Previous Issue
Volume 13, November
 
 

Biology, Volume 13, Issue 12 (December 2024) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
20 pages, 5545 KiB  
Article
Large and Small Yellow Croakers Feeding and Living Together Make Large Yellow Croaker Population Recovery Difficult: A Guild Perspective
by Pengyu Cai, Zhenhua Wang, Shouyu Zhang and Jintao Yu
Biology 2024, 13(12), 963; https://doi.org/10.3390/biology13120963 - 22 Nov 2024
Abstract
In recent decades, China’s large-scale stock enhancement programs to restore the collapsing large yellow croaker (Larimichthys crocea) fishery resources have not yielded the desired results, and a comprehensive analysis of the underlying reasons for this problem is required. Based on small [...] Read more.
In recent decades, China’s large-scale stock enhancement programs to restore the collapsing large yellow croaker (Larimichthys crocea) fishery resources have not yielded the desired results, and a comprehensive analysis of the underlying reasons for this problem is required. Based on small yellow croaker (Larimichthys polyactis) catch survey data obtained from 15 fishing ports along the coast of the East China Sea, we examined the proportion of large yellow croakers mixed in the small yellow croaker catch and their biological parameters. In addition, we analyzed the differences in the intestinal microbiota and feeding ecology between these two species to explore the reason why the stock enhancement program failed to achieve the desired outcome. The results show that there is a high likelihood of the two species appearing in each other’s ecological niches, and there is a significant overlap in their dietary ecology. They may cohabitate and form a guild. The fishing season targeting the small yellow croaker indirectly catches the large yellow croaker population, which puts huge fishing pressure on large yellow croaker resource and shows obvious overfishing. Therefore, it is necessary to optimize and adjust the fishing ban policy and stock enhancement strategies, appropriately reducing the fishing intensity after the fishing ban to facilitate the effective accumulation of resource replenishment effects during the fishing ban period, thus effectively restoring wild large yellow croaker resources. Full article
(This article belongs to the Special Issue Nutrition, Environment, and Fish Physiology)
Show Figures

Figure 1

16 pages, 1491 KiB  
Article
Genome-Wide Association Study and Genomic Prediction of Soft Wheat End-Use Quality Traits Under Post-Anthesis Heat-Stressed Conditions
by Dipendra Shahi, Jia Guo, Sumit Pradhan, Muhsin Avci, Guihua Bai, Jahangir Khan, Byung-Kee Baik, Mohamed Mergoum and Md Ali Babar
Biology 2024, 13(12), 962; https://doi.org/10.3390/biology13120962 - 22 Nov 2024
Abstract
Wheat end-use quality is an important component of a wheat breeding program. Heat stress during grain filling impacts wheat quality traits, making it crucial to understand the genetic basis of wheat quality traits under post-anthesis heat stress. This study aimed to identify the [...] Read more.
Wheat end-use quality is an important component of a wheat breeding program. Heat stress during grain filling impacts wheat quality traits, making it crucial to understand the genetic basis of wheat quality traits under post-anthesis heat stress. This study aimed to identify the genomic regions associated with wheat quality traits using genome-wide association studies (GWASs) and evaluate the prediction accuracy of different genomic selection (GS) models. A panel of 236 soft red facultative wheat genotypes was evaluated for end-use quality traits across four heat-stressed environments over three years. Significant phenotypic variation was observed across environments for traits such as grain yield (GY), grain protein (GP), grain hardness (GH), and flour yield (AFY). Heritability estimates ranged from 0.52 (GY) to 0.91 (GH). The GWASs revealed 136 significant marker–trait associations (MTAs) across all 21 chromosomes, with several MTAs located within candidate genes involved in stress responses and quality traits. Genomic selection models showed prediction accuracy values up to 0.60, with within-environment prediction outperforming across-environment prediction. These results suggest that integrating GWAS and GS approaches can enhance the selection of wheat quality traits under heat stress, contributing to the development of heat-tolerant varieties. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

