Circadian Regulation in Diurnal Mammals: Neural Mechanisms and Implications in Translational Research
Simple Summary
Abstract
1. Introduction
2. Adaptive Value of the Circadian System
3. Regulatory Mechanisms of the Circadian System
3.1. Molecular Machinery
3.2. Phase Relationship Between SCN, Extra-SCN Brain Regions, and Peripheral Tissues/Organs
4. Mechanisms Underlying the Chronotype Switch
4.1. Structural and Functional Differences in Local Circuitry
4.2. Distinct Response to Light
4.3. Melatonin
5. Diurnal Models in Studying Sleep and Sleep Disorders
5.1. Familial Natural Short Sleep
5.2. Obstructive Sleep Apnea
5.3. Smith–Magenis Syndrome
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Daan, S. Tonic and phasic effects of light in the entrainment of circadian rhythms. Ann. N. Y. Acad. Sci. 1977, 290, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Bennie, J.J.; Duffy, J.P.; Inger, R.; Gaston, K.J. Biogeography of time partitioning in mammals. Proc. Natl. Acad. Sci. USA 2014, 111, 13727–13732. [Google Scholar] [CrossRef] [PubMed]
- Walls, G.L. The Vertebrate Eye and Its Adaptive Radiation; Hafner Publ: New York, NY, USA, 1942. [Google Scholar]
- Crompton, A.W.; Taylor, C.R.; Jagger, J.A. Evolution of homeothermy in mammals. Nature 1978, 272, 333–336. [Google Scholar] [CrossRef]
- Gerkema, M.P.; Davies, W.I.; Foster, R.G.; Menaker, M.; Hut, R.A. The nocturnal bottleneck and the evolution of activity patterns in mammals. Proc. R. Soc. B 2013, 280, 20130508. [Google Scholar] [CrossRef] [PubMed]
- Maor, R.; Dayan, T.; Ferguson-Gow, H.; Jones, K.E. Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction. Nat. Ecol. Evol. 2017, 1, 1889–1895. [Google Scholar] [CrossRef]
- Pittendrigh, C.S. Temporal organization: Reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 1993, 55, 16–54. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K. Adaptive significance of circadian clocks. Chronobiol. Int. 2003, 20, 901–919. [Google Scholar] [CrossRef]
- Dodd, A.N.; Salathia, N.; Hall, A.; Kevei, E.; Toth, R.; Nagy, F.; Hibberd, J.M.; Millar, A.J.; Webb, A.A. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 2005, 309, 630–633. [Google Scholar] [CrossRef]
- Nikaido, S.S.; Johnson, C.H. Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem. Photobiol. 2000, 71, 758–765. [Google Scholar] [CrossRef]
- Jabbur, M.L.; Dani, C.; Spoelstra, K.; Dodd, A.N.; Johnson, C.H. Evaluating the Adaptive Fitness of Circadian Clocks and their Evolution. J. Biol. Rhythm. 2024, 39, 115–134. [Google Scholar] [CrossRef]
- Paranjpe, D.A.; Sharma, V.K. Evolution of temporal order in living organisms. J. Circadian Rhythm. 2005, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Andersson, C.R.; Kondo, T.; Golden, S.S.; Johnson, C.H. Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl. Acad. Sci. USA 1998, 95, 8660–8664. [Google Scholar] [CrossRef] [PubMed]
- Pittendrigh, C.S.; Minis, D.H. Circadian systems: Longevity as a function of circadian resonance in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 1972, 69, 1537–1539. [Google Scholar] [CrossRef] [PubMed]
- von Saint Paul, U.; Aschoff, J. Longevity among blowflies Phormia terraenovae R.D. kept in non-24-hour light-dark cycles. J. Comp. Physiol. 1978, 127, 191–195. [Google Scholar] [CrossRef]
- Spoelstra, K.; Wikelski, M.; Daan, S.; Loudon, A.S.; Hau, M. Natural selection against a circadian clock gene mutation in mice. Proc. Natl. Acad. Sci. USA 2016, 113, 686–691. [Google Scholar] [CrossRef]
- Martino, T.A.; Oudit, G.Y.; Herzenberg, A.M.; Tata, N.; Koletar, M.M.; Kabir, G.M.; Belsham, D.D.; Backx, P.H.; Ralph, M.R.; Sole, M.J. Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R1675–R1683. [Google Scholar] [CrossRef]
- Boivin, D.B.; Boudreau, P.; Kosmadopoulos, A. Disturbance of the Circadian System in Shift Work and Its Health Impact. J. Biol. Rhythm. 2022, 37, 3–28. [Google Scholar] [CrossRef]
- Hastings, M.H.; Maywood, E.S.; Brancaccio, M. The Mammalian Circadian Timing System and the Suprachiasmatic Nucleus as Its Pacemaker. Biology 2019, 8, 13. [Google Scholar] [CrossRef]
- Davidson, A.J.; Yamazaki, S.; Menaker, M. SCN: Ringmaster of the circadian circus or conductor of the circadian orchestra? Novartis Found. Symp. 2003, 253, 110–121; discussion 121–125, 281–284. [Google Scholar]
