Effect of Dietary Digestible Protein Levels on Muscle Growth and Oxidative Stress in Amazonian Pintado (Pseudoplatystoma reticulatum × Leiarius marmoratus)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Management, and Experimental Diets
2.2. Collection of Biological Material
2.3. Muscle Fiber Morphometry
2.4. Protein, Free Amino Acid, and Ammonia Contents in Muscle
2.5. Glycogen, Glucose, Lactate, and Fat Contents in Muscle
2.6. Parameters of Oxidative Damage in Muscle
2.6.1. Thiobarbituric Acid-Reactive Substances (TBARSs)
2.6.2. Protein Carbonylation
2.6.3. Antioxidant Complex
2.7. Statistical Analysis
3. Results
3.1. Dynamics of Muscle Fiber Development
3.2. Proteins, Free Amino Acids, and Ammonia
3.3. Muscle Metabolites
3.4. Oxidative Stress in Muscle Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glencross, B.; Blyth, D.; Irvin, S.; Bourne, N.; Wade, N. An Analysis of the Effects of Different Dietary Macronutrient Energy Sources on the Growth and Energy Partitioning by Juvenile Barramundi, Lates calcarifer, Reveal a Preference for Protein-Derived Energy. Aquac. Nutr. 2014, 20, 583–594. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, J.; Liu, H.; Zhuang, M.; Wen, X.; Zhao, H.; Wu, K. Effects of Dietary Protein Levels on Growth, Digestive Enzyme Activity, Antioxidant Capacity, and Gene Expression Related to Muscle Growth and Protein Synthesis of Juvenile Greasyback Shrimp (Metapenaeus ensis). Animals 2023, 13, 3886. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, S.; Wu, G. Nutrition and Metabolism of Glutamate and Glutamine in Fish. Amino Acids 2020, 52, 671–691. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Cai, Y.; Xiao, Y.; Cao, S.; Zhong, G.; Li, X.; Li, Y.; Luo, J.; Tang, J.; Qu, F.; et al. Intervention of Dietary Protein Levels on Muscle Quality, Antioxidation, and Autophagy in the Muscles of Triploid Crucian Carp (Carassius carassius Triploid). Int. J. Mol. Sci. 2023, 24, 12043. [Google Scholar] [CrossRef]
- Hepher, B. Nutrition of Pond Fishes; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Walton, M.J.; Cowey, C.B. Aspects of Intermediary Metabolism in Salmonid Fish. Comp. Biochem. Physiol. Part B Comp. Biochem. 1982, 73, 59–79. [Google Scholar] [CrossRef]
- Furuya, W.M.; Pezzato, L.E.; Barros, M.; Boscolo, W.; Possebon, J.; Barriviera, V.; Feiden, A. Tabela Brasileira para a Nutrição de Tilápias; GMF: Toledo, Brazil, 2010; Volume 1, ISBN 978-85-60308-14-9. [Google Scholar]
- Sakomura, N.K.; Rostagno, H.S. Métodos de Pesquisa Em Nutrição de Monogástricos, 2nd ed.; Funep: Jaboticabal, Brazil, 2016. [Google Scholar]
- Lundstedt, L.M.; Melo, J.F.B.; Moraes, G. Digestive Enzymes and Metabolic Profile of Pseudoplatystoma corruscans (Teleostei: Siluriformes) in Response to Diet Composition. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2004, 137, 331–339. [Google Scholar] [CrossRef]
- Sánchez, J.A.M.; Moyetones, F.; Cerdá, M.J. Influencia Del Contenido Proteico En El Crecimiento de Alevines de Bagre Yaque, Leiarius marmoratus, Alimentados Con Concentrados Comerciales. Zootec. Trop. 2009, 27, 187–194. [Google Scholar]
