Convergent Evolution of Armor: Thermal Resistance in Deep-Sea Hydrothermal Vent Crustaceans
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Property Analysis
2.3. Statistical Analysis
2.4. DNA Extraction and Molecular Analysis
3. Results
3.1. Structural Characteristics
3.2. Characteristics of Components
3.3. Thermal Stability
3.4. Mechanical Properties
3.5. Phylogenetic Tree
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scambos, T.A.; Campbell, G.G.; Pope, A.; Haran, T.; Muto, A.; Lazzara, M.; Reijmer, C.H.; van den Broeke, M.R. Ultralow Surface Temperatures in East Antarctica From Satellite Thermal Infrared Mapping: The Coldest Places on Earth. Geophys. Res. Lett. 2018, 45, 6124–6133. [Google Scholar] [CrossRef]
- Kato, C.; Li, L.; Nogi, Y.; Nakamura, Y.; Tamaoka, J.; Horikoshi, K. Extremely Barophilic Bacteria Isolated from the Mariana Trench, Challenger Deep, at a Depth of 11,000 Meters. Appl. Environ. Microbiol. 1998, 64, 1510–1513. [Google Scholar] [CrossRef]
- Valdes, P.J.; Scotese, C.R.; Lunt, D.J. Deep Ocean Temperatures through Time. Clim. Past 2021, 17, 1483–1506. [Google Scholar] [CrossRef]
- Haase, K.M.; Petersen, S.; Koschinsky, A.; Seifert, R.; Devey, C.W.; Keir, R.; Lackschewitz, K.S.; Melchert, B.; Perner, M.; Schmale, O.; et al. Young Volcanism and Related Hydrothermal Activity at 5°S on the Slow-Spreading Southern Mid-Atlantic Ridge. Geochem. Geophys. Geosyst. 2007, 8, Q11002. [Google Scholar] [CrossRef]
- Canganella, F.; Wiegel, J. Extremophiles: From Abyssal to Terrestrial Ecosystems and Possibly Beyond. Naturwissenschaften 2011, 98, 253–279. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, L.J.; Mancinelli, R.L. Life in Extreme Environments. Nature 2001, 409, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Gostinčar, C.; Stajich, J.E.; Gunde-Cimerman, N. Extremophilic and Extremotolerant Fungi. Curr. Biol. 2023, 33, R752–R756. [Google Scholar] [CrossRef]
- Yao, H.; Dao, M.; Imholt, T.; Huang, J.; Wheeler, K.; Bonilla, A.; Suresh, S.; Ortiz, C. Protection Mechanisms of the Iron-Plated Armor of a Deep-Sea Hydrothermal Vent Gastropod. Proc. Natl. Acad. Sci. USA 2010, 107, 987–992. [Google Scholar] [CrossRef]
- Reysenbach, A.-L.; Liu, Y.; Banta, A.B.; Beveridge, T.J.; Kirshtein, J.D.; Schouten, S.; Tivey, M.K.; Von Damm, K.L.; Voytek, M.A. A Ubiquitous Thermoacidophilic Archaeon from Deep-Sea Hydrothermal Vents. Nature 2006, 442, 444–447. [Google Scholar] [CrossRef]
- Cho, B.; Kim, D.; Kim, T. Exceptional Properties of Hyper-Resistant Armor of a Hydrothermal Vent Crab. Sci. Rep. 2022, 12, 11816. [Google Scholar] [CrossRef]
- Cho, B.; Kim, D.; Bae, H.; Kim, T. Unique Characteristics of the Exoskeleton of Bythograeid Crab, Austinograea rodriguezensis in the Indian Ocean Hydrothermal Vent (Onnuri Vent Field). Integr. Comp. Biol. 2020, 60, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, C.H. The Exoskeleton as a Factor in Limiting and Directing the Evolution of Insects. J. Morphol. 1927, 44, 267–312. [Google Scholar] [CrossRef]
