Assessment of Prenatal Transportation Stress and Sex on Gene Expression Within the Amygdala of Brahman Calves
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Animal Handling
2.2. RNA Extraction
2.3. Library Preparation and Sequencing
2.4. Sequence Alignment and Differential Expression Analysis
2.5. Gene Enrichment Analysis
3. Results and Discussion
3.1. Sequencing and Mapping Quality
3.2. Outlier Analysis
3.3. Effect of Prenatal Stress Within Sex
3.4. Effect of Sex Within Treatment
3.5. Across Group Comparison
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Šimić, G.; Tkalčić, M.; Vukić, V.; Mulc, D.; Španić, E.; Šagud, M.; Olucha-Bordonau, F.E.; Vukšić, M.; Hof, P.R. Understanding emotions: Origins and roles of the amygdala. Biomolecules 2021, 11, 823. [Google Scholar] [CrossRef] [PubMed]
- Davis, M. Neurobiology of fear responses: The role of the amygdala. J. Neuropsychiatry Clin. Neurosci. 1997, 9, 382–402. [Google Scholar] [CrossRef] [PubMed]
- Maren, S.; Quirk, G.J. Neuronal signaling of fear memory. Nat. Rev. Neurosci. 2004, 5, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Dent, G.W.; O’Dell, D.M.; Eberwine, J.H. Gene expression profiling in the amygdala: An approach to examine the molecular substrates of mammalian behavior. Physiol. Behav. 2001, 73, 841–847. [Google Scholar] [CrossRef]
- Moonat, S.; Sakharkar, A.J.; Zhang, H.; Tang, L.; Pandey, S.C. Aberrant histone deacetylase2-mediated histone modifications and synaptic plasticity in the amygdala predisposes to anxiety and alcoholism. Biol. Psychiatry 2013, 73, 763–773. [Google Scholar] [CrossRef]
- Girgenti, M.J.; Duman, R.S. Transcriptome alterations in posttraumatic stress disorder. Biol. Psychiatry 2018, 83, 840–848. [Google Scholar] [CrossRef]
- Meadows, K.L.; Byrnes, E.M. Sex- and age-specific differences in relaxin family peptide receptor expression within the hippocampus and amygdala in rats. Neuroscience 2015, 284, 337–348. [Google Scholar] [CrossRef]
- Kigar, S.L.; Chang, L.; Hayne, M.R.; Karls, N.T.; Auger, A.P. Sex differences in Gadd45b expression and methylation in the developing rodent amygdala. Brain Res. 2016, 1642, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Kurian, J.R.; Forbes-Lorman, R.M.; Auger, A.P. Sex difference in MECP2 expression during a critical period of rat brain development. Epigenetics 2007, 2, 173–178. [Google Scholar] [CrossRef]
- Boersma, G.J.; Lee, R.S.; Cordner, Z.A.; Ewald, E.R.; Purcell, R.H.; Moghadam, A.A.; Tamashiro, K.L. Prenatal stress decreases BDNF expression and increases methylation of BDNF exon IV in rats. Epigenetics 2014, 9, 437–447. [Google Scholar] [CrossRef]
- Ehrlich, D.E.; Rainnie, D.G. Prenatal stress alters the development of socioemotional behavior and amygdala neuron excitability in rats. Neuropsychopharmacology 2015, 40, 2135–2145. [Google Scholar] [CrossRef] [PubMed]
- Rivet, T.R.; Lalonde, C.; Tai, T.C. Gene dysregulation in the adult rat paraventricular nucleus and amygdala by prenatal exposure to dexamethasone. Life 2022, 12, 1077. [Google Scholar] [CrossRef] [PubMed]
- Marchisella, F.; Creutzberg, K.C.; Begni, V.; Sanson, A.; Wearick-Silva, L.E.; Tractenberg, S.G.; Orso, R.; Kestering-Ferreira, É.; Grassi-Oliveira, R.; Riva, M.A. Exposure to prenatal stress is associated with an excitatory/inhibitory imbalance in rat prefrontal cortex and amygdala and an increased risk for emotional dysregulation. Front. Cell Dev. Biol. 2021, 9, 653384. [Google Scholar] [CrossRef] [PubMed]
- Brunton, P.J.; Russell, J.A. Prenatal social stress in the rat programmes neuroendocrine and behavioural responses to stress in the adult offspring: Sex-specific effects. J. Neuroendocrinol. 2010, 22, 258–271. [Google Scholar] [CrossRef]