- Lemos, C.H.P.; Chung, S.; Ribeiro, C.V.M.; Copatti, C.E. Growth and Biochemical Variables in Amazon Catfish (Pseudoplatystoma reticulatum♀ × Leiarius marmoratus♂) under Different Water PH. An. Acad. Bras. Cienc. 2018, 90, 3573–3581. [Google Scholar] [CrossRef]
- Fantini, L.E.; Rodrigues, R.A.; Nunes, A.L.; Sanchez, M.S.d.S.; Ushizima, T.T.; Campos, C.M. de Rendimento de Carcaça de Surubins Pseudoplatystoma spp. Produzidos Em Tanquerede e Viveiro. Rev. Bras. Saude E Prod. Anim. 2013, 14, 538–545. [Google Scholar] [CrossRef]
- Baldisserotto, B.; Gomes, L. de C. Espécies Nativas Para Piscicultura No Brasil, 2nd ed.; Editora UFSM: Santa Maria, Brazil, 2010. [Google Scholar]
- Cunha, D.A.D.; Cornélio, F.H.G.; Fracalossi, D.M. Exigência de Energia Em Dietas Para Juvenis de Cachara, Pseudoplatystoma reticulatum. Bol. Inst. Pesca 2015, 41, 567–578. [Google Scholar]
- Silva, T.S.d.C.; Zanon, R.B.; Mourão, G.B.; Cyrino, J.E.P. Digestible Energy, Protein, and Energy–Protein Ratio Requirements of Pseudoplatystoma reticulatum. J. World Aquac. Soc. 2020, 51, 1402–1418. [Google Scholar] [CrossRef]
- Bernardes, C.L.; Navarro, R.D.; Santos, B.G.; Silva, R.F. Effects of Dietary Carbohydrate/Lipid Ratios on Growth, Body Composition, and Nutrient Utilization of Hybrid Cat Sh (Pseudoplatystoma reticulatum × Leiarius marmoratus). Rev. Colomb. Cienc. Pecu. 2016, 29, 58–65. [Google Scholar] [CrossRef]
- Souza, G.A.S.d.; Silva, L.K.S.d.; Macedo, F.F.; Lopera-Barrero, N.M.; Abreu, J.S.d.; Souza, F.P.d.; Povh, J.A. Performance of Hybrid Catfish Subjected to Different Protein Levels. Bol. Inst. Pesca 2017, 43, 113–120. [Google Scholar] [CrossRef]
- Marques, S.A.D.; Zamban, K.; Fornari, D.C.; Ituassú, D.R.; Meurer, F.; Ton, A.P.S.; Moreira, P.S.d.A.; Mattos, L. Coeficientes de Digestibilidade Aparente de Ingredientes Para Juvenis de Pintado Amazônico. In Embrapa Agrossilvipastoril: Primeiras Contribuições Para o Desenvolvimento de uma Agropecuária Sustentável; de Farias Neto, A.L., do Nascimento, A.F., Rossoni, A.L., de Magalhães, C.A.S., Ituassú, D.R., Hoogerheide, E.S.S., Ikeda, F.S., Junior, F.F., Faria, G.R., Isernhagen, I., et al., Eds.; Embrapa: Brasília, Brazil, 2019; p. 825. ISBN 9788570359056. [Google Scholar]
- Veggetti, A.; Mascarello, F.; Scapolo, P.A.; Rowlerson, A. Hyperplastic and Hypertrophic Growth of Lateral Muscle in Dicentrarchus labrax (L.)—An Ultrastructural and Morphometric Study. Anat. Embryol. 1990, 182, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Valente, L.M.P.; Rocha, E.; Gomes, E.F.S.; Silva, M.W.; Oliveira, M.H.; Monteiro, R.A.F.; Fauconneau, B. Growth Dynamics of White and Red Muscle Fibres in Fast- and Slow-Growing Strains of Rainbow Trout. J. Fish. Biol. 1999, 55, 675–691. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Spies, J.R. Colorimetric Procedures for Amino Acids. Methods Enzym. Enzymol. 1957, 3, 467–477. [Google Scholar] [CrossRef]
- Gentzkow, C.J.; Masen, J.M. An Accurate Method for the Determination of Blood Urea Nitrogen by Direct Nesslerization. J. Biol. Chem. 1942, 143, 531–544. [Google Scholar] [CrossRef]