- Cho, B.; Seo, H.; Hong, J.; Jang, S.-J.; Kim, T. Exoskeletal Trade-off between Claws and Carapace in Deep-Sea Hydrothermal Vent Decapod Crustaceans. Integr. Comp. Biol. 2024, 64, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Mullineaux, L.S.; Metaxas, A.; Beaulieu, S.E.; Bright, M.; Gollner, S.; Grupe, B.M.; Herrera, S.; Kellner, J.B.; Levin, L.A.; Mitarai, S.; et al. Exploring the Ecology of Deep-Sea Hydrothermal Vents in a Metacommunity Framework. Front. Mar. Sci. 2018, 5, 49. [Google Scholar] [CrossRef]
- Marsh, L.; Copley, J.T.; Huvenne, V.A.I.; Linse, K.; Reid, W.D.K.; Rogers, A.D.; Sweeting, C.J.; Tyler, P.A. Microdistribution of Faunal Assemblages at Deep-Sea Hydrothermal Vents in the Southern Ocean. PLoS ONE 2012, 7, e48348. [Google Scholar] [CrossRef]
- Kim, J.; Son, S.-K.; Kim, D.; Pak, S.-J.; Yu, O.H.; Walker, S.L.; Oh, J.; Choi, S.K.; Ra, K.; Ko, Y.; et al. Discovery of Active Hydrothermal Vent Fields Along the Central Indian Ridge, 8–12°S. Geochem. Geophys. Geosyst. 2020, 21, e2020GC009058. [Google Scholar] [CrossRef]
- Zhou, F.; Wu, Z.; Wang, M.; Chen, K. Structure and Mechanical Properties of Pincers of Lobster (Procambarus clarkii) and Crab (Eriocheir sinensis). J. Mech. Behav. Biomed. Mater. 2010, 3, 454–463. [Google Scholar] [CrossRef]
- Chen, P.-Y.; Lin, A.Y.-M.; McKittrick, J.; Meyers, M.A. Structure and Mechanical Properties of Crab Exoskeletons. Acta Biomater. 2008, 4, 587–596. [Google Scholar] [CrossRef]
- O’Toole-Howes, M.; Ingleby, R.; Mertesdorf, M.; Dean, J.; Li, W.; Carpenter, M.A.; Harper, E.M. Deconvolution of the Elastic Properties of Bivalve Shell Nanocomposites from Direct Measurement and Finite Element Analysis. J. Mater. Res. 2019, 34, 2869–2880. [Google Scholar] [CrossRef]
- Lagos, N.A.; Benítez, S.; Grenier, C.; Rodriguez-Navarro, A.B.; García-Herrera, C.; Abarca-Ortega, A.; Vivanco, J.F.; Benjumeda, I.; Vargas, C.A.; Duarte, C.; et al. Plasticity in Organic Composition Maintains Biomechanical Performance in Shells of Juvenile Scallops Exposed to Altered Temperature and pH Conditions. Sci. Rep. 2021, 11, 24201. [Google Scholar] [CrossRef]
- Lian, J.; Wang, J. Microstructure and Mechanical Properties of Dungeness Crab Exoskeletons. In Proceedings of the 2011 Annual Conference on Experimental and Applied Mechanics, Uncasville, CT, USA, 13–16 June 2011; Society for Experimental Mechanics Series. Springer: New York, NY, USA, 2011; p. 93. [Google Scholar]
- Ribeiro, A.; Viana, M.; Hattori, G.; Constantino, V.; Perotti, G. Extraction and Characterization of Biopolymers from Exoskeleton Residues of the Amazon Crab Dilocarcinus pagei. Rev. Bras. Ciênc. Ambient. Online 2018, 50, 97–111. [Google Scholar] [CrossRef]
- Wetzel, M.A.; Leuchs, H.; Koop, J.H.E. Preservation Effects on Wet Weight, Dry Weight, and Ash-Free Dry Weight Biomass Estimates of Four Common Estuarine Macro-Invertebrates: No Difference between Ethanol and Formalin. Helgol. Mar. Res. 2005, 59, 206–213. [Google Scholar] [CrossRef]
- Fazhan, H.; Waiho, K.; Jalilah, M.; Ikhwanuddin, M.; Azmie, G.; Muda, S.; Ibrahim, M.Z.; Shuhaimi, D.; Norainy, M.H.; Jamalludin, M.A.; et al. Effect of Different Measuring Techniques, Preservation Methods and Storage Duration on the Morphometric Measurements of Crustacean Larvae. Mar. Biol. Res. 2021, 17, 98–105. [Google Scholar] [CrossRef]