- Brunton, P.J.; Donadio, M.V.F.; Russell, J.A. Sex differences in prenatally programmed anxiety behaviour in rats: Differential corticotropin-releasing hormone receptor mRNA expression in the amygdaloid complex. Stress 2011, 14, 634–643. [Google Scholar] [CrossRef]
- Lin, L.C.; Lewis, D.A.; Sibille, E. A human-mouse conserved sex bias in amygdala gene expression related to circadian clock and energy metabolism. Mol. Brain 2011, 4, 18. [Google Scholar] [CrossRef]
- Weidenfeld, J.; Itzik, A.; Goshen, I.; Yirmiya, R.; Ben-Hur, T. Role of the central amygdala in modulating the pituitary-adrenocortical and clinical responses in experimental Herpes Simplex Virus-1 encephalitis. Neuroendocrinology 2005, 81, 267–272. [Google Scholar] [CrossRef]
- Adkins, A.M.; Colby, E.M.; Kim, W.-K.; Wellman, L.L.; Sanford, L.D. Stressor control and regional inflammatory responses in the brain: Regulation by the basolateral amygdala. J. Neuroinflamm. 2023, 20, 128. [Google Scholar] [CrossRef]
- Baker, E.C.; Earnhardt, A.L.; Cilkiz, K.Z.; Collins, H.C.; Littlejohn, B.P.; Cardoso, R.C.; Ghaffari, N.; Long, C.R.; Riggs, P.K.; Randel, R.D.; et al. DNA methylation patterns and gene expression from amygdala tissue of mature Brahman cows exposed to prenatal stress. Front. Genet. 2022, 13, 949309. [Google Scholar] [CrossRef]
- Littlejohn, B.; Price, D.; Banta, J.; Lewis, A.; Neuendorff, D.; Carroll, J.; Vann, R.; Welsh, T., Jr.; Randel, R. Prenatal transportation stress alters temperament and serum cortisol concentrations in suckling Brahman calves. J. Anim. Sci. 2016, 94, 602–609. [Google Scholar] [CrossRef]
- FASS. Guide for Care and Use of Agricultural Animals in Research and Teaching, 3rd ed.; Federation of Animal Science Societies: Champaign, IL, USA, 2010. [Google Scholar]
- Lay, D., Jr.; Randel, R.; Friend, T.; Jenkins, O.; Neuendorff, D.; Bushong, D.; Lanier, E.; Bjorge, M. Effects of prenatal stress on suckling calves. J. Anim. Sci. 1997, 75, 3143–3151. [Google Scholar] [CrossRef] [PubMed]
- Price, D.M.; Lewis, A.W.; Neuendorff, D.A.; Carroll, J.A.; Burdick Sanchez, N.C.; Vann, R.C.; Welsh, T.H., Jr.; Randel, R.D. Physiological and metabolic responses of gestating Brahman cows to repeated transportation. J. Anim. Sci. 2015, 93, 737–745. [Google Scholar] [CrossRef]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Rosen, B.D.; Bickhart, D.M.; Schnabel, R.D.; Koren, S.; Elsik, C.G.; Tseng, E.; Rowan, T.N.; Low, W.Y.; Zimin, A.; Couldrey, C.; et al. De novo assembly of the cattle reference genome with single-molecule sequencing. GigaScience 2020, 9, giaa021. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, B.; Wang, T.; Bonni, A.; Zhao, G. Robust principal component analysis for accurate outlier sample detection in RNA-Seq data. BMC Bioinform. 2020, 21, 269. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Bu, D.; Luo, H.; Huo, P.; Wang, Z.; Zhang, S.; He, Z.; Wu, Y.; Zhao, L.; Liu, J.; Guo, J.; et al. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic. Acids Res. 2021, 49, W317–W325. [Google Scholar] [CrossRef]
- Ehrlich, D.E.; Neigh, G.N.; Bourke, C.H.; Nemeth, C.L.; Hazra, R.; Ryan, S.J.; Rowson, S.; Jairam, N.; Sholar, C.R.; Rainnie, D.G.; et al. Prenatal stress, regardless of concurrent escitalopram treatment, alters behavior and amygdala gene expression of adolescent female rats. Neuropharmacology 2015, 97, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Zohar, I.; Weinstock, M. Differential effect of prenatal stress on the expression of cortiocotrophin-releasing hormone and its receptors in the hypothalamus and amygdala in male and female Rats. J. Neuroendocr. 2011, 23, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Nolvi, S.; Merz, E.C.; Kataja, E.-L.; Parsons, C.E. Prenatal stress and the developing brain: Postnatal environments promoting resilience. Biol. Psychiatry 2023, 93, 942–952. [Google Scholar] [CrossRef] [PubMed]