- Bidinotto, P.M.; Moraes, G.; Souza, R.H.S. Hepatic Glycogen and Glucose in Eight Tropical Fresh Water Teleost Fish: A Procedure for Field Determinations of Micro-Samples. Bol. Técnico CEPTA 1997, 10, 53–60. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Harrower, J.R.; Brown, C.H. Blood Lactic Acid—A Micromethod Adapted to Field Collection of Microliter Samples. J. Appl. Physiol. 1972, 32, 709–711. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Sloane Stanley, G.H. A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Buege, J.A.; Aust, S.D. Microsomal Lipid Peroxidation. Methods Enzym. Enzymol. 1978, 52, 302–310. [Google Scholar] [CrossRef]
- Colombo, G.; Clerici, M.; Garavaglia, M.E.; Giustarini, D.; Rossi, R.; Milzani, A.; Dalle-Donne, I. A Step-by-Step Protocol for Assaying Protein Carbonylation in Biological Samples. J. Chromatogr. B 2016, 1019, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Misra, H.P.; Fridovich, I. The Role of Superoxide Anion in the Autoxidation of Epinephrine and a Simple Assay for Superoxide Dismutase. J. Biol. Chem. 1972, 247, 3170–3175. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-Transferases: The First Enzymatic Step in Mercapturic Acid Formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef]
- Sedlak, J.; Lindsay, R.H. Estimation of Total, Protein-Bound, and Nonprotein Sulfhydryl Groups in Tissue with Ellman’s Reagent. Anal. Biochem. 1968, 25, 192–205. [Google Scholar] [CrossRef]
- Hempel, G.; Blaxter, J.H.S. The Experimental Modification of Meristic Characters in Herring (Clupea harengus L.). ICES J. Mar. Sci. 1961, 26, 336–346. [Google Scholar] [CrossRef]
- Stickland, N.C.; White, R.N.; Mescall, P.E.; Crook, A.R.; Thorpe, J.E. The Effect of Temperature on Myogenesis in Embryonic Development of the Atlantic Salmon (Salmo salar L.). Anat. Embryol. 1988, 178, 253–257. [Google Scholar] [CrossRef]
- Vélez, E.J.; Lutfi, E.; Azizi, S.; Perelló, M.; Salmerón, C.; Riera-Codina, M.; Ibarz, A.; Fernández-Borràs, J.; Blasco, J.; Capilla, E.; et al. Understanding Fish Muscle Growth Regulation to Optimize Aquaculture Production. Aquaculture 2017, 467, 28–40. [Google Scholar] [CrossRef]
- Fuentes, E.N.; Ruiz, P.; Valdes, J.A.; Molina, A. Catabolic Signaling Pathways, Atrogenes, and Ubiquitinated Proteins Are Regulated by the Nutritional Status in the Muscle of the Fine Flounder. PLoS ONE 2020, 15, e0244410. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Zhang, L.; Wu, P.; Feng, L.; Jiang, W.; Liu, Y.; Kuang, S.; Li, S.; Mi, H.; Tang, L.; et al. Dietary Protein Levels Changed the Hardness of Muscle by Acting on Muscle Fiber Growth and the Metabolism of Collagen in Sub-Adult Grass Carp (Ctenopharyngodon idella). J. Anim. Sci. Biotechnol. 2022, 13, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Felip, O.; Ibarz, A.; Fernández-Borrà, J.; Beltrán, M.; Martín-Pérez, M.; Planas, J.V.; Blasco, J. Tracing Metabolic Routes of Dietary Carbohydrate and Protein in Rainbow Trout (Oncorhynchus mykiss) Using Stable Isotopes ([13 C]Starch and [15 N]Protein): Effects of Gelatinisation of Starches and Sustained Swimming. Br. J. Nutr. 2012, 107, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.; Valente, A.L.M.P.; Galante, A.M.H.; Andrade, A.C.A.P.; Monteiro, A.R.A.F.; Rocha, A.E. Dietary Protein Content Influences Both Growth and Size Distribution of Anterior and Posterior Muscle Fibres in Juveniles of Pagellus bogaraveo (Brunnich). J. Muscle Res. Cell Motil. 