- Dunlap, J.C. Molecular bases for circadian clocks. Cell 1999, 96, 271–290. [Google Scholar] [CrossRef]
- Young, M.W. The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Annu. Rev. Biochem. 1998, 67, 135–152. [Google Scholar] [CrossRef] [PubMed]
- King, D.P.; Takahashi, J.S. Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 2000, 23, 713–742. [Google Scholar] [CrossRef] [PubMed]
- Okamura, H. Clock genes in cell clocks: Roles, actions, and mysteries. J. Biol. Rhythm. 2004, 19, 388–399. [Google Scholar] [CrossRef] [PubMed]
- Okamura, H. Suprachiasmatic nucleus clock time in the mammalian circadian system. Cold Spring Harb. Symp. Quant. Biol. 2007, 72, 551–556. [Google Scholar] [CrossRef]
- Takahashi, J.S.; Hong, H.K.; Ko, C.H.; McDearmon, E.L. The genetics of mammalian circadian order and disorder: Implications for physiology and disease. Nat. Rev. Genet. 2008, 9, 764–775. [Google Scholar] [CrossRef]
- Mohawk, J.A.; Green, C.B.; Takahashi, J.S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 2012, 35, 445–462. [Google Scholar] [CrossRef]
- Patke, A.; Young, M.W.; Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol. 2020, 21, 67–84. [Google Scholar] [CrossRef]
- Dardente, H.; Klosen, P.; Caldelas, I.; Pevet, P.; Masson-Pevet, M. Phenotype of Per1- and Per2-expressing neurons in the suprachiasmatic nucleus of a diurnal rodent (Arvicanthis ansorgei): Comparison with a nocturnal species, the rat. Cell Tissue Res. 2002, 310, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Lambert, C.M.; Machida, K.K.; Smale, L.; Nunez, A.A.; Weaver, D.R. Analysis of the prokineticin 2 system in a diurnal rodent, the unstriped Nile grass rat (Arvicanthis niloticus). J. Biol. Rhythm. 2005, 20, 206–218. [Google Scholar] [CrossRef]
- Dardente, H.; Fustin, J.M.; Hazlerigg, D.G. Transcriptional feedback loops in the ovine circadian clock. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 153, 391–398. [Google Scholar] [CrossRef]
- Toh, K.L.; Jones, C.R.; He, Y.; Eide, E.J.; Hinz, W.A.; Virshup, D.M.; Ptacek, L.J.; Fu, Y.H. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001, 291, 1040–1043. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Padiath, Q.S.; Shapiro, R.E.; Jones, C.R.; Wu, S.C.; Saigoh, N.; Saigoh, K.; Ptacek, L.J.; Fu, Y.H. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 2005, 434, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Schibler, U.; Sassone-Corsi, P. A web of circadian pacemakers. Cell 2002, 111, 919–922. [Google Scholar] [CrossRef]
- Ko, C.H.; Takahashi, J.S. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 2006, 15 (Suppl 2), R271–R277. [Google Scholar] [CrossRef]
- Zhang, R.; Lahens, N.F.; Ballance, H.I.; Hughes, M.E.; Hogenesch, J.B. A circadian gene expression atlas in mammals: Implications for biology and medicine. Proc. Natl. Acad. Sci. USA 2014, 111, 16219–16224. [Google Scholar] [CrossRef]
- Mure, L.S.; Le, H.D.; Benegiamo, G.; Chang, M.W.; Rios, L.; Jillani, N.; Ngotho, M.; Kariuki, T.; Dkhissi-Benyahya, O.; Cooper, H.M.; et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 2018, 359, eaao0318. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Smale, L.; Nunez, A.A. Circadian and photic modulation of daily rhythms in diurnal mammals. Eur. J. Neurosci. 2020, 51, 551–566. [Google Scholar] [CrossRef]
- Valenzuela, F.J.; Torres-Farfan, C.; Richter, H.G.; Mendez, N.; Campino, C.; Torrealba, F.; Valenzuela, G.J.; Seron-Ferre, M. Clock gene expression in adult primate suprachiasmatic nuclei and adrenal: Is the adrenal a peripheral clock responsive to melatonin? Endocrinology 2008, 149, 1454–1461. [Google Scholar] [CrossRef]
- Lambert, C.M.; Weaver, D.R. Peripheral gene expression rhythms in a diurnal rodent. J. Biol. Rhythm. 2006, 21, 77–79. [Google Scholar] [CrossRef]
- Andersson, H.; Johnston, J.D.; Messager, S.; Hazlerigg, D.; Lincoln, G. Photoperiod regulates clock gene rhythms in the ovine liver. Gen. Comp. Endocrinol. 2005, 142, 357–363. [Google Scholar] [CrossRef]