- Bronson, S.L.; Bale, T.L. The placenta as a mediator of stress effects on neurodevelopmental reprogramming. Neuropsych. Pharmacol. 2016, 41, 207–218. [Google Scholar] [CrossRef]
- Johnson, B.V.; Kumar, R.; Oishi, S.; Alexander, S.; Kasherman, M.; Vega, M.S.; Ivancevic, A.; Gardner, A.; Domingo, D.; Corbett, M. Partial loss of USP9X function leads to a male neurodevelopmental and behavioral disorder converging on transforming growth factor β signaling. Biol. Psychiatry 2020, 87, 100–112. [Google Scholar] [CrossRef]
- Jolly, L.A.; Parnell, E.; Gardner, A.E.; Corbett, M.A.; Pérez-Jurado, L.A.; Shaw, M.; Lesca, G.; Keegan, C.; Schneider, M.C.; Griffin, E.; et al. Missense variant contribution to USP9X-female syndrome. npj Genom. Med. 2020, 5, 53. [Google Scholar] [CrossRef]
- Xu, J.; Taya, S.; Kaibuchi, K.; Arnold, A.P. Sexually dimorphic expression of Usp9x is related to sex chromosome complement in adult mouse brain. Eur. J. Neurosci. 2005, 21, 3017–3022. [Google Scholar] [CrossRef]
- Xu, J.; Watkins, R.; Arnold, A.P. Sexually dimorphic expression of the X-linked gene Eif2s3x mRNA but not protein in mousebrain. Gene Expr. Patterns 2006, 6, 146–155. [Google Scholar] [CrossRef]
- Reijnders, M.R.; Zachariadis, V.; Latour, B.; Jolly, L.; Mancini, G.M.; Pfundt, R.; Wu, K.M.; van Ravenswaaij-Arts, C.M.; Veenstra-Knol, H.E.; Anderlid, B.-M.M. De novo loss-of-function mutations in USP9X cause a female-specific recognizable syndrome with developmental delay and congenital malformations. Am. J. Hum. Genet. 2016, 98, 373–381. [Google Scholar] [CrossRef]
- Vanselow, S.; Neumann-Arnold, L.; Wojciech-Moock, F.; Seufert, W. Stepwise assembly of the eukaryotic translation initiation factor 2 complex. J. Biol. Chem. 2022, 298, 101583. [Google Scholar] [CrossRef]
- Ehrmann, I.E.; Ellis, P.S.; Mazeyrat, S.; Duthie, S.; Brockdorff, N.; Mattei, M.G.; Gavin, M.A.; Affara, N.A.; Brown, G.M.; Simpson, E. Characterization of genes encoding translation initiation factor eIF-2γ in mouse and human: Sex chromosome localization, escape from X-inactivation and evolution. Hum. Mol. Genet. 1998, 7, 1725–1737. [Google Scholar] [CrossRef] [PubMed]
- Farber, M.J.; Rizaldy, R.; Hildebrand, J.D. Shroom2 regulates contractility to control endothelial morphogenesis. Mol. Biol. Cell 2011, 22, 795–805. [Google Scholar] [CrossRef] [PubMed]
- Isensee, J.; Witt, H.; Pregla, R.; Hetzer, R.; Regitz-Zagrosek, V.; Ruiz Noppinger, P. Sexually dimorphic gene expression in the heart of mice and men. J. Mol. Med. 2008, 86, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Takla, T.N.; Luo, J.; Sudyk, R.; Huang, J.; Walker, J.C.; Vora, N.L.; Sexton, J.Z.; Parent, J.M.; Tidball, A.M. A shared pathogenic mechanism for valproic acid and shroom3 knockout in a brain organoid model of neural tube defects. Cells 2023, 12, 1697. [Google Scholar] [CrossRef] [PubMed]
- Ben Zablah, Y.; Merovitch, N.; Jia, Z. The role of ADF/Cofilin in synaptic physiology and Alzheimer’s disease. Front. Cell Dev. Biol. 2020, 8, 594998. [Google Scholar] [CrossRef]
- Tada, H.; Miyazaki, T.; Takemoto, K.; Jitsuki, S.; Nakajima, W.; Koide, M.; Yamamoto, N.; Taguchi, A.; Kawai, H.; Komiya, K. Social isolation suppresses actin dynamics and synaptic plasticity through ADF/cofilin inactivation in the developing rat barrel cortex. Sci. Rep. 2017, 7, 8471. [Google Scholar] [CrossRef]