2009, 30, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.M.; Shi, C.M.; Mu, M.M.; Chen, Y.J.; Luo, L. Effect of High Dietary Starch Levels on Growth, Hepatic Glucose Metabolism, Oxidative Status and Immune Response of Juvenile Largemouth Bass, Micropterus salmoides. Fish. Shellfish. Immunol. 2018, 78, 121–126. [Google Scholar] [CrossRef]
- Kirchner, S.; Seixas, P.; Kaushik, S.; Panserat, S. Effects of Low Protein Intake on Extra-Hepatic Gluconeogenic Enzyme Expression and Peripheral Glucose Phosphorylation in Rainbow Trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2005, 140, 333–340. [Google Scholar] [CrossRef]
- Yamamoto, T.; Unuma, T.; Akiyama, T. The Influence of Dietary Protein and Fat Levels on Tissue Free Amino Acid Levels of Fingerling Rainbow Trout (Oncorhynchus mykiss). Aquaculture 2000, 182, 353–372. [Google Scholar] [CrossRef]
- Pérez-Jiménez, A.; Hidalgo, M.C.; Morales, A.E.; Arizcun, M.; Abellán, E.; Cardenete, G. Use of Different Combinations of Macronutrients in Diets for Dentex (Dentex dentex): Effects on Intermediary Metabolism. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2009, 152, 314–321. [Google Scholar] [CrossRef]
- Wood, C.F.; Part, P.; Wright, P.A. Ammonia and Urea Metabolism in Relation to Gill Function and Acid–Base Balance in A Marine Elasmobranch, the Spiny Dogfish (Squalus acanthias). J. Exp. Biol. 1995, 198, 1545–1558. [Google Scholar] [CrossRef]
- Marques, S.A.D.; Ituassú, D.R.; Meurer, F.; Corrêa Filho, R.A.C.; Povh, J.A.; Sinhorin, V.D.G. Digestible Protein Requirement of Amazonian Pintado (Pseudoplatystoma reticulatum × Leiarius marmoratus). Aquacult. Int. 2024; in press. [Google Scholar]
- Xu, D.; He, G.; Mai, K.; Wang, Q.; Li, M.; Zhou, H.; Xu, W.; Song, F. Effect of Fish Meal Replacement by Plant Protein Blend on Amino Acid Concentration, Transportation and Metabolism in Juvenile Turbot (Scophthalmus maximus L.). Aquac. Nutr. 2017, 23, 1169–1178. [Google Scholar] [CrossRef]
- Bai, J.; Li, C.; Tang, Z.; Wu, C.; Wei, Z. Comparative Study of Carbohydrate Levels on Growth, Oxidative Stress and Glucolipid Metabolism of Hybrid Fish between Megalobrama amblycephala (♀) × Culter alburnus (♂) and Culter alburnus. Reprod. Breed. 2023, 3, 131–142. [Google Scholar] [CrossRef]
- Alvarez, M.J.; Lopez-Bote, C.J.; Diez, A.; Corraze, G.; Arzel, J.; Dias, J.; Kaushik, S.J.; Bautista, J.M. Dietary Fish Oil and Digestible Protein Modify Susceptibility to Lipid Peroxidation in the Muscle of Rainbow Trout (Oncorhynchus mykiss) and Sea Bass (Dicentrarchus labrax). Br. J. Nutr. 1998, 80, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, A.; Hidalgo, M.C.; Morales, A.E.; Arizcun, M.; Abellán, E.; Cardenete, G. Antioxidant Enzymatic Defenses and Oxidative Damage in Dentex dentex Fed on Different Dietary Macronutrient Levels. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2009, 150, 537–545. [Google Scholar] [CrossRef]