- Murphy, B.A.; Blake, C.M.; Brown, J.A.; Martin, A.M.; Forde, N.; Sweeney, L.M.; Evans, A.C. Evidence of a molecular clock in the ovine ovary and the influence of photoperiod. Theriogenology 2015, 84, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Lemos, D.R.; Downs, J.L.; Urbanski, H.F. Twenty-four-hour rhythmic gene expression in the rhesus macaque adrenal gland. Mol. Endocrinol. 2006, 20, 1164–1176. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, C.; Nunez, A.A.; Smale, L. Daily rhythms in PER1 within and beyond the suprachiasmatic nucleus of female grass rats (Arvicanthis niloticus). Neuroscience 2008, 156, 48–58. [Google Scholar] [CrossRef]
- Ramanathan, C.; Smale, L.; Nunez, A.A. Rhythms in expression of PER1 protein in the amygdala and bed nucleus of the stria terminalis of the diurnal grass rat (Arvicanthis niloticus). Neurosci. Lett. 2008, 441, 86–89. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, C.; Stowie, A.; Smale, L.; Nunez, A. PER2 rhythms in the amygdala and bed nucleus of the stria terminalis of the diurnal grass rat (Arvicanthis niloticus). Neurosci. Lett. 2010, 473, 220–223. [Google Scholar] [CrossRef]
- Smale, L.; Nunez, A.A.; Schwartz, M.D. Rhythms in a diurnal brain. Biol. Rhythm. Research. 2008, 39, 305–318. [Google Scholar] [CrossRef]
- Kalsbeek, A.; Verhagen, L.A.; Schalij, I.; Foppen, E.; Saboureau, M.; Bothorel, B.; Buijs, R.M.; Pevet, P. Opposite actions of hypothalamic vasopressin on circadian corticosterone rhythm in nocturnal versus diurnal species. Eur. J. Neurosci. 2008, 27, 818–827. [Google Scholar] [CrossRef]
- Langel, J.; Ikeno, T.; Yan, L.; Nunez, A.A.; Smale, L. Distributions of GABAergic and glutamatergic neurons in the brains of a diurnal and nocturnal rodent. Brain Res. 2018, 1700, 152–159. [Google Scholar] [CrossRef]
- Paul, M.J.; Indic, P.; Schwartz, W.J. A role for the habenula in the regulation of locomotor activity cycles. Eur. J. Neurosci. 2011, 34, 478–488. [Google Scholar] [CrossRef]
- Haun, F.; Eckenrode, T.C.; Murray, M. Habenula and thalamus cell transplants restore normal sleep behaviors disrupted by denervation of the interpeduncular nucleus. J. Neurosci. 1992, 12, 3282–3290. [Google Scholar] [CrossRef]
- Valjakka, A.; Vartiainen, J.; Tuomisto, L.; Tuomisto, J.T.; Olkkonen, H.; Airaksinen, M.M. The fasciculus retroflexus controls the integrity of REM sleep by supporting the generation of hippocampal theta rhythm and rapid eye movements in rats. Brain Res. Bull. 1998, 47, 171–184. [Google Scholar] [CrossRef] [PubMed]
- van Rosmalen, L.; Deota, S.; Maier, G.; Le, H.D.; Lin, T.; Ramasamy, R.K.; Hut, R.A.; Panda, S. Energy balance drives diurnal and nocturnal brain transcriptome rhythms. Cell Rep. 2024, 43, 113951. [Google Scholar] [CrossRef] [PubMed]
- Tsujino, N.; Sakurai, T. Orexin/hypocretin: A neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol. Rev. 2009, 61, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Gerashchenko, D.; Shiromani, P.J. Different neuronal phenotypes in the lateral hypothalamus and their role in sleep and wakefulness. Mol. Neurobiol. 2004, 29, 41–59. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T. Orexin and orexin receptors. In Hypocretins; Springer: Berlin/Heidelberg, Germany, 2005; pp. 13–23. [Google Scholar]
- Donlin, M.; Cavanaugh, B.L.; Spagnuolo, O.S.; Yan, L.; Lonstein, J.S. Effects of sex and reproductive experience on the number of orexin A-immunoreactive cells in the prairie vole brain. Peptides 2014, 57, 122–128. [Google Scholar] [CrossRef]
- Nixon, J.P.; Smale, L. A comparative analysis of the distribution of immunoreactive orexin A and B in the brains of nocturnal and diurnal rodents. Behav. Brain Funct. 2007, 3, 28. [Google Scholar] [CrossRef]
- Aziz, A.; Fronczek, R.; Maat-Schieman, M.; Unmehopa, U.; Roelandse, F.; Overeem, S.; van Duinen, S.; Lammers, G.J.; Swaab, D.; Roos, R. Hypocretin and melanin-concentrating hormone in patients with Huntington disease. Brain Pathol. 2008, 18, 474–483. [Google Scholar] [CrossRef]
- Thannickal, T.C.; Nienhuis, R.; Siegel, J.M. Localized loss of hypocretin (orexin) cells in narcolepsy without cataplexy. Sleep 2009, 32, 993–998. [Google Scholar] [CrossRef]
- Adidharma, W.; Leach, G.; Yan, L. Orexinergic signaling mediates light-induced neuronal activation in the dorsal raphe nucleus. Neuroscience 2012, 220, 201–207. [Google Scholar] [CrossRef]