- Munsie, L.N.; Desmond, C.R.; Truant, R. Cofilin nuclear–cytoplasmic shuttling affects cofilin–actin rod formation during stress. J. Cell Sci. 2012, 125, 3977–3988. [Google Scholar] [CrossRef]
- Keever, M.R.; Zhang, P.; Bolt, C.R.; Antonson, A.M.; Rymut, H.E.; Caputo, M.P.; Houser, A.K.; Hernandez, A.G.; Southey, B.R.; Rund, L.A.; et al. Lasting and sex-dependent impact of maternal immune activation on molecular pathways of the amygdala. Front. Neurosci. 2020, 14, 774. [Google Scholar] [CrossRef]
- Chun, L.E.; Woodruff, E.R.; Morton, S.; Hinds, L.R.; Spencer, R.L. Variations in phase and amplitude of rhythmic clock gene expression across prefrontal cortex, hippocampus, amygdala, and hypothalamic paraventricular and suprachiasmatic nuclei of male and female rats. J. Biol. Rhythm. 2015, 30, 417–436. [Google Scholar] [CrossRef]
- Prager, G.; Hadamitzky, M.; Engler, A.; Doenlen, R.; Wirth, T.; Pacheco-López, G.; Krügel, U.; Schedlowski, M.; Engler, H. Amygdaloid signature of peripheral immune activation by bacterial lipopolysaccharide or Staphylococcal enterotoxin B. J. Neuroimmune Pharmacol. 2013, 8, 42–50. [Google Scholar] [CrossRef]
- Carroll, J.A.; Burdick Sanchez, N.C.; Hulbert, L.E.; Ballou, M.A.; Dailey, J.W.; Caldwell, L.C.; Vann, R.C.; Welsh, T.H.; Randel, R.D. Sexually dimorphic innate immunological responses of pre-pubertal Brahman cattle following an intravenous lipopolysaccharide challenge. Vet. Immunol. Immunopathol. 2015, 166, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Burdick Sanchez, N.C.; Broadway, P.R.; Carroll, J.A. Sexual dimorphic innate immune response to a viral-bacterial respiratory disease challenge in beef calves. Vet. Sci. 2022, 9, 696. [Google Scholar] [CrossRef] [PubMed]
- Roussel, S.; Hemsworth, P.; Boissy, A.; Duvaux-Ponter, C. Effects of repeated stress during pregnancy in ewes on the behavioural and physiological responses to stressful events and birth weight of their offspring. Appl. Anim. Behav. Sci. 2004, 85, 259–276. [Google Scholar] [CrossRef]
- Rutherford, K.M.; Piastowska-Ciesielska, A.; Donald, R.D.; Robson, S.K.; Ison, S.H.; Jarvis, S.; Brunton, P.J.; Russell, J.A.; Lawrence, A.B. Prenatal stress produces anxiety prone female offspring and impaired maternal behaviour in the domestic pig. Physiol. Behav. 2014, 129, 255–264. [Google Scholar] [CrossRef]
- Jones, S.L.; Dufoix, R.; Laplante, D.P.; Elgbeili, G.; Patel, R.; Chakravarty, M.M.; King, S.; Pruessner, J.C. Larger amygdala volume mediates the association between prenatal maternal stress and higher levels of externalizing behaviors: Sex specific effects in project ice storm. Front. Hum. Neurosci. 2019, 13, 144. [Google Scholar] [CrossRef] [PubMed]
- Scheinost, D.; Kwon, S.H.; Lacadie, C.; Sze, G.; Sinha, R.; Constable, R.T.; Ment, L.R. Prenatal stress alters amygdala functional connectivity in preterm neonates. Neuroimage Clin. 2016, 12, 381–388. [Google Scholar] [CrossRef]
- Ehrlich, D.E.; Ryan, S.J.; Hazra, R.; Guo, J.-D.; Rainnie, D.G. Postnatal maturation of GABAergic transmission in the rat basolateral amygdala. J. Neurophysiol. 2013, 110, 926–941. [Google Scholar] [CrossRef]
- Humphreys, K.L.; Camacho, M.; Roth, M.C.; Estes, E.C. Prenatal stress exposure and multimodal assessment of amygdala–medial prefrontal cortex connectivity in infants. Dev. Cogn. Neurosci. 2020, 46, 100877. [Google Scholar] [CrossRef]
- Littlejohn, B.P.; Burdick Sanchez, N.C.; Carroll, J.A.; Price, D.M.; Vann, R.C.; Welsh, T.H., Jr.; Randel, R.D. Influence of prenatal transportation stress on innate immune response to an endotoxin challenge in weaned Brahman bull calves. Stress 2019, 22, 236–247. [Google Scholar] [CrossRef]
