian clocks. Nat. Rev. Genet. 2001, 2, 702–715. [Google Scholar] [CrossRef] [PubMed]
- Souder, D.C.; Anderson, R.M. An expanding GSK3 network: Implications for aging research. Geroscience 2019, 41, 369–382. [Google Scholar] [CrossRef]
- Shilovsky, G.A.; Putyatina, T.S.; Morgunova, G.V.; Seliverstov, A.V.; Ashapkin, V.V.; Sorokina, E.V.; Markov, A.V.; Skulachev, V.P. A Crosstalk between the biorhythms and gatekeepers of longevity: Dual role of glycogen synthase kinase-3. Biochemistry 2021, 86, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Ralph, M.R.; Menaker, M. A mutation of the circadian system in golden hamsters. Science 1988, 241, 1225–1227. [Google Scholar] [CrossRef] [PubMed]
- Lowrey, P.L.; Shimomura, K.; Antoch, M.P.; Yamazaki, S.; Zemenides, P.D.; Ralph, M.R.; Menaker, M.; Takahashi, J.S. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 2000, 288, 483–492. [Google Scholar] [CrossRef]
- Xu, Y.; Padiath, Q.S.; Shapiro, R.E.; Jones, C.R.; Wu, S.C.; Saigoh, N.; Saigoh, K.; Ptácek, L.J.; Fu, Y.H. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 2005, 434, 640–644. [Google Scholar] [CrossRef]
- Etchegaray, J.-P.; Machida, K.K.; Noton, E.; Constance, C.M.; Dallmann, R.; Di Napoli, M.N.; DeBruyne, J.P.; Lambert, C.M.; Yu, E.A.; Reppert, S.M.; et al. Casein kinase 1 delta regulates the pace of the mammalian circadian clock. Mol. Cell. Biol. 2009, 29, 3853–3866. [Google Scholar] [CrossRef]
- Shaikevich, E.V.; Karan, L.S.; Fyodorova, M.V. Comparative analysis of the circadian rhythm genes period and timeless in Culex pipiens Linnaeus, 1758 (Diptera, Culicidae). Comp. Cytogenet. 2016, 10, 483–504. [Google Scholar] [CrossRef]
- Hunt, L.C.; Jiao, J.; Wang, Y.-D.; Finkelstein, D.; Rao, D.; Curley, M.; Robles-Murguia, M.; Shirinifard, A.; Pagala, V.R.; Peng, J.; et al. Circadian gene variants and the skeletal muscle circadian clock contribute to the evolutionary divergence in longevity across Drosophila populations. Genome Res. 2019, 29, 1262–1276. [Google Scholar] [CrossRef]
- Pickart, C.M.; Eddins, M.J. Ubiquitin: Structures, functions, mechanisms. Biochim. Biophys. Acta 2004, 1695, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Stojkovic, K.; Wing, S.S.; Cermakian, N. A central role for ubiquitination within a circadian clock protein modification code. Front. Mol. Neurosci. 2014, 7, 69. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, O.H.M.H.; Mascarenhas, B.; Cheng, H.M. Death of a protein: The role of E3 ubiquitin ligases in circadian rhythms of mice and flies. Int. J. Mol. Sci. 2022, 23, 10569. [Google Scholar] [CrossRef] [PubMed]
- Srikanta, S.B.; Cermakian, N. To Ub or not to Ub: Regulation of circadian clocks by ubiquitination and deubiquitination. J. Neurochem. 2021, 157, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Frescas, D.; Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: Tipping the scales of cancer. Nat. Rev. Cancer 2008, 8, 438–449. [Google Scholar] [CrossRef]
- Shirogane, T.; Jin, J.; Ang, X.L.; Harper, J.W. SCF-βTRCP controls clock-dependent transcription via casein kinase 1-dependent degradation of the mammalian period1 (Per1) protein. J. Biol. Chem. 2005, 280, 2686326872. [Google Scholar] [CrossRef]
- Busino, L.; Bassermann, F.; Maiolica, A.; Lee, C.; Nolan, P.M.; Godinho, S.I.; Draetta, G.F.; Pagano, M. SCF/Fbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 2007, 316, 900–904. [Google Scholar] [CrossRef]