19 pages, 687 KiB  
Review
Exploring Trimethylaminuria: Genetics and Molecular Mechanisms, Epidemiology, and Emerging Therapeutic Strategies
by Antonina Sidoti, Rosalia D’Angelo, Andrea Castagnetti, Elisa Viciani, Concetta Scimone, Simona Alibrandi and Giuseppe Giannini
Biology 2024, 13(12), 961; https://doi.org/10.3390/biology13120961 - 22 Nov 2024
Abstract
Trimethylaminuria (TMAU) is a rare metabolic syndrome caused by the accumulation of trimethylamine in the body, causing odor emissions similar to rotten fish in affected patients. This condition is determined by both genetic and environmental factors, especially gut dysbiosis. The multifactorial nature of [...] Read more.
Trimethylaminuria (TMAU) is a rare metabolic syndrome caused by the accumulation of trimethylamine in the body, causing odor emissions similar to rotten fish in affected patients. This condition is determined by both genetic and environmental factors, especially gut dysbiosis. The multifactorial nature of this syndrome makes for a complex and multi-level diagnosis. To date, many aspects of this disease are still unclear. Recent research revealed the FMO3 haplotypes’ role on the enzyme’s catalytic activity. This could explain why patients showing only combined polymorphisms or heterozygous causative variants also manifest the TMAU phenotype. In addition, another research hypothesized that the behavioral disturbances showed by patients may be linked to gut microbiota alterations. Our review considers current knowledge about TMAU, clarifying its molecular aspects, the therapeutic approaches used to limit this condition, and the new therapies that are under study. Full article
Show Figures

Figure 1

13 pages, 1750 KiB  
Article
Synthesis of Palladium Nanowires on Flagella Template for Electrochemical Biosensor Detection of microRNA-21
by Kuo Yang, Jueyu Wang, Ying Zhang, Daizong Cui and Min Zhao
Biology 2024, 13(12), 960; https://doi.org/10.3390/biology13120960 - 22 Nov 2024
Abstract
In recent years, the use of bacterial flagella as biomimetic templates has gained increasing attention in nanomaterial synthesis due to their unique structural and functional properties. In this study, we optimized the flagella extraction method and achieved a high concentration of flagella solution. [...] Read more.
In recent years, the use of bacterial flagella as biomimetic templates has gained increasing attention in nanomaterial synthesis due to their unique structural and functional properties. In this study, we optimized the flagella extraction method and achieved a high concentration of flagella solution. Flagella were isolated from Escherichia coli. Surface characterization revealed that the flagella had abundant functional groups, such as amino and carboxyl groups, which can serve as nucleation sites for the controlled nucleation and growth of metal nanomaterials. Using bacterial flagella as a template, we synthesized one-dimensional palladium nanowires (Fla-Pd NWs). The results of morphological and phase analyses showed that the synthesized palladium nanoparticles were uniformly and densely distributed on the surface of the flagella. Moreover, the Fla-Pd nanowires exhibited superior electrocatalytic activity, which was applied to develop an electrochemical biosensor. This biosensor was used to detect the early breast cancer biomarker microRNA-21 and exhibited a linear range of 0.66–1.98 µmol/L and a detection limit of 0.78 µmol/L. The method demonstrated high selectivity and reusability, making it a promising strategy for early cancer diagnosis. Full article
(This article belongs to the Section Biotechnology)
Show Figures

Figure 1

17 pages, 1817 KiB  
Article
Physiological Stress Response and Oxidative Status in Tambaqui (Colossoma macropomum) Fed Diets Supplemented with Selenium
by Celma Maria Ferreira, Valéria Dornelles Gindri Sinhorin, Márcio Aquio Hoshiba and Janessa Sampaio de Abreu
Biology 2024, 13(12), 959; https://doi.org/10.3390/biology13120959 - 22 Nov 2024
Viewed by 116
Abstract
The present study aimed to evaluate the physiological responses to transport stress in juvenile tambaqui (Colossoma macropomum) fed a diet supplemented with hydroxy-selenomethionine (OH-SeMet; Selisseo®, Adisseo) and determine through stress biomarkers whether selenium supplementation could reduce the impact of [...] Read more.
The present study aimed to evaluate the physiological responses to transport stress in juvenile tambaqui (Colossoma macropomum) fed a diet supplemented with hydroxy-selenomethionine (OH-SeMet; Selisseo®, Adisseo) and determine through stress biomarkers whether selenium supplementation could reduce the impact of transport stress on tambaqui resilience. Juvenile fish (15.71 ± 1.90 g) were randomly distributed into five experimental groups; one fed a basal diet without inclusion of OH-SeMet (0.0 mg Se/kg) and four other groups fed supplemented diets with selenium in the form of OH-SeMet at concentrations of 0.3, 0.6, 0.9, and 1.2 mg Se/kg over 75 days. After this period, the fish were transported for 4 h in plastic bags (60 L), and sampling took place before transport (baseline), immediately after transport, and 24 h later. The effects of dietary OH-SeMet in tambaqui challenged by transport were studied in terms of antioxidative status (superoxide dismutase, catalase, glutathione peroxidase, glutathione s-transferase, and reduced glutathione); stress markers (serum cortisol, blood glucose, ionic and hematological parameters), and immunological status (respiratory burst activity and total protein, A/G ratio). Following transport, we observed an elevation in cortisol and blood glucose concentrations, accompanied by hemoconcentration, as evidenced by elevated hematocrit, erythrocyte count, hemoglobin concentration, and mean corpuscular hemoglobin concentration (MCHC). Additionally, there was a decrease in immune response, indicated by reduced respiratory activity of leukocytes and an osmotic imbalance, which culminated in hypochloremia, increased plasma protein concentration, and a rise in red blood cell volume, all of which were measured 24 h after the stressor was applied. Twenty-four hours after transport, the antioxidant defense system was activated, and no recovery of homeostasis was observed for most of the parameters analyzed. The dietary inclusion of selenium did not alleviate the hormonal, metabolic, hematological, and ionic changes caused by transport, but at a concentration of 0.9 mg Se/kg, it was able to increase the activity of enzymes related to oxidative stress (catalase and superoxide dismutase, mainly) in tambaqui juveniles submitted to this challenge. Full article
(This article belongs to the Special Issue Aquatic Animal Nutrition and Feed)
Show Figures