- Lehtola, S.J.; Tuulari, J.J.; Scheinin, N.M.; Karlsson, L.; Parkkola, R.; Merisaari, H.; Lewis, J.D.; Fonov, V.S.; Louis Collins, D.; Evans, A.; et al. Newborn amygdalar volumes are associated with maternal prenatal psychological distress in a sex-dependent way. Neuroimage Clin. 2020, 28, 102380. [Google Scholar] [CrossRef]
- Mareckova, K.; Miles, A.; Liao, Z.; Andryskova, L.; Brazdil, M.; Paus, T.; Nikolova, Y.S. Prenatal stress and its association with amygdala-related structural covariance patterns in youth. Neuroimage Clin. 2022, 34, 102976. [Google Scholar] [CrossRef] [PubMed]
- Hamann, S. Sex differences in the responses of the human amygdala. Neuroscientist 2005, 11, 288–293. [Google Scholar] [CrossRef] [PubMed]
- Peel, D.S. The effect of market forces on bovine respiratory disease. Vet. Clin. Food Anim. Pract. 2020, 36, 497–508. [Google Scholar] [CrossRef] [PubMed]
Comparison | All Samples | Visual Outlier Removal | PCAGrid Outlier Removal | PCAHubert Outlier Removal |
---|---|---|---|---|
PNS 1 vs. control females | 134 | 0 | 0 | 0 |
PNS vs. control males | 2 | 1 | 0 | 0 |
Males vs. females control | 8 | 7 | 7 | 12 |
Males vs. females PNS | 138 | 9 | 10 | 10 |
Males vs. females | 48 | 40 | 58 | 73 |
PNS vs. control | 6 | 0 | 2 | 2 |
Gene Name | Chromosome | LogFC 1 | FDR |
---|---|---|---|
shroom family member 2 * | X | 0.699 | 1.16 × 10−4 |
FKBP prolyl isomerase family member 6 | 25 | 3.365 | 1.92 × 10−4 |
mitotic arrest deficient 2-like 1 | NKLS02000723.1 | −1.456 | 5.08 × 10−4 |
eukaryotic translation initiation factor 2 subunit gamma * | X | −0.466 | 0.016 |
interferon-induced protein 44-like | 3 | −2.403 | 0.147 |
interferon-induced protein with tetratricopeptide repeats 1 | 26 | −3.373 | 0.194 |
MX dynamin like GTPase 2 | 1 | −2.874 | 0.194 |
Gene Name | Chromosome | LogFC 1 | FDR |
---|---|---|---|
shroom family member 2 * | X | 0.911 | 2.43 × 10−10 |
eukaryotic translation initiation factor 2 subunit gamma * | X | −0.494 | 6.17 × 10−4 |
ubiquitin specific peptidase 9 x-linked | X | −0.360 | 8.68 × 10−4 |
ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 3 | 19 | −0.794 | 0.021 |
glypican 3 | X | 1.35 | 0.085 |
fez family zinc finger 2 | 22 | −0.662 | 0.093 |
ENSBTAG00000051077 | X | −4.562 | 0.093 |
arylsulfatase l | X | 0.967 | 0.152 |
matrix remodeling-associated 5 | X | 0.893 | 0.152 |
mitotic arrest deficient 2-like 1 | NKLS02000723.1 | −1.01 | 0.168 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baker, E.C.; Riley, D.G.; Cardoso, R.C.; Hairgrove, T.B.; Long, C.R.; Randel, R.D.; Welsh, T.H., Jr. Assessment of Prenatal Transportation Stress and Sex on Gene Expression Within the Amygdala of Brahman Calves. Biology 2024, 13, 915. https://doi.org/10.3390/biology13110915
Baker EC, Riley DG, Cardoso RC, Hairgrove TB, Long CR, Randel RD, Welsh TH Jr. Assessment of Prenatal Transportation Stress and Sex on Gene Expression Within the Amygdala of Brahman Calves. Biology. 2024; 13(11):915. https://doi.org/10.3390/biology13110915
Chicago/Turabian StyleBaker, Emilie C., David G. Riley, Rodolfo C. Cardoso, Thomas B. Hairgrove, Charles R. Long, Ronald D. Randel, and Thomas H. Welsh, Jr. 2024. "Assessment of Prenatal Transportation Stress and Sex on Gene Expression Within the Amygdala of Brahman Calves" Biology 13, no. 11: 915. https://doi.org/10.3390/biology13110915
APA StyleBaker, E. C., Riley, D. G., Cardoso, R. C., Hairgrove, T. B., Long, C. R., Randel, R. D., & Welsh, T. H., Jr. (2024). Assessment of Prenatal Transportation Stress and Sex on Gene Expression Within the Amygdala of Brahman Calves. Biology, 13(11), 915. https://doi.org/10.3390/biology13110915