- Venancio, L.P.R.; Silva, M.I.A.; da Silva, T.L.; Moschetta, V.A.G.; de Campos Zuccari, D.A.P.; Almeida, E.A.; Bonini-Domingos, C.R. Pollution-Induced Metabolic Responses in Hypoxia-Tolerant Freshwater Turtles. Ecotoxicol. Environ. Saf. 2013, 97, 1–9. [Google Scholar] [CrossRef]
- Xu, X.-W.; Song, C.-C.; Tan, X.-Y.; Zhong, C.-C.; Luo, Z. Effects of Dietary Zinc (Zn) Levels on Growth Performance, Nutrient Composition, Muscle Development, Antioxidant and Inflammatory Responses in Yellow Catfish Muscle. Aquac. Rep. 2023, 31, 101640. [Google Scholar] [CrossRef]
- Sargent, J.R.; Bell, J.G.; Bell, M.V.; Henderson, R.J.; Tocher, D.R. The Metabolism of Phospholipids and Polyunsaturated Fatty Acids in Fish. Aquac. Fundam. Appl. Res. 2011, 43, 103–124. [Google Scholar] [CrossRef]
- Winston, G.W.; Di Giulio, R.T. Prooxidant and Antioxidant Mechanisms in Aquatic Organisms. Aquat. Toxicol. 1991, 19, 137–161. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS Function in Redox Signaling and Oxidative Stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Free Radicals in Biology and Medicine. In Free Radicals in Biology and Medicine; Oxford University Press: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Nwani, C.D.; Singh Lakra, W.; Sahebrao Nagpure, N.; Kumar, R.; Kushwaha, B.; Srivastava, S.K. Toxicity of the Herbicide Atrazine: Effects on Lipid Peroxidation and Activities of Antioxidant Enzymes in the Freshwater Fish Channa punctatus (Bloch). Int. J. Environ. Res. Public Health 2010, 7, 3298–3312. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, N.; Sharawy, Z.; Li, Y.; Ma, J.; Lou, Y. Effects of Dietary Lipid and Protein Levels on Growth and Physiological Metabolism of Pelteobagrus fulvidraco Larvae under Recirculating Aquaculture System (RAS). Aquaculture 2018, 495, 458–464. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free Radicals and Antioxidants in Normal Physiological Functions and Human Disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef] [PubMed]
- Calzada-Ruiz, D.; Álvarez-González, C.A.; Peña, E.; Jiménez-Martínez, L.D.; Alcantar-Vázquez, J.P.; Becerril-Morales, F.; Martínez-García, R.; Camarillo-Coop, S. Lipid Requirement Using Different Oil Sources in Mayan Cichlid Cichlasoma urophthalmus Larvae (Percoidei: Cichlidae). Lat. Am. J. Aquat. Res. 2019, 47, 331–341. [Google Scholar] [CrossRef]
- Guerrero-Zárate, R.; Álvarez-González, C.A.; Jesus-Contreras, R.; Peña-Marín, E.S.; Martínez-García, R.; Galaviz, M.A.; López, L.M.; Llera-Herrera, R. Evaluation of Carbohydrate/Lipid Ratios on Growth and Metabolic Response in Tropical Gar (Atractosteus tropicus) Juvenile. Aquac. Res. 2019, 50, 1812–1823. [Google Scholar] [CrossRef]
Ingredients (%) | Digestible Protein (g kg−1) | ||||||
---|---|---|---|---|---|---|---|
225 | 250 | 275 | 300 | 325 | 350 | 375 | |
Corn 1 | 56.09 | 45.59 | 37.50 | 37.16 | 34.23 | 13.00 | 21.25 |
Fish meal 2 | 20.00 | 20.00 | 20.00 | 30.00 | 35.00 | 40.42 | 42.01 |
CPC 3 | 12.49 | 20.48 | 25.94 | 24.80 | 20.17 | 19.00 | 21.04 |