- Godinho, S.I.H.; Maywood, E.S.; Shaw, L.; Tucci, V.; Barnard, A.R.; Busino, L.; Pagano, M.; Kendall, R.; Quwailid, M.M.; Romero, M.R.; et al. The afterhours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 2007, 316, 897900. [Google Scholar] [CrossRef]
- Siepka, S.M.; Yoo, S.-H.; Park, J.; Song, W.; Kumar, V.; Hu, Y.; Lee, C.; Takahashi, J.S. Circadian mutant overtime reveals Fbox protein FBXL3 regulation of cryptochrome and period gene expression. Cell 2007, 129, 10111023. [Google Scholar] [CrossRef]
- Dardente, H.; Mendoza, J.; Fustin, J.M.; Challet, E.; Hazlerigg, D.G. Implication of the F-Box Protein FBXL21 in circadian pacemaker function in mammals. PLoS ONE 2008, 3, e3530. [Google Scholar] [CrossRef]
- Hirano, A.; Yumimoto, K.; Tsunematsu, R.; Matsumoto, M.; Oyama, M.; Kozuka-Hata, H.; Nakagawa, T.; Lanjakornsiripan, D.; Nakayama, K.I.; Fukada, Y. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 2013, 152, 1106–1118. [Google Scholar] [CrossRef] [PubMed]
- Hirano, A.; Nakagawa, T.; Yoshitane, H.; Oyama, M.; Kozuka-Hata, H.; Lanjakornsiripan, D.; Fukada, Y. USP7 and TDP-43: Pleiotropic regulation of cryptochrome protein stability paces the oscillation of the mammalian circadian clock. PLoS ONE 2016, 11, e0154263. [Google Scholar] [CrossRef] [PubMed]
- Bonthuis, P.J.; Huang, W.-C.; Stacher Hörndli, C.N.; Ferris, E.; Cheng, T.; Gregg, C. Noncanonical genomic imprinting effects in offspring. Cell Rep. 2015, 12, 979–991. [Google Scholar] [CrossRef]
- Gregg, C.; Zhang, J.; Weissbourd, B.; Luo, S.; Schroth, G.P.; Haig, D.; Dulac, C. High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 2010, 329, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Dilman, V.M. Ontogenetic model of ageing and disease formation and mechanisms of natural selection. J. Theor. Biol. 1986, 118, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Skulachev, V.P.; Shilovsky, G.A.; Putyatina, T.S.; Popov, N.A.; Markov, A.V.; Skulachev, M.V.; Sadovnichii, V.A. Perspectives of Homo sapiens lifespan extension: Focus on external or internal resources? Aging 2020, 12, 5566–5584. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Sun, C.; Chen, Q.; O’Neill, F.A.; Walsh, D.; Fanous, A.; Kendler, K.S. FBXL21 association with schizophrenia in Irish family and case-control samples. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2008, 147, 1231–1237. [Google Scholar] [CrossRef]
- Andrews, J.L.; Goodfellow, F.J.; Matosin, N.; Snelling, M.K.; Newell, K.A.; Huang, X.F.; Fernandez-Enright, F. Alterations of ubiquitin related proteins in the pathology and development of schizophrenia: Evidence from human and animal studies. J. Psychiatr. Res. 2017, 90, 31–39. [Google Scholar] [CrossRef]
- Gunz, P.; Neubauer, S.; Falk, D.; Tafforeau, P.; Le Cabec, A.; Smith, T.M.; Kimbel, W.H.; Spoor, F.; Alemseged, Z. Australopithecus afarensis endocasts suggest ape-like brain organization and prolonged brain growth. Sci. Adv. 2020, 6, eaaz4729. [Google Scholar] [CrossRef]
- Kaplan, H.; Hill, K.; Lancaster, J.; Hurtado, A.M. A theory of human life history evolution: Diet, intelligence, and longevity. Evol. Anthropol. 2000, 9, 156–185. [Google Scholar] [CrossRef]