- Mendez-Alpuche, A.A.; Ríos-Soberanis, C.R.; Rodriguez-Laviada, J.; Perez-Pacheco, E.; Zaldivar-Rae, J.A. Physicochemical Comparison of Chitin Extracted from Horseshoe Crab (Limulus polyphemus) Exoskeleton and Exuviae. ChemistrySelect 2020, 5, 11745–11752. [Google Scholar] [CrossRef]
- Kaya, M.; Mujtaba, M.; Ehrlich, H.; Salaberria, A.M.; Baran, T.; Amemiya, C.T.; Galli, R.; Akyuz, L.; Sargin, I.; Labidi, J. On Chemistry of γ-Chitin. Carbohydr. Polym. 2017, 176, 177–186. [Google Scholar] [CrossRef]
- Metin, C.; Alparslan, Y.; Baygar, T.; Baygar, T. Physicochemical, Microstructural and Thermal Characterization of Chitosan from Blue Crab Shell Waste and Its Bioactivity Characteristics. J. Polym. Environ. 2019, 27, 2552–2561. [Google Scholar] [CrossRef]
- Romano, P.; Fabritius, H.; Raabe, D. The Exoskeleton of the Lobster Homarus Americanus as an Example of a Smart Anisotropic Biological Material. Acta Biomater. 2007, 3, 301–309. [Google Scholar] [CrossRef]
- Agrawal, S.; Singh, B.; Sharma, Y.C. Exoskeleton of a Mollusk (Pila globosa) as a Heterogeneous Catalyst for Synthesis of Biodiesel Using Used Frying Oil. Ind. Eng. Chem. Res. 2012, 51, 11875–11880. [Google Scholar] [CrossRef]
- Gbenebor, O.P.; Adeosun, S.O.; Lawal, G.I.; Jun, S. Role of CaCO3 in the Physicochemical Properties of Crustacean-Sourced Structural Polysaccharides. Mater. Chem. Phys. 2016, 184, 203–209. [Google Scholar] [CrossRef]
- Melekestseva, I.Y.; Tret’yakov, G.A.; Nimis, P.; Yuminov, A.M.; Maslennikov, V.V.; Maslennikova, S.P.; Kotlyarov, V.A.; Beltenev, V.E.; Danyushevsky, L.V.; Large, R. Barite-Rich Massive Sulfides from the Semenov-1 Hydrothermal Field (Mid-Atlantic Ridge, 13°30.87′ N): Evidence for Phase Separation and Magmatic Input. Mar. Geol. 2014, 349, 37–54. [Google Scholar] [CrossRef]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian Inference of Phylogenetic Trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES Science Gateway for Inference of Large Phylogenetic Trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8. [Google Scholar]
- Cianci, M.; Rizkallah, P.J.; Olczak, A.; Raftery, J.; Chayen, N.E.; Zagalsky, P.F.; Helliwell, J.R. The Molecular Basis of the Coloration Mechanism in Lobster Shell: β-Crustacyanin at 3.2-Å Resolution. Proc. Natl. Acad. Sci. USA 2002, 99, 9795–9800. [Google Scholar] [CrossRef]
- Soufiane, F.; Elasri, O.; LaKrat, M.; Sihame, A.; Omari, A.; Fadlaoui, S.; Asri, O.; Mohammed, L.; Sihame, A.; Omari, A.; et al. Isolation and Characterization of Chitin from Shells of the Freshwater Crab Potamon Algeriense. Prog. Chem. Appl. Chitin Its Deriv. 2019, 14, 23–35. [Google Scholar] [CrossRef]
- Kaya, M.; Dudakli, F.; Asan-Ozusaglam, M.; Cakmak, Y.S.; Baran, T.; Mentes, A.; Erdogan, S. Porous and Nanofiber α-Chitosan Obtained from Blue Crab (Callinectes sapidus) Tested for Antimicrobial and Antioxidant Activities. LWT—Food Sci. Technol. 2016, 65, 1109–1117. [Google Scholar] [CrossRef]
- Ruiz-Jorge, F.; Portela, J.R.; Sánchez-Oneto, J.; Martínez de la Ossa, E.J. Synthesis of Micro-and Nanoparticles in Sub-and Supercritical Water: From the Laboratory to Larger Scales. Appl. Sci. 2020, 10, 5508. [Google Scholar] [CrossRef]
- Incropera, F.P.; DeWitt, D.P.; Bergman, T.L.; Lavine, A.S. Fundamentals of Heat and Mass Transfer; Wiley: New York, NY, USA, 1996; Volume 6. [Google Scholar]