- Marston, O.J.; Williams, R.H.; Canal, M.M.; Samuels, R.E.; Upton, N.; Piggins, H.D. Circadian and dark-pulse activation of orexin/hypocretin neurons. Mol. Brain 2008, 1, 19. [Google Scholar] [CrossRef]
- Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P.; Wilson, S.; et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998, 92, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Ikeno, T.; Yan, L. A comparison of the orexin receptor distribution in the brain between diurnal Nile grass rats (Arvicanthis niloticus) and nocturnal mice (Mus musculus). Brain Res. 2018, 1690, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; van Velthoven, C.T.J.; Kunst, M.; Zhang, M.; McMillen, D.; Lee, C.; Jung, W.; Goldy, J.; Abdelhak, A.; Aitken, M.; et al. A high-resolution transcriptomic and spatial atlas of cell types in the whole mouse brain. Nature 2023, 624, 317–332. [Google Scholar] [CrossRef] [PubMed]
- Campbell, S.S.; Dawson, D. Enhancement of nighttime alertness and performance with bright ambient light. Physiol. Behav. 1990, 48, 317–320. [Google Scholar] [CrossRef] [PubMed]
- Redlin, U. Neural basis and biological function of masking by light in mammals: Suppression of melatonin and locomotor activity. Chronobiol. Int. 2001, 18, 737–758. [Google Scholar] [CrossRef]
- Gaillard, F.; Bonfield, S.; Gilmour, G.S.; Kuny, S.; Mema, S.C.; Martin, B.T.; Smale, L.; Crowder, N.; Stell, W.K.; Sauve, Y. Retinal anatomy and visual performance in a diurnal cone-rich laboratory rodent, the Nile grass rat (Arvicanthis niloticus). J. Comp. Neurol. 2008, 510, 525–538. [Google Scholar] [CrossRef]
- Gaillard, F.; Karten, H.J.; Sauve, Y. Retinorecipient areas in the diurnal murine rodent Arvicanthis niloticus: A disproportionally large superior colliculus. J. Comp. Neurol. 2013, 521, 1699–1726. [Google Scholar] [CrossRef]
- Berson, D.M.; Dunn, F.A.; Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 2002, 295, 1070–1073. [Google Scholar] [CrossRef]
- Hattar, S.; Liao, H.W.; Takao, M.; Berson, D.M.; Yau, K.W. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 2002, 295, 1065–1070. [Google Scholar] [CrossRef]
- Hattar, S.; Lucas, R.J.; Mrosovsky, N.; Thompson, S.; Douglas, R.H.; Hankins, M.W.; Lem, J.; Biel, M.; Hofmann, F.; Foster, R.G.; et al. Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 2003, 424, 76–81. [Google Scholar] [CrossRef]
- Mrosovsky, N.; Hattar, S. Impaired masking responses to light in melanopsin-knockout mice. Chronobiol. Int. 2003, 20, 989–999. [Google Scholar] [CrossRef] [PubMed]
- Langel, J.L.; Smale, L.; Esquiva, G.; Hannibal, J. Central melanopsin projections in the diurnal rodent, Arvicanthis niloticus. Front. Neuroanat. 2015, 9, 93. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.B.; Beaver, E.M.; Collins, S.G.; Kriegsfeld, L.J.; Lockley, S.W.; Wong, K.Y.; Yan, L. S-Cone Photoreceptors Regulate Daily Rhythms and Light-Induced Arousal/Wakefulness in Diurnal Grass Rats (Arvicanthis niloticus). J. Biol. Rhythm. 2023, 38, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Shuboni, D.D.; Cramm, S.L.; Yan, L.; Ramanathan, C.; Cavanaugh, B.L.; Nunez, A.A.; Smale, L. Acute effects of light on the brain and behavior of diurnal Arvicanthis niloticus and nocturnal Mus musculus. Physiol. Behav. 2015, 138, 75–86. [Google Scholar] [CrossRef]
- Gall, A.J.; Khacherian, O.S.; Ledbetter, B.; Deats, S.P.; Luck, M.; Smale, L.; Yan, L.; Nunez, A.A. Normal behavioral responses to light and darkness and the pupillary light reflex are dependent upon the olivary pretectal nucleus in the diurnal Nile grass rat. Neuroscience 2017, 355, 225–237. [Google Scholar] [CrossRef]
- Gall, A.J.; Shuboni, D.D.; Yan, L.; Nunez, A.A.; Smale, L. Suprachiasmatic Nucleus and Subparaventricular Zone Lesions Disrupt Circadian Rhythmicity but Not Light-Induced Masking Behavior in Nile Grass Rats. J. Biol. Rhythm. 2016, 31, 170–181. [Google Scholar] [CrossRef]
- Gall, A.J.; Smale, L.; Yan, L.; Nunez, A.A. Lesions of the Intergeniculate Leaflet Lead to a Reorganization in Circadian Regulation and a Reversal in Masking Responses to Photic Stimuli in the Nile Grass Rat. PLoS ONE 2013, 8, e67387. [Google Scholar] [CrossRef]
- Pevet, P.; Challet, E. Melatonin: Both master clock output and internal time-giver in the circadian clocks network. J. Physiol. Paris 2011, 105, 170–182. [Google Scholar] [CrossRef]