Soybean oil | 5.48 | 8.08 | 9.54 | 7.27 | 5.38 | 9.59 | 5.48 |
Blood meal 4 | 3.00 | 3.00 | 5.00 | 0.00 | 5.00 | 10.00 | 10.00 |
Dicalcium phosphate | 1.83 | 1.74 | 1.18 | 0.11 | 0.00 | 0.00 | 0.00 |
Calcitic limestone | 0.89 | 0.90 | 0.62 | 0.44 | 0.00 | 0.00 | 0.00 |
Premix 5 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 |
BHT 6 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Rice husk 7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 7.77 | 0.00 |
Analyzed composition (%): | |||||||
Crude protein | 25.76 | 31.99 | 31.87 | 28.85 | 36.93 | 38.85 | 45.16 |
Ether extract | 9.54 | 14.13 | 10.51 | 10.52 | 13.91 | 16.34 | 10.29 |
Ash | 10.45 | 10.39 | 7.36 | 9.97 | 10.62 | 11.65 | 8.93 |
Gross energy (kcal kg−1) | 4260 | 4540 | 4062 | 4370 | 4650 | 4810 | 4540 |
Dry matter | 92.94 | 93.38 | 92.64 | 93.14 | 93.60 | 93.78 | 92.72 |
Calculated composition (%): | |||||||
Digestible protein | 22.5 | 25.0 | 27.5 | 30.0 | 32.5 | 35.0 | 37.5 |
Digestible energy (kcal kg−1) | 3400 | 3400 | 3400 | 3400 | 3400 | 3400 | 3400 |
Starch | 37.08 | 30.13 | 24.79 | 24.56 | 22.63 | 8.59 | 14.05 |
Fat | 9.39 | 11.58 | 12.73 | 11.25 | 9.66 | 13.41 | 9.82 |
Neutral detergent fiber | 7.76 | 7.52 | 7.26 | 7.09 | 6.21 | 3.7 | 4.86 |
Acid detergent fiber | 2.28 | 2.51 | 2.64 | 2.56 | 2.19 | 1.55 | 1.9 |
DP Levels (g kg−1) | Class 1 (<11.4 μm2) | Class 2 (11.4–40.08 μm2) | Class 3 (40.08–230.18 μm2) | Class 4 (230.18–1133.73 μm2) | Class 5 (1133.73–11,777 μm2) |
---|---|---|---|---|---|
Cross-Sectional Area of White Muscle Cells (μm2) | |||||
225 | 6.49 | 33.71 | 188.34 | 967.29 | 9079.19 |
250 | 6.79 | 30.86 | 197.97 | 969.99 | 7935.07 |
275 | 7.26 | 33.11 | 193.13 | 1056.96 | 7159.36 |
300 | 6.84 | 31.36 | 191.17 | 968.77 | 7158.85 |
325 | 6.71 | 30.68 | 202.80 | 1039.74 | 6871.71 |
350 | 6.38 | 32.20 | 206.19 | 957.68 | 7576.19 |
375 | 6.90 | 31.77 | 185.66 | 1016.65 | 6812.05 |
SEM | 0.832 | 1.73 | 9.38 | 46.27 | 839.34 |
Linear effect | 0.968 | 0.491 | 0.679 | 0.623 | 0.055 |
Quadratic effect | 0.728 | 0.446 | 0.278 | 0.510 | 0.202 |
Number of white muscle cells | |||||
225 | 107.89 | 113.12 | 126.11 | 115.52 | 113.00 |
250 | 150.70 | 107.45 | 106.96 | 107.99 | 125.41 |
275 | 173.45 | 162.93 | 146.03 | 120.2 | 137.67 |
300 | 137.48 | 154.54 | 150.97 | 145.75 | 111.73 |
325 | 95.99 | 110.37 | 130.51 | 145.2 | 129.26 |
350 | 100.67 | 100.22 | 97.33 | 114.62 | 115.07 |
375 | 83.81 | 112.83 | 104.52 | 113.31 | 129.67 |
SEM | 51.58 | 28.07 | 23.25 | 18.38 | 11.24 |
Linear effect | 0.304 | 0.604 | 0.362 | 0.712 | 0.690 |
Quadratic effect | 0.338 | 0.179 | 0.142 | 0.120 | 0.703 |
DP Levels (g kg−1) | Total Proteins (mg mL−1) | Free Amino Acids (μmol g−1 tissue) | Ammonia (μmol g−1 tissue) |
---|---|---|---|
225 | 1.5118 | 12.80 | 0.0410 |
250 | 1.7081 | 14.31 | 0.0426 |
275 | 1.6769 | 14.44 | 0.0367 |
300 | 1.6203 | 15.20 | 0.0388 |
325 | 1.8568 | 16.17 | 0.0358 |
350 | 1.7570 | 15.07 | 0.0395 |
375 | 2.1293 | 15.59 | 0.0372 |
SEM | 0.1763 | 0.708 | 0.0029 |
Linear effect | 0.0138 | 0.0028 | 0.2161 |
Quadratic effect | 0.4488 | 0.1058 | 0.4758 |