- Gerzhova, N.; Côté, J.; Blanchet, P.; Dagenais, C.; Ménard, S. A Conceptual Framework for Modelling the Thermal Conductivity of Dry Green Roof Substrates. BioResources 2019, 14, 8573–8599. [Google Scholar]
- Yuan, C.; Jin, Z.; Xu, X.; Zhuang, H.; Shen, W. Preparation and Stability of the Inclusion Complex of Astaxanthin with Hydroxypropyl-β-Cyclodextrin. Food Chem. 2008, 109, 264–268. [Google Scholar] [CrossRef]
- Raba, D.N.; Chambre, D.R.; Copolovici, D.-M.; Moldovan, C.; Copolovici, L.O. The Influence of High-Temperature Heating on Composition and Thermo-Oxidative Stability of the Oil Extracted from Arabica Coffee Beans. PLoS ONE 2018, 13, e0200314. [Google Scholar] [CrossRef] [PubMed]
- Foss, P.; Renstrøm, B.; Liaaen-Jensen, S. Natural Occurrence of Enantiomeric and Meso Astaxanthin 7∗-Crustaceans Including Zooplankton. Comp. Biochem. Physiol. Part B Comp. Biochem. 1987, 86, 313–314. [Google Scholar] [CrossRef]
- Gilchrist, B.M.; Lee, W.L. Carotenoid Pigments and Their Possible Role in Reproduction in the Sand Crab, Emerita analoga (Stimpson, 1857). Comp. Biochem. Physiol. Part B Comp. Biochem. 1972, 42, 263–294. [Google Scholar] [CrossRef]
- Bliss, D.E.; Mantel, L.H. Integument, Pigments, and Hormonal Processes: Volume 9: Integument, Pigments and Hormonal Processes; Academic Press: Cambridge, MA, USA, 2012; ISBN 978-0-323-13922-9. [Google Scholar]
- Franklin, A.M.; Marshall, J.; Feinstein, A.D.; Bok, M.J.; Byrd, A.D.; Lewis, S.M. Differences in Signal Contrast and Camouflage among Different Colour Variations of a Stomatopod Crustacean, Neogonodactylus oerstedii. Sci. Rep. 2020, 10, 1236. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, X.; Gao, Y.; Zhang, X.; Liu, C.; Xiang, J.; Li, F. Adaptation and Molecular Evidence for Convergence in Decapod Crustaceans from Deep-Sea Hydrothermal Vent Environments. Mol. Ecol. 2020, 29, 3954–3969. [Google Scholar] [CrossRef]
- Suh, Y.J.; Kim, M.-S.; Kim, S.-J.; Kim, D.; Ju, S.-J. Carbon Sources and Trophic Interactions of Vent Fauna in the Onnuri Vent Field, Indian Ocean, Inferred from Stable Isotopes. Deep Sea Res. Part Oceanogr. Res. Pap. 2022, 182, 103683. [Google Scholar] [CrossRef]
- Bucci, J.P.; Showers, W.J.; Rebach, S.; DeMaster, D.; Genna, B. Stable Isotope Analyses (δ15N and δ13C) of the Trophic Relationships of Callinectes sapidus in Two North Carolina Estuaries. Estuaries Coasts 2007, 30, 1049–1059. [Google Scholar] [CrossRef]
- Thompson, S.P.; Parker, J.E.; Tang, C.C. Thermal Breakdown of Calcium Carbonate and Constraints on Its Use as a Biomarker. Icarus 2014, 229, 1–10. [Google Scholar] [CrossRef]
- Declet, A.; Reyes, E.; Suárez, O.M. Calcium Carbonate Precipitation: A Review of the Carbonate Crystallization Process and Applications in Bioinspired Composites. Rev. Adv. Mater. Sci. 2016, 44, 87. [Google Scholar]
- He, H.; Li, Y.; Wang, S.; Ma, Q.; Pan, Y. A High Precision Method for Calcium Determination in Seawater Using Ion Chromatography. Front. Mar. Sci. 2020, 7, 231. [Google Scholar] [CrossRef]
- Von Damm, K.L. Seafloor Hydrothermal Activity: Black Smoker Chemistry and Chimneys. Annu. Rev. Earth Planet. Sci. 1990, 18, 173–204. [Google Scholar] [CrossRef]