- Ganguly, S.; Coon, S.L.; Klein, D.C. Control of melatonin synthesis in the mammalian pineal gland: The critical role of serotonin acetylation. Cell Tissue. Res. 2002, 309, 127–137. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Wotus, C.; Liu, T.; Friesen, W.O.; Borjigin, J.; Oda, G.A.; de la Iglesia, H.O. Dissociation of circadian and light inhibition of melatonin release through forced desynchronization in the rat. Proc. Natl. Acad. Sci. USA 2009, 106, 17540–17545. [Google Scholar] [CrossRef]
- Redman, J.R. Circadian entrainment and phase shifting in mammals with melatonin. J. Biol. Rhythm. 1997, 12, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Herxheimer, A.; Petrie, K.J. Melatonin for the prevention and treatment of jet lag. Cochrane Database Syst. Rev. 2002, 2, CD001520. [Google Scholar] [CrossRef] [PubMed]
- Rajaratnam, S.M.; Redman, J.R. Effects of daily melatonin administration on circadian activity rhythms in the diurnal Indian palm squirrel (Funambulus pennanti). J. Biol. Rhythm. 1997, 12, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Slotten, H.A.; Krekling, S.; Pevet, P. Photic and nonphotic effects on the circadian activity rhythm in the diurnal rodent Arvicanthis ansorgei. Behav. Brain Res. 2005, 165, 91–97. [Google Scholar] [CrossRef]
- Challet, E. Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 2007, 148, 5648–5655. [Google Scholar] [CrossRef]
- Skene, D.J.; Arendt, J. Circadian rhythm sleep disorders in the blind and their treatment with melatonin. Sleep Med. 2007, 8, 651–655. [Google Scholar] [CrossRef]
- Ebihara, S.; Marks, T.; Hudson, D.J.; Menaker, M. Genetic control of melatonin synthesis in the pineal gland of the mouse. Science 1986, 231, 491–493. [Google Scholar] [CrossRef]
- Roseboom, P.H.; Namboodiri, M.A.; Zimonjic, D.B.; Popescu, N.C.; Rodriguez, I.R.; Gastel, J.A.; Klein, D.C. Natural melatonin ‘knockdown’ in C57BL/6J mice: Rare mechanism truncates serotonin N-acetyltransferase. Brain Res. Mol. Brain Res. 1998, 63, 189–197. [Google Scholar] [CrossRef]
- Lavie, P. Melatonin: Role in gating nocturnal rise in sleep propensity. J. Biol. Rhythm. 1997, 12, 657–665. [Google Scholar] [CrossRef]
- Zhdanova, I.V.; Wurtman, R.J. Efficacy of melatonin as a sleep-promoting agent. J. Biol. Rhythm. 1997, 12, 644–650. [Google Scholar] [CrossRef]
- Wyatt, J.K.; Dijk, D.J.; Ritz-de Cecco, A.; Ronda, J.M.; Czeisler, C.A. Sleep-facilitating effect of exogenous melatonin in healthy young men and women is circadian-phase dependent. Sleep 2006, 29, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Morris, C.J.; Aeschbach, D.; Scheer, F.A. Circadian system, sleep and endocrinology. Mol. Cell Endocrinol. 2012, 349, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Doghramji, K. Melatonin and Its Receptors: A New Class of Sleep-Promoting Agents. J. Clin. Sleep Med. 2019, 3, S17–S23. [Google Scholar] [CrossRef]
- Liu, J.; Clough, S.J.; Hutchinson, A.J.; Adamah-Biassi, E.B.; Popovska-Gorevski, M.; Dubocovich, M.L. MT1 and MT2 Melatonin Receptors: A Therapeutic Perspective. Annu. Rev. Pharmacol. Toxicol. 2016, 56, 361–383. [Google Scholar] [CrossRef] [PubMed]
- National Sleep Foundation. Sleep in America Poll 2020; Langer Research Associates: New York, NY USA, 2020. [Google Scholar]
- Wheaton, A.G.; Jones, S.E.; Cooper, A.C.; Croft, J.B. Short Sleep Duration Among Middle School and High School Students—United States, 2015. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 85–90. [Google Scholar] [CrossRef]
- Roenneberg, T.; Kuehnle, T.; Pramstaller, P.P.; Ricken, J.; Havel, M.; Guth, A.; Merrow, M. A marker for the end of adolescence. Curr. Biol. 2004, 14, R1038–R1039. [Google Scholar] [CrossRef]
- Liew, S.C.; Aung, T. Sleep deprivation and its association with diseases—A review. Sleep Med. 2021, 77, 192–204. [Google Scholar] [CrossRef]
- Eban-Rothschild, A.; Appelbaum, L.; de Lecea, L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018, 43, 937–952. [Google Scholar] [CrossRef]
- Revel, F.G.; Gottowik, J.; Gatti, S.; Wettstein, J.G.; Moreau, J.L. Rodent models of insomnia: A review of experimental procedures that induce sleep disturbances. Neurosci. Biobehav. Rev. 2009, 33, 874–899. [Google Scholar] [CrossRef]