Figure 1

15 pages, 328 KiB  
Review
Circadian Regulation in Diurnal Mammals: Neural Mechanisms and Implications in Translational Research
by Yirun Jiang, Jiaming Shi, Jun Tai and Lily Yan
Biology 2024, 13(12), 958; https://doi.org/10.3390/biology13120958 - 22 Nov 2024
Viewed by 142
Abstract
Diurnal and nocturnal mammals have evolved unique behavioral and physiological adaptations to optimize survival for their day- or night-active lifestyle. The mechanisms underlying the opposite activity patterns are not fully understood but likely involve the interplay between the circadian time-keeping system and various [...] Read more.
Diurnal and nocturnal mammals have evolved unique behavioral and physiological adaptations to optimize survival for their day- or night-active lifestyle. The mechanisms underlying the opposite activity patterns are not fully understood but likely involve the interplay between the circadian time-keeping system and various arousal- or sleep-promoting factors, e.g., light or melatonin. Although the circadian systems between the two chronotypes share considerable similarities, the phase relationships between the principal and subordinate oscillators are chronotype-specific. While light promotes arousal and wakefulness in diurnal species like us, it induces sleep in nocturnal ones. Similarly, melatonin, the hormone of darkness, is commonly used as a hypnotic in humans but is secreted in the active phase of nocturnal animals. Thus, the difference between the two chronotypes is more complex than a simple reversal, as the physiological and neurological processes in diurnal mammals during the day are not equivalent to that of nocturnal ones at night. Such chronotype differences could present a significant translational gap when applying research findings obtained from nocturnal rodents to diurnal humans. The potential advantages of diurnal models are being discussed in a few sleep-related conditions including familial natural short sleep (FNSS), obstructive sleep apnea (OSA), and Smith–Magenis syndrome (SMS). Considering the difference in chronotype, a diurnal model will be more adequate for revealing the physiology and physiopathology pertaining to human health and disease, especially in conditions in which circadian rhythm disruption, altered photic response, or melatonin secretion is involved. We hope the recent advances in gene editing in diurnal rodents will promote greater utility of the diurnal models in basic and translational research. Full article
17 pages, 3192 KiB  
Review
Biobank Digitalization: From Data Acquisition to Efficient Use
by Anastasiia S. Bukreeva, Kristina A. Malsagova, Denis V. Petrovskiy, Tatiana V. Butkova, Valeriya I. Nakhod, Vladimir R. Rudnev, Alexander A. Izotov and Anna L. Kaysheva
Biology 2024, 13(12), 957; https://doi.org/10.3390/biology13120957 - 22 Nov 2024
Viewed by 199
Abstract
Biobanks are involved in a broad range of studies, including both basic and clinical research, so their functions and roles are evolving. Digital biobanks have emerged due to digitalization in this field; however, it also entails an increasing number of ethical and legal [...] Read more.
Biobanks are involved in a broad range of studies, including both basic and clinical research, so their functions and roles are evolving. Digital biobanks have emerged due to digitalization in this field; however, it also entails an increasing number of ethical and legal issues, in particular those related to the protection of donor data and potential commercial applications. The development of biobanks and the size of stored datasets lay the groundwork for proceeding to digital biobanks that intensely employ artificial intelligence tools. Digital biobanks can simplify the search for and access to biological specimens, thus contributing to the conduction of research and creating new collaborations. They are becoming an increasingly important tool for personalized medicine and an individualized approach to disease treatment, contributing to the elaboration of more accurate diagnostic methods and the development of innovative therapeutic strategies. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