- Lim, D.; Kim, J.; Kim, W.; Kim, J.; Kim, D.; Zhang, L.; Kwack, K.; Xu, Z. Characterization of Geochemistry in Hydrothermal Sediments from the Newly Discovered Onnuri Vent Field in the Middle Region of the Central Indian Ridge. Front. Mar. Sci. 2022, 9, 810949. [Google Scholar] [CrossRef]
- Jin, X.; Liu, C. Ecological and Taphonomical Influences on Coccoliths in Surface Sediments in the Shelf of the Yellow and East China Seas. Cont. Shelf Res. 2017, 140, 27–36. [Google Scholar] [CrossRef]
- Bubliy, O.A.; Kristensen, T.N.; Kellermann, V.; Loeschcke, V. Plastic Responses to Four Environmental Stresses and Cross-Resistance in a Laboratory Population of Drosophila melanogaster. Funct. Ecol. 2012, 26, 245–253. [Google Scholar] [CrossRef]
- van Heerwaarden, B.; Kellermann, V.; Sgrò, C.M. Limited Scope for Plasticity to Increase Upper Thermal Limits. Funct. Ecol. 2016, 30, 1947–1956. [Google Scholar] [CrossRef]
- Bouligand, Y. Sur Une Architecture Torsadee Repondue Dans de Nombreuses Cuticules d’arthropodes. Comptes Rendus Acad. Sci. 1965, 261, 3665–3668. [Google Scholar]
- Herakovich, C.T. Influence of Layer Thickness on the Strength of Angle-Ply Laminates. J. Compos. Mater. 1982, 16, 216–227. [Google Scholar] [CrossRef]
- Bentov, S.; Aflalo, E.D.; Tynyakov, J.; Glazer, L.; Sagi, A. Calcium Phosphate Mineralization Is Widely Applied in Crustacean Mandibles. Sci. Rep. 2016, 6, 22118. [Google Scholar] [CrossRef]
- Kobayashi, H.; Shimoshige, H.; Nakajima, Y.; Arai, W.; Takami, H. An Aluminum Shield Enables the Amphipod Hirondellea Gigas to Inhabit Deep-Sea Environments. PLoS ONE 2019, 14, e0206710. [Google Scholar] [CrossRef]
- Hernandez, I. Larval Dispersal and Life Cycle in Deep-Water Hydrothermal Vents: The Case of Rimicaris exoculata and Related Species. Ph.D. Thesis, Université de Bretagne Occidentale-Brest, Brest, France, 2016. [Google Scholar]
- Bracken-Grissom, H.D.; Cannon, M.E.; Cabezas, P.; Feldmann, R.M.; Schweitzer, C.E.; Ahyong, S.T.; Felder, D.L.; Lemaitre, R.; Crandall, K.A. A Comprehensive and Integrative Reconstruction of Evolutionary History for Anomura (Crustacea: Decapoda). BMC Evol. Biol. 2013, 13, 128. [Google Scholar] [CrossRef]
- Yang, J.-S.; Lu, B.; Chen, D.-F.; Yu, Y.-Q.; Yang, F.; Nagasawa, H.; Tsuchida, S.; Fujiwara, Y.; Yang, W.-J. When Did Decapods Invade Hydrothermal Vents? Clues from the Western Pacific and Indian Oceans. Mol. Biol. Evol. 2013, 30, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; Hou, S.; Si, J. Failure Analysis of a Steam-Water Boiler. J. Phys. Conf. Ser. 2020, 1635, 012071. [Google Scholar] [CrossRef]
- Li, R.; Zarate, D.; Avila-Magaña, V.; Li, J. Comparative Transcriptomics Revealed Parallel Evolution and Innovation of Photosymbiosis Molecular Mechanisms in a Marine Bivalve. Proc. B 2024, 291, 20232408. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wu, Q.; Ma, S.; Ma, T.; Shan, L.; Wang, X.; Nie, Y.; Ning, Z.; Yan, L.; Xiu, Y.; et al. Comparative Genomics Reveals Convergent Evolution between the Bamboo-Eating Giant and Red Pandas. Proc. Natl. Acad. Sci. USA 2017, 114, 1081–1086. [Google Scholar] [CrossRef]
- Lamichhaney, S.; Card, D.C.; Grayson, P.; Tonini, J.F.R.; Bravo, G.A.; Näpflin, K.; Termignoni-Garcia, F.; Torres, C.; Burbrink, F.; Clarke, J.A.; et al. Integrating Natural History Collections and Comparative Genomics to Study the Genetic Architecture of Convergent Evolution. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180248. [Google Scholar] [CrossRef]