- Davis, E.M.; O’Donnell, C.P. Rodent models of sleep apnea. Respir. Physiol. Neurobiol. 2013, 188, 355–361. [Google Scholar] [CrossRef]
- Gulia, K.K. Animal Models in Sleep Research. In Animal Models in Research: Principles and Practice; Vijayakumar Sreelatha, H., Patel, S., Nagarajan, P., Eds.; Springer Nature Singapore: Singapore, 2024; pp. 319–332. [Google Scholar]
- Summa, K.C.; Turek, F.W. The Genetics of Sleep: Insight from Rodent Models. Sleep Med. Clin. 2011, 6, 141–154. [Google Scholar] [CrossRef]
- Toth, L.A.; Bhargava, P. Animal models of sleep disorders. Comp. Med. 2013, 63, 91–104. [Google Scholar] [PubMed]
- Shi, G.; Xing, L.; Wu, D.; Bhattacharyya, B.J.; Jones, C.R.; McMahon, T.; Chong, S.Y.C.; Chen, J.A.; Coppola, G.; Geschwind, D.; et al. A Rare Mutation of beta(1)-Adrenergic Receptor Affects Sleep/Wake Behaviors. Neuron 2019, 103, 1044–1055.e7. [Google Scholar] [CrossRef] [PubMed]
- Ashbrook, L.H.; Krystal, A.D.; Fu, Y.H.; Ptacek, L.J. Genetics of the human circadian clock and sleep homeostat. Neuropsychopharmacology 2020, 45, 45–54. [Google Scholar] [CrossRef]
- Hirano, A.; Hsu, P.K.; Zhang, L.; Xing, L.; McMahon, T.; Yamazaki, M.; Ptacek, L.J.; Fu, Y.H. DEC2 modulates orexin expression and regulates sleep. Proc. Natl. Acad. Sci. USA 2018, 115, 3434–3439. [Google Scholar] [CrossRef]
- He, Y.; Jones, C.R.; Fujiki, N.; Xu, Y.; Guo, B.; Holder, J.L., Jr.; Rossner, M.J.; Nishino, S.; Fu, Y.H. The transcriptional repressor DEC2 regulates sleep length in mammals. Science 2009, 325, 866–870. [Google Scholar] [CrossRef]
- Shi, G.; Yin, C.; Fan, Z.; Xing, L.; Mostovoy, Y.; Kwok, P.Y.; Ashbrook, L.H.; Krystal, A.D.; Ptacek, L.J.; Fu, Y.H. Mutations in Metabotropic Glutamate Receptor 1 Contribute to Natural Short Sleep Trait. Curr. Biol. 2021, 31, 13–24.e4. [Google Scholar] [CrossRef]
- Xing, L.; Shi, G.; Mostovoy, Y.; Gentry, N.W.; Fan, Z.; McMahon, T.B.; Kwok, P.Y.; Jones, C.R.; Ptacek, L.J.; Fu, Y.H. Mutant neuropeptide S receptor reduces sleep duration with preserved memory consolidation. Sci. Transl. Med. 2019, 11, eaax2014. [Google Scholar] [CrossRef] [PubMed]
- Ashbrook, L.; Krystal, A.; Fu, Y.-H.; Ptáček, L. 388 Familial natural short sleepers have greater resilience than unaffected family members. Sleep 2021, 44, A154–A155. [Google Scholar] [CrossRef]
- Dong, Q.; Gentry, N.W.; McMahon, T.; Yamazaki, M.; Benitez-Rivera, L.; Wang, T.; Gan, L.; Ptacek, L.; Fu, Y.H. Familial natural short sleep mutations reduce Alzheimer pathology in mice. iScience 2022, 25, 103964. [Google Scholar] [CrossRef]
- Pellegrino, R.; Kavakli, I.H.; Goel, N.; Cardinale, C.J.; Dinges, D.F.; Kuna, S.T.; Maislin, G.; Van Dongen, H.P.; Tufik, S.; Hogenesch, J.B.; et al. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans. Sleep 2014, 37, 1327–1336. [Google Scholar] [CrossRef] [PubMed]
- Gottlieb, D.J.; Punjabi, N.M. Diagnosis and Management of Obstructive Sleep Apnea: A Review. JAMA 2020, 323, 1389–1400. [Google Scholar] [CrossRef]
- Peppard, P.E.; Young, T.; Barnet, J.H.; Palta, M.; Hagen, E.W.; Hla, K.M. Increased prevalence of sleep-disordered breathing in adults. Am. J. Epidemiol. 2013, 177, 1006–1014. [Google Scholar] [CrossRef]
- Bonsignore, M.R.; Baiamonte, P.; Mazzuca, E.; Castrogiovanni, A.; Marrone, O. Obstructive sleep apnea and comorbidities: A dangerous liaison. Multidiscip. Respir. Med. 2019, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Kuzniar, T.J.; Kovacevic-Ristanovic, R.; Nierodzik, C.L.; Smith, L.C. Free-running (non-entrained to 24-h period) circadian sleep disorder in a patient with obstructive sleep apnea, delayed sleep phase tendency, and lack of social interaction. Sleep Breath. 2012, 16, 313–315. [Google Scholar] [CrossRef]
- Gabryelska, A.; Turkiewicz, S.; Karuga, F.F.; Sochal, M.; Strzelecki, D.; Bialasiewicz, P. Disruption of Circadian Rhythm Genes in Obstructive Sleep Apnea Patients-Possible Mechanisms Involved and Clinical Implication. Int. J. Mol. Sci. 2022, 23, 709. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, E.J.; Martinez, C.A.; Liang, Y.G.; Cistulli, P.A.; Cook, K.M. Out of breath, out of time: Interactions between HIF and circadian rhythms. Am. J. Physiol. Cell Physiol. 2020, 319, C533–C540. [Google Scholar] [CrossRef] [PubMed]