DP Levels (g kg−1) | Glycogen (μmol g−1 tissue) | Glucose (μmol g−1 tissue) | Lactate (μmol g−1 tissue) | Fat (mg g−1 tissue) |
---|---|---|---|---|
225 | 8.98 | 0.3980 | 5.49 | 10.00 |
250 | 8.44 | 0.3407 | 6.08 | 8.403 |
275 | 7.25 | 0.3232 | 5.59 | 8.393 |
300 | 8.36 | 0.3945 | 6.11 | 9.164 |
325 | 7.39 | 0.3371 | 5.25 | 9.311 |
350 | 6.72 | 0.2648 | 5.25 | 10.950 |
375 | 7.32 | 0.313 | 6.66 | 9.572 |
SEM | 0.782 | 0.038 | 0.71 | 1.258 |
Linear effect | 0.0503 | 0.0574 | 0.6866 | 0.6511 |
Quadratic effect | 0.5664 | 0.9903 | 0.5651 | 0.3406 |
DP Levels (g kg−1) | TBARS (nmol MDA mg−1 protein) | Carbonylated Proteins (nmol Carbonyl mg−1 protein) |
---|---|---|
225 | 10.84 | 0.3808 |
250 | 6.54 | 0.3262 |
275 | 8.34 | 0.3905 |
300 | 11.59 | 0.3633 |
325 | 14.01 | 0.3911 |
350 | 13.31 | 0.4192 |
375 | 14.28 | 0.3943 |
SEM | 2.94 | 0.05 |
Linear effect | 0.0465 | 0.3965 |
Quadratic effect | 0.6344 | 0.8674 |
DP Levels (g kg−1) | SOD (IU SOD mg−1 protein) | GSH (μmol GSH mg−1 protein) | GST (μmol GS-DNB min−1 mg−1 protein) |
---|---|---|---|
225 | 9.85 | 0.0088 | 0.0865 |
250 | 9.87 | 0.0102 | 0.0826 |
275 | 10.31 | 0.0139 | 0.0803 |
300 | 10.22 | 0.0123 | 0.0900 |
325 | 9.09 | 0.0102 | 0.0832 |
350 | 9.06 | 0.0090 | 0.0449 |
375 | 9.67 | 0.0121 | 0.0495 |
SEM | 0.631 | 0.002 | 0.009 |
Linear effect | 0.3158 | 0.6899 | 0.0001 |
Quadratic effect | 0.8000 | 0.3147 | 0.0311 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leandro, S.V.; Ituassú, D.R.; Sinhorin, V.D.G.; Aguiar, D.H.; Moreira, P.S.A.; Ferneda, A.J.L.B.; Marques, S.A.D.; Sinhorin, A.P.; Corassa, A.; Ton, A.P.S.; et al. Effect of Dietary Digestible Protein Levels on Muscle Growth and Oxidative Stress in Amazonian Pintado (Pseudoplatystoma reticulatum × Leiarius marmoratus). Biology 2024, 13, 825. https://doi.org/10.3390/biology13100825
Leandro SV, Ituassú DR, Sinhorin VDG, Aguiar DH, Moreira PSA, Ferneda AJLB, Marques SAD, Sinhorin AP, Corassa A, Ton APS, et al. Effect of Dietary Digestible Protein Levels on Muscle Growth and Oxidative Stress in Amazonian Pintado (Pseudoplatystoma reticulatum × Leiarius marmoratus). Biology. 2024; 13(10):825. https://doi.org/10.3390/biology13100825
Chicago/Turabian StyleLeandro, Stephane Vasconcelos, Daniel Rabello Ituassú, Valéria Dornelles Gindri Sinhorin, Danilo Henrique Aguiar, Paula Sueli Andrade Moreira, Ana Julia Lopes Braga Ferneda, Soraia Andressa Dall’Agnol Marques, Adilson Paulo Sinhorin, Anderson Corassa, Ana Paula Silva Ton, and et al. 2024. "Effect of Dietary Digestible Protein Levels on Muscle Growth and Oxidative Stress in Amazonian Pintado (Pseudoplatystoma reticulatum × Leiarius marmoratus)" Biology 13, no. 10: 825. https://doi.org/10.3390/biology13100825
APA StyleLeandro, S. V., Ituassú, D. R., Sinhorin, V. D. G., Aguiar, D. H., Moreira, P. S. A., Ferneda, A. J. L. B., Marques, S. A. D., Sinhorin, A. P., Corassa, A., Ton, A. P. S., Freitas, L. W. d., & Sbardella, M. (2024). Effect of Dietary Digestible Protein Levels on Muscle Growth and Oxidative Stress in Amazonian Pintado (Pseudoplatystoma reticulatum × Leiarius marmoratus). Biology, 13(10), 825. https://doi.org/10.3390/biology13100825