- Folmer, O.; Black, M.; Wr, H.; Lutz, R.; Vrijenhoek, R. DNA Primers for Amplification of Mitochondrial Cytochrome C Oxidase Subunit I from Diverse Metazoan Invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar]
- Palumbi, S.R. Nucleic Acids II: The Polymerase Chain Reaction. In Molecular Systematics; Sinauer Associates: Sunderland, MA, USA, 1996; pp. 205–247. [Google Scholar]
- Giribet, G.; Carranza, S.; Baguñà, J.; Riutort, M.; Ribera, C. First Molecular Evidence for the Existence of a Tardigrada + Arthropoda Clade. Mol. Biol. Evol. 1996, 13, 76–84. [Google Scholar] [CrossRef]
- Colgan, D.; McLauchlan, A.; Wilson, G.; Livingston, S.; Edgecombe, G.; Macaranas, J.; Cassis, G.; Gray, M. Histone H3 and U2 snRNA DNA Sequences and Arthropod Evolution. Aust. J. Zool. 1998, 46, 419–437. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: A Multiple Sequence Alignment Method with Reduced Time and Space Complexity. BMC Bioinform. 2004, 5, 113. [Google Scholar] [CrossRef]
- Castresana, J. Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Mol. Biol. Evol. 2000, 17, 540–552. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More Models, New Heuristics and Parallel Computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Hild, S.; Marti, O.; Ziegler, A. Spatial Distribution of Calcite and Amorphous Calcium Carbonate in the Cuticle of the Terrestrial Crustaceans Porcellio scaber and Armadillidium vulgare. J. Struct. Biol. 2008, 163, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Borromeo, L.; Egeland, N.; Wetrhus Minde, M.; Zimmermann, U.; Andò, S.; Madland, M.V.; Korsnes, R.I. Quick, Easy, and Economic Mineralogical Studies of Flooded Chalk for Eor Experiments Using Raman Spectroscopy. Minerals 2018, 8, 221. [Google Scholar] [CrossRef]
- Tao, J.; Zhou, D.; Zhang, Z.; Xu, X.; Tang, R. Magnesium-Aspartate-Based Crystallization Switch Inspired from Shell Molt of Crustacean. Proc. Natl. Acad. Sci. USA 2009, 106, 22096–22101. [Google Scholar] [CrossRef] [PubMed]
- Zhukova, I.A.; Stepanov, A.S.; Korsakov, A.V.; Jiang, S.-Y. Application of Raman Spectroscopy for the Identification of Phosphate Minerals from REE Supergene Deposit. J. Raman Spectrosc. 2022, 53, 485–496. [Google Scholar] [CrossRef]
- Esmonde-White, K.A.; Mandair, G.S.; Raaii, F.; Jacobson, J.A.; Miller, B.S.; Urquhart, A.G.; Roessler, B.J.; Morris, M.D. Raman Spectroscopy of Synovial Fluid as a Tool for Diagnosing Osteoarthritis. J. Biomed. Opt. 2009, 14, 034013. [Google Scholar] [CrossRef]
- Li, Y.; Huang, W.; Pan, J.; Ye, Q.; Lin, S.; Feng, S.; Xie, S.; Zeng, H.; Chen, R. Rapid Detection of Nasopharyngeal Cancer Using Raman Spectroscopy and Multivariate Statistical Analysis. Mol. Clin. Oncol. 2015, 3, 375–380. [Google Scholar] [CrossRef]
- Lasalvia, M.; Perna, G.; Capozzi, V. Raman Spectroscopy of Human Neuronal and Epidermal Cells Exposed to an Insecticide Mixture of Chlorpyrifos and Deltamethrin. Appl. Spectrosc. 2014, 68, 1123–1131. [Google Scholar] [CrossRef]