- Manella, G.; Aviram, R.; Bolshette, N.; Muvkadi, S.; Golik, M.; Smith, D.F.; Asher, G. Hypoxia induces a time- and tissue-specific response that elicits intertissue circadian clock misalignment. Proc. Natl. Acad. Sci. USA 2020, 117, 779–786. [Google Scholar] [CrossRef]
- Koritala, B.S.C.; Lee, Y.Y.; Gaspar, L.S.; Bhadri, S.S.; Su, W.; Wu, G.; Francey, L.J.; Ruben, M.D.; Gong, M.C.; Hogenesch, J.B.; et al. Obstructive sleep apnea in a mouse model is associated with tissue-specific transcriptomic changes in circadian rhythmicity and mean 24-hour gene expression. PLoS Biol. 2023, 21, e3002139. [Google Scholar] [CrossRef]
- Gaspar, L.S.; Hesse, J.; Yalcin, M.; Santos, B.; Carvalhas-Almeida, C.; Ferreira, M.; Moita, J.; Relogio, A.; Cavadas, C.; Alvaro, A.R. Long-term continuous positive airway pressure treatment ameliorates biological clock disruptions in obstructive sleep apnea. EBioMedicine 2021, 65, 103248. [Google Scholar] [CrossRef]
- Moreira, S.; Rodrigues, R.; Barros, A.B.; Pejanovic, N.; Neves-Costa, A.; Pedroso, D.; Pereira, C.; Fernandes, D.; Rodrigues, J.V.; Barbara, C.; et al. Changes in Expression of the CLOCK Gene in Obstructive Sleep Apnea Syndrome Patients Are Not Reverted by Continuous Positive Airway Pressure Treatment. Front. Med. 2017, 4, 187. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.Y.; Lin, P.W.; Lin, H.C.; Lin, P.M.; Chen, I.Y.; Friedman, M.; Hung, C.F.; Salapatas, A.M.; Lin, M.C.; Lin, S.F. Alternations of Circadian Clock Genes Expression and Oscillation in Obstructive Sleep Apnea. J. Clin. Med. 2019, 8, 1634. [Google Scholar] [CrossRef] [PubMed]
- Lemmer, B.; Scholtze, J.; Schmitt, J. Circadian rhythms in blood pressure, heart rate, hormones, and on polysomnographic parameters in severe obstructive sleep apnea syndrome patients: Effect of continuous positive airway pressure. Blood Press. Monit. 2016, 21, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, C.; Abreu, J.; Abreu, P.; Castro, A.; Jimenez, A. Nocturnal melatonin plasma levels in patients with OSAS: The effect of CPAP. Eur. Respir. J. 2007, 30, 496–500. [Google Scholar] [CrossRef]
- Zirlik, S.; Hildner, K.M.; Targosz, A.; Neurath, M.F.; Fuchs, F.S.; Brzozowski, T.; Konturek, P.C. Melatonin and omentin: Influence factors in the obstructive sleep apnoea syndrome? J. Physiol. Pharmacol. 2013, 64, 353–360. [Google Scholar]
- Karel, P.; Schilperoord, M.; Reichman, L.J.A.; Krabbe, J.G. The dark side of apnea: Altered 24-hour melatonin secretion in obstructive sleep apnea (OSAS) is disease severity dependent. Sleep Breath. 2024, 28, 1751–1759. [Google Scholar] [CrossRef]
- Ahmad, S.B.; Ali, A.; Bilal, M.; Rashid, S.M.; Wani, A.B.; Bhat, R.R.; Rehman, M.U. Melatonin and Health: Insights of Melatonin Action, Biological Functions, and Associated Disorders. Cell. Mol. Neurobiol. 2023, 43, 2437–2458. [Google Scholar] [CrossRef]
- Wei, Z.; Shen, H.; Wang, F.; Huang, W.; Li, X.; Xu, H.; Zhu, H.; Guan, J. Melatonin mediates intestinal barrier dysfunction and systemic inflammation in moderate-severe OSA patients. Ann. Med. 2024, 56, 2361825. [Google Scholar] [CrossRef]
- Zhang, Z.; Silveyra, E.; Jin, N.; Ribelayga, C.P. A congenic line of the C57BL/6J mouse strain that is proficient in melatonin synthesis. J. Pineal. Res. 2018, 65, e12509. [Google Scholar] [CrossRef]
- Gropman, A.L.; Duncan, W.C.; Smith, A.C. Neurologic and developmental features of the Smith-Magenis syndrome (del 17p11.2). Pediatr. Neurol. 2006, 34, 337–350. [Google Scholar] [CrossRef]
- Elsea, S.H.; Williams, S.R. Smith-Magenis syndrome: Haploinsufficiency of RAI1 results in altered gene regulation in neurological and metabolic pathways. Expert. Rev. Mol. Med. 2011, 13, e14. [Google Scholar] [CrossRef] [PubMed]
- Boone, P.M.; Reiter, R.J.; Glaze, D.G.; Tan, D.X.; Lupski, J.R.; Potocki, L. Abnormal circadian rhythm of melatonin in Smith-Magenis syndrome patients with RAI1 point mutations. Am. J. Med. Genet. A 2011, 155A, 2024–2027. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Mora, P.; Canales, C.P.; Cao, L.; Perez, I.C.; Srivastava, A.K.; Young, J.I.; Walz, K. RAI1 Transcription Factor Activity Is Impaired in Mutants Associated with Smith-Magenis Syndrome. PLoS ONE 2012, 7, e45155. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Mora, P.; Walz, K. Retinoic Acid Induced 1, RAI1: A Dosage Sensitive Gene Related to Neurobehavioral Alterations Including Autistic Behavior. Curr. Genom. 2010, 11, 607–617. [Google Scholar] [CrossRef]