- Montgomery, S.H.; Capellini, I.; Venditti, C.; Barton, R.A.; Mundy, N.I. Adaptive evolution of four microcephaly genes and the evolution of brain size in anthropoid primates. Mol. Biol. Evol. 2010, 28, 625–638. [Google Scholar] [CrossRef] [PubMed]
- de Magalhães, J.P.; Costa, J. A database of vertebrate longevity records and their relation to other life-history traits. J. Evol. Biol. 2009, 22, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Lekagul, B.; McNeely, J.A. Mammals of Thailand; Association for the Conservation of Wildlife: Bangkok, Thailand, 1977. [Google Scholar]
- Brunet-Rossinni, A.K.; Austad, S.N. Ageing studies on bats: A review. Biogerontology 2004, 5, 211–222. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Yang, Z. PAMLX: A graphical user interface for PAML. Mol. Biol. Evol. 2013, 30, 2723–2724. [Google Scholar] [CrossRef]
- Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef]
- Yang, Z.; Nielsen, R. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol. 2000, 17, 32–43. [Google Scholar] [CrossRef]
- Marques, J.P.; Seixas, F.A.; Farelo, L.; Callahan, C.M.; Good, J.M.; Montgomery, W.I.; Reid, N.; Alves, P.C.; Boursot, P.; Melo-Ferreira, J. An annotated draft genome of the mountain hare (Lepus timidus). Genome Biol. Evol. 2020, 12, 3656–3662. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- Pianka, E.R. On r- and K-selection. Am. Nat. 1970, 104, 592–597. [Google Scholar] [CrossRef]
- Reznick, D.; Bryant, M.; Bashey, F. R- and K-selection revisited: The role of population regulation in life-history evolution. Ecology 2002, 83, 1509–1520. [Google Scholar] [CrossRef]
- Comfort, A. The Biology of Senescence; Churchill Livingstone: Edinburgh, UK; London, UK; Melbourne, VIC, Australia, 1979. [Google Scholar]
- Dayhoff, M.O.; Schwartz, R.M.; Orcutt, B.C. A model of evolutionary change in proteins. In Atlas of Protein Sequence and Structure; Dayhoff, M.O., Ed.; National Biomedical Research Foundation: Washington, DC, USA, 1978; Volume 5, pp. 345–352. [Google Scholar]
Gene | n | r | p | Regression | Median Interval |
---|---|---|---|---|---|
median vs. lifespan | |||||
Fbxl21 | 49 | 0.76 | 3 × 10−10 | y = 439x − 36 | [0.074, 0.178] |
Fbxl3 | 58 | −0.15 | 0.3 | y = −463x + 42 | [0.023, 0.054] |
Fbxw11 | 54 | −0.37 | 0.006 | y = −1974x + 32 | [0.000, 0.012] |
Btrc | 56 | 0.12 | 0.4 | y = 34x + 23 | [0.008, 0.265] |
Gsk3a | 52 | −0.11 | 0.4 | y = −135x + 30 | [0.022, 0.147] |
Gsk3b | 52 | −0.17 | 0.2 | y = −102x + 28 | [0.006, 0.225] |
Csnk1d | 56 | 0.14 | 0.3 | y = 371x + 21 | [0.004, 0.032] |
Csnk1e | 47 | 0.02 | 0.9 | y = 10x + 25 | [0.003, 0.136] |
median vs. lg(weight) | |||||
Fbxl21 | 49 | 0.67 | 10−7 | y = 25x − 1 | [0.074, 0.178] |
Fbxl3 | 58 | −0.17 | 0.2 | y = −28x + 4 | [0.023, 0.054] |
Fbxw11 | 54 | −0.35 | 0.01 | y = −99x + 3 | [0.000, 0.012] |
Btrc | 56 | 0.22 | 0.1 | y = 3x + 3 | [0.008, 0.265] |
Gsk3a | 52 | −0.18 | 0.2 | y = −12x + 3 | [0.022, 0.147] |
Gsk3b | 52 | −0.04 | 0.8 | y = −x + 3 | [0.006, 0.225] |
Csnk1d | 55 | −0.04 | 0.8 | y = −6x + 3 | [0.004, 0.032] |
Csnk1e | 47 | 0.11 | 0.5 | y = 3x + 3 | [0.003, 0.136] |
Gene | n | r | p | Regression |
---|---|---|---|---|
median vs. lifespan | ||||
Fbxl21 | 53 | 0.75 | 8 × 10−11 | y = 463x − 39 |
Fbxl3 | 63 | −0.08 | 0.6 | y = −249x + 35 |
Fbxw11 | 58 | −0.35 | 0.007 | y = −2016x + 33 |
Btrc | 61 | 0.10 | 0.5 | y = 31x + 25 |
Gsk3a | 56 | −0.05 | 0.7 | y = −78x + 30 |