- Guimarães, A.E.; Pacheco, M.T.T.; Silveira, L., Jr.; Barsottini, D.; Duarte, J.; Villaverde, A.B.; Zângaro, R.A. Near Infrared Raman Spectroscopy (NIRS): A Technique for Doping Control. Spectroscopy 2006, 20, 185–194. [Google Scholar] [CrossRef]
- Wang, D.; Hamm, L.M.; Bodnar, R.J.; Dove, P.M. Raman Spectroscopic Characterization of the Magnesium Content in Amorphous Calcium Carbonates. J. Raman Spectrosc. 2012, 43, 543–548. [Google Scholar] [CrossRef]
- Nekvapil, F.; Pinzaru, S.C.; Barbu–Tudoran, L.; Suciu, M.; Glamuzina, B.; Tamaș, T.; Chiș, V. Color-Specific Porosity in Double Pigmented Natural 3d-Nanoarchitectures of Blue Crab Shell. Sci. Rep. 2020, 10, 3019. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Gu, W.; Jiang, L.; Zhu, Y.; Gong, A. Study on the Visualization of Pigment in Haematococcus Pluvialis by Raman Spectroscopy Technique. Sci. Rep. 2019, 9, 12097. [Google Scholar] [CrossRef] [PubMed]
- Wijk, A.; Spaans, A.; Uzunbajakava, N.; Otto, C.; Groot, H.; Lugtenburg, J.; Buda, F. Spectroscopy and Quantum Chemical Modeling Reveal a Predominant Contribution of Excitonic Interactions to the Bathochromic Shift in α-Crustacyanin, the Blue Carotenoprotein in the Carapace of the Lobster Homarus gammarus. J. Am. Chem. Soc. 2005, 127, 1438–1445. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Chaichi, A.; Mahigir, A.; Sahu, S.P.; Ganta, D.; Veronis, G.; Gartia, M.R. Ripple Mediated Surface Enhanced Raman Spectroscopy on Graphene. Carbon 2020, 157, 525–536. [Google Scholar] [CrossRef]
Infraorder | Species | Lat. | Long. | Date (yyyy.mm.dd) | Depth (m) | N 1 | Size 2 (mm) | Habitat | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Anomura | Munidopsis lauensis | 11.24 | S | 66.25 | E | 2019.06.28 | 2014 | 3 | 25.16 ± 0.24 | Vent | [13] |
11.24 | S | 66.25 | E | 2019.07.01 | 2023 | 1 | Vent | This study | |||
Brachyura | Austinograea sp. | 11.24 | S | 66.25 | E | 2019.06.29 | 2014 | 3 | 3.42 ± 0.02 | Vent | [10] |
Anomura | Elassochirus cavimanus | 36.20 | N | 129.41 | E | 2022.09.01 | 100 | 3 | 18.45 ± 1.56 | Coastal | [13] |
Brachyura | Charybdis japonica | 37.45 | N | 126.60 | E | 2020.04.06 | <50 | 3 | 5.74 ± 0.03 | Coastal | [10] |
Brachyura | Portunus trituberculatus | 37.45 | N | 126.60 | E | 2021.06.21 | <50 | 3 | 126.31 ± 2.98 | Coastal | This study |
- | Oratosquilla oratoria | 34.61 | N | 127.72 | E | 2020.06.30 | <50 | 3 | 171.5 ± 0.75 | Coastal | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, B.; Jang, S.-J.; Hwang, H.-s.; Kim, T. Convergent Evolution of Armor: Thermal Resistance in Deep-Sea Hydrothermal Vent Crustaceans. Biology 2024, 13, 956. https://doi.org/10.3390/biology13120956
Cho B, Jang S-J, Hwang H-s, Kim T. Convergent Evolution of Armor: Thermal Resistance in Deep-Sea Hydrothermal Vent Crustaceans. Biology. 2024; 13(12):956. https://doi.org/10.3390/biology13120956
Chicago/Turabian StyleCho, Boongho, Sook-Jin Jang, Hee-seung Hwang, and Taewon Kim. 2024. "Convergent Evolution of Armor: Thermal Resistance in Deep-Sea Hydrothermal Vent Crustaceans" Biology 13, no. 12: 956. https://doi.org/10.3390/biology13120956
APA StyleCho, B., Jang, S. -J., Hwang, H. -s., & Kim, T. (2024). Convergent Evolution of Armor: Thermal Resistance in Deep-Sea Hydrothermal Vent Crustaceans. Biology, 13(12), 956. https://doi.org/10.3390/biology13120956