13 pages, 1775 KiB  
Article
Convergent Evolution of Armor: Thermal Resistance in Deep-Sea Hydrothermal Vent Crustaceans
by Boongho Cho, Sook-Jin Jang, Hee-seung Hwang and Taewon Kim
Biology 2024, 13(12), 956; https://doi.org/10.3390/biology13120956 - 21 Nov 2024
Viewed by 233
Abstract
Organisms occupy diverse ecological niches worldwide, each with characteristics finely evolved for their environments. Crustaceans residing in deep-sea hydrothermal vents, recognized as one of Earth’s extreme environments, may have adapted to withstand severe conditions, including elevated temperatures and pressure. This study compares the [...] Read more.
Organisms occupy diverse ecological niches worldwide, each with characteristics finely evolved for their environments. Crustaceans residing in deep-sea hydrothermal vents, recognized as one of Earth’s extreme environments, may have adapted to withstand severe conditions, including elevated temperatures and pressure. This study compares the exoskeletons of two vent crustaceans (bythograeid crab Austinograea sp. and squat lobster Munidopsis lauensis) with four coastal species (Asian paddle crabs, blue crab, hermit crab, and mantis shrimp) to identify traits influenced by vent environments. The goal was to identify distinctive exoskeletal characteristics commonly observed in vent crustaceans, resulting from their exposure to severe abiotic factors, including elevated temperatures and pressures, found in vent environments. Results show that the exoskeletons of vent crustaceans demonstrated significantly enhanced thermal stability compared to coastal species. These vent crustaceans consistently featured exoskeletons characterized by a reduced proportion of volatile components, such as water, and an increased proportion of CaCO3, compared with coastal crustaceans. Furthermore, vent crustaceans lacked carotenoid pigments that had low heat resistance. However, no apparent differences were observed in the mechanical properties. Our findings suggest that the similar composition of exoskeletons in vent crustaceans evolved convergently to withstand high temperatures. Full article
Show Figures

Graphical abstract

15 pages, 6895 KiB  
Article
Curcumin Mitigates Gut Dysbiosis and Enhances Gut Barrier Function to Alleviate Metabolic Dysfunction in Obese, Aged Mice
by Gopal Lamichhane, Femi Olawale, Jing Liu, Da-Yeon Lee, Su-Jeong Lee, Nathan Chaffin, Sanmi Alake, Edralin A. Lucas, Guolong Zhang, Josephine M. Egan and Yoo Kim
Biology 2024, 13(12), 955; https://doi.org/10.3390/biology13120955 - 21 Nov 2024
Viewed by 332
Abstract
The gut microbiome plays a critical role in maintaining gut and metabolic health, and its composition is often altered by aging and obesity. This study aimed to investigate the protective effects of curcumin on gut dysbiosis, gut barrier integrity, and bile acid homeostasis [...] Read more.
The gut microbiome plays a critical role in maintaining gut and metabolic health, and its composition is often altered by aging and obesity. This study aimed to investigate the protective effects of curcumin on gut dysbiosis, gut barrier integrity, and bile acid homeostasis in aged mice fed a high-fat, high-sugar diet (HFHSD). Eighteen- to twenty-one-month-old male C57BL/6 mice were divided into groups fed a normal chow diet or HFHSD, with or without curcumin supplementation (0.4% w/w) for 8 and 15 weeks. We assessed body weight, food intake, insulin sensitivity, gut microbiota composition, and gene expression in the gut and liver and performed histological analysis of gut tissues. Curcumin supplementation prevented HFHSD-induced weight gain and metabolic disturbances. In the gut, curcumin-treated mice showed a higher abundance of beneficial bacterial genera, such as Lachnospiraceae, Akkermansia, Mucispirillum, and Verrucomicrobiota, alongside a lower abundance of harmful bacterial genera like Desulfobacteria, Alistipes, and Muribaculaceae compared to control. This shift in gut microbiota was associated with improved gut integrity, as demonstrated by increased expression of the tight junction protein occludin and reduced levels of the pro-inflammatory marker interleukin-1β in the ileum. Additionally, curcumin modulated hepatic gene expression involved in bile acid homeostasis, suggesting a positive effect on liver health. Curcumin supplementation can alleviate the negative effects of aging and an HFHSD on the gut microbiome, improve gut barrier integrity, and maintain bile acid homeostasis. These findings highlight curcumin’s potential as a dietary intervention for managing obesity- and age-associated gut health issues. Full article
(This article belongs to the Special Issue Gut Microbiome in Health and Disease (2nd Edition))
Show Figures

Figure 1

Previous Issue
Back to TopTop