Gsk3b | 57 | −0.18 | 0.2 | y = −115x + 29 |
Csnk1d | 60 | 0.18 | 0.2 | y = 483x + 20 |
Csnk1e | 48 | 0.02 | 0.9 | y = 15x + 25 |
median vs. lg (weight) | ||||
Fbxl21 | 53 | 0.66 | 7 × 10−8 | y = 27x − 1 |
Fbxl3 | 63 | −0.08 | 0.5 | y = −15x + 4 |
Fbxw11 | 58 | −0.34 | 0.01 | y = −111x + 3 |
Btrc | 61 | 0.16 | 0.2 | y = 3x + 3 |
Gsk3a | 56 | −0.10 | 0.5 | y = −8x + 3 |
Gsk3b | 57 | −0.07 | 0.6 | y = −2x + 3 |
Csnk1d | 59 | 0.03 | 0.8 | y = 5x + 3 |
Csnk1e | 48 | 0.11 | 0.4 | y = 4x + 3 |
Gene | n | r | p | Regression |
---|---|---|---|---|
median vs. lifespan | ||||
Fbxl21 | 67 | 0.11 | 0.4 | y = 58x + 16 |
Fbxl3 | 78 | 0.07 | 0.5 | y = 105x + 27 |
Fbxw11 | 76 | −0.29 | 0.01 | y = −4552x + 32 |
Btrc | 77 | −0.08 | 0.5 | y = −40x + 31 |
Gsk3a | 75 | 0.33 | 0.004 | y = 339x + 17 |
Gsk3b | 77 | 0.38 | 0.0008 | y = 79x + 26 |
Csnk1d | 78 | −0.10 | 0.4 | y = −138x + 34 |
Csnk1e | 42 | 0.29 | 0.06 | y = 211x + 8 |
median vs. lg (weight) | ||||
Fbxl21 | 67 | 0.26 | 0.03 | y = 13x + 1 |
Fbxl3 | 78 | −0.19 | 0.1 | y = −26x + 5 |
Fbxw11 | 76 | −0.38 | 0.0007 | y = −686x + 4 |
Btrc | 78 | 0.01 | 0.9 | y = x + 4 |
Gsk3a | 75 | 0.12 | 0.3 | y = 12x + 4 |
Gsk3b | 77 | 0.10 | 0.4 | y = 2x + 4 |
Csnk1d | 77 | 0.10 | 0.4 | y = 14x + 4 |
Csnk1e | 43 | 0.30 | 0.05 | y = 24x + 2 |
Gene | n | r | p | Regression |
---|---|---|---|---|
median vs. lifespan | ||||
Fbxl21 | 120 | 0.42 | 2 × 10−6 | y = 166x − 4 |
Fbxl3 | 142 | −0.00 | 1 | y = −6x + 29 |
Fbxw11 | 135 | −0.38 | 4 × 10−6 | y = −2877x + 33 |
Btrc | 140 | 0.01 | 0.9 | y = 3x + 29 |
Gsk3a | 132 | 0.22 | 0.01 | y = 281x + 18 |
Gsk3b | 136 | 0.22 | 0.01 | y = 75x + 26 |
Csnk1d | 140 | 0.01 | 0.9 | y = 19x + 29 |
Csnk1e | 91 | 0.02 | 0.8 | y = 13x + 27 |
median vs. lg (weight) | ||||
Fbxl21 | 120 | 0.48 | 4 × 10−8 | y = 17x + 0 |
Fbxl3 | 142 | −0.09 | 0.3 | y = −16x + 4 |
Fbxw11 | 135 | −0.40 | 2 × 10−6 | y = −262x + 4 |
Btrc | 141 | −0.02 | 0.8 | y = −x + 4 |
Gsk3a | 132 | 0.14 | 0.1 | y = 16x + 3 |
Gsk3b | 136 | 0.15 | 0.08 | y = 4x + 4 |
Csnk1d | 138 | 0.11 | 0.2 | y = 20x + 4 |
Csnk1e | 92 | 0.12 | 0.3 | y = 5x + 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lyubetsky, V.A.; Shilovsky, G.A.; Yang, J.-R.; Seliverstov, A.V.; Zverkov, O.A. The Change Rate of the Fbxl21 Gene and the Amino Acid Composition of Its Protein Correlate with the Species-Specific Lifespan in Placental Mammals. Biology 2024, 13, 792. https://doi.org/10.3390/biology13100792
Lyubetsky VA, Shilovsky GA, Yang J-R, Seliverstov AV, Zverkov OA. The Change Rate of the Fbxl21 Gene and the Amino Acid Composition of Its Protein Correlate with the Species-Specific Lifespan in Placental Mammals. Biology. 2024; 13(10):792. https://doi.org/10.3390/biology13100792
Chicago/Turabian StyleLyubetsky, Vassily A., Gregory A. Shilovsky, Jian-Rong Yang, Alexandr V. Seliverstov, and Oleg A. Zverkov. 2024. "The Change Rate of the Fbxl21 Gene and the Amino Acid Composition of Its Protein Correlate with the Species-Specific Lifespan in Placental Mammals" Biology 13, no. 10: 792. https://doi.org/10.3390/biology13100792
APA StyleLyubetsky, V. A., Shilovsky, G. A., Yang, J. -R., Seliverstov, A. V., & Zverkov, O. A. (2024). The Change Rate of the Fbxl21 Gene and the Amino Acid Composition of Its Protein Correlate with the Species-Specific Lifespan in Placental Mammals. Biology, 13(10), 792. https://doi.org/10.3390/biology13100792