- Poisson, A.; Nicolas, A.; Bousquet, I.; Raverot, V.; Gronfier, C.; Demily, C. Smith-Magenis Syndrome: Molecular Basis of a Genetic-Driven Melatonin Circadian Secretion Disorder. Int. J. Mol. Sci. 2019, 20, 3533. [Google Scholar] [CrossRef] [PubMed]
- Potocki, L.; Glaze, D.; Tan, D.X.; Park, S.S.; Kashork, C.D.; Shaffer, L.G.; Reiter, R.J.; Lupski, J.R. Circadian rhythm abnormalities of melatonin in Smith-Magenis syndrome. J. Med. Genet. 2000, 37, 428–433. [Google Scholar] [CrossRef]
- Kaplan, K.A.; Elsea, S.H.; Potocki, L. Management of Sleep Disturbances Associated with Smith-Magenis Syndrome. CNS Drugs 2020, 34, 723–730. [Google Scholar] [CrossRef]
- Shayota, B.J.; Elsea, S.H. Behavior and sleep disturbance in Smith-Magenis syndrome. Curr. Opin. Psychiatry 2019, 32, 73–78. [Google Scholar] [CrossRef]
- Burns, B.; Schmidt, K.; Williams, S.R.; Kim, S.; Girirajan, S.; Elsea, S.H. Rai1 haploinsufficiency causes reduced Bdnf expression resulting in hyperphagia, obesity and altered fat distribution in mice and humans with no evidence of metabolic syndrome. Hum. Mol. Genet. 2010, 19, 4026–4042. [Google Scholar] [CrossRef]
- Lacaria, M.; Gu, W.; Lupski, J.R. Circadian abnormalities in mouse models of Smith-Magenis syndrome: Evidence for involvement of RAI1. Am. J. Med. Genet. A 2013, 161A, 1561–1568. [Google Scholar] [CrossRef]
- Diessler, S.; Kostic, C.; Arsenijevic, Y.; Kawasaki, A.; Franken, P. Rai1 frees mice from the repression of active wake behaviors by light. Elife 2017, 6, e23292. [Google Scholar] [CrossRef] [PubMed]
- Fisher, S.P.; Foster, R.G.; Peirson, S.N. The circadian control of sleep. Handb. Exp. Pharmacol. 2013, 217, 157–183. [Google Scholar] [CrossRef]
- Williams, S.R.; Zies, D.; Mullegama, S.V.; Grotewiel, M.S.; Elsea, S.H. Smith-Magenis syndrome results in disruption of CLOCK gene transcription and reveals an integral role for RAI1 in the maintenance of circadian rhythmicity. Am. J. Hum. Genet. 2012, 90, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, A.; Ibdah, J.A. Animal models in today’s translational medicine world. Mo. Med. 2013, 110, 220–222. [Google Scholar] [PubMed]
- Lloyd, K.C. A knockout mouse resource for the biomedical research community. Ann. N. Y. Acad. Sci. 2011, 1245, 24–26. [Google Scholar] [CrossRef]
- Verra, D.M.; Sajdak, B.S.; Merriman, D.K.; Hicks, D. Diurnal rodents as pertinent animal models of human retinal physiology and pathology. Prog. Retin. Eye Res. 2020, 74, 100776. [Google Scholar] [CrossRef]
- Xie, H.; Linning-Duffy, K.; Demireva, E.Y.; Toh, H.; Abolibdeh, B.; Shi, J.; Zhou, B.; Iwase, S.; Yan, L. CRISPR-based genome editing of a diurnal rodent, Nile grass rat (Arvicanthis niloticus). BMC Biol. 2024, 22, 144. [Google Scholar] [CrossRef]
- Lucera, N.; Shi, J.; Linning-Duffy, K.; Zhou, B.; Iwase, S.; Yan, L. Daily rhythms and sleep in Rai1 deficient Nile grass rat, a diurnal model of Smith-Magenis Syndrome. In Proceedings of the Society for Neuroscience Annual Meeting, Washington, DC, USA, 11–15 November 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Shi, J.; Tai, J.; Yan, L. Circadian Regulation in Diurnal Mammals: Neural Mechanisms and Implications in Translational Research. Biology 2024, 13, 958. https://doi.org/10.3390/biology13120958
Jiang Y, Shi J, Tai J, Yan L. Circadian Regulation in Diurnal Mammals: Neural Mechanisms and Implications in Translational Research. Biology. 2024; 13(12):958. https://doi.org/10.3390/biology13120958
Chicago/Turabian StyleJiang, Yirun, Jiaming Shi, Jun Tai, and Lily Yan. 2024. "Circadian Regulation in Diurnal Mammals: Neural Mechanisms and Implications in Translational Research" Biology 13, no. 12: 958. https://doi.org/10.3390/biology13120958
APA StyleJiang, Y., Shi, J., Tai, J., & Yan, L. (2024). Circadian Regulation in Diurnal Mammals: Neural Mechanisms and Implications in Translational Research. Biology, 13(12), 958. https://doi.org/10.3390/biology13120958