Streptococcus agalactiae Infection in Nile Tilapia (Oreochromis niloticus): A Review
Simple Summary
Abstract
1. Introduction
2. Transmission and Sources of Infection
3. Risk Factors Influencing GBS Infection
4. Pathogenesis
5. Virulence Factors of GBS
5.1. Capsular Polysaccharides (CPSs)
5.2. HylB Gene
5.3. Cel-EIIB
5.4. Cellobiose-PTS (Cel-PTS)
5.5. Quorum Sensing (QS) System
5.6. Biofilm Formation
6. Methods of Diagnosis
7. Treatment
8. Prevention and Control
9. Limitations of Current Studies and Future Research Directions
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trewavas, E. Tilapiine Fishes of the Genera Sarotherodon, Oreochromis and Danakilia; British Museum (Natural History): London, UK, 1983. [Google Scholar]
- FAO. World Review of Fisheries and Aquaculture; FAO: Rome, Italy, 2010. [Google Scholar]
- FAO. World Aquaculture Production by Species Group; FAO: Rome, Italy, 2010. [Google Scholar]
- Beveridge, M.C.M.; McAndrew, B.J. Tilapias: Biology and Exploitation, 1st ed.; Fish & Fisheries Series; Springer Science & Business Media: Dordrecht, The Netherlands, 2012; p. 508. [Google Scholar] [CrossRef]
- Lacerda, S.; Batlouni, S.; Silva, S.; Homem, C.; França, L. Germ cells transplantation in fish: The Nile tilapia model. Anim. Reprod. 2018, 3, 146–159. [Google Scholar]
- Nandlal, S.; Pickering, T. Tilapia fish farming in Pacific Island countries. In Tilapia Hatchery Operation; Secretariat of the Pacific Community: Noumea, New Caledonia, 2004; Volume 10, pp. 190–203. [Google Scholar]
- Klesius, P.; Shoemaker, C.; Evans, J. Streptococcus: A worldwide fish health problem. In Proceedings of the 8th International Symposium on Tilapia in Aquaculture, Cairo, Egypt, 12–14 October 2008; pp. 83–107. [Google Scholar]
- Amal, M.; Zamri-Saad, M. Streptococcosis in tilapia (Oreochromis niloticus): A review. Pertanika J. Trop. Agric. Sci. 2011, 34, 195–206. [Google Scholar]
- Abdallah, E.S.H.; Al Tayip, A.M.; Nasr, S.K.A.E.; Sayed, G.M.; Elkamel, A.A.E. Acanthogyrus tilapiae Infections in Wild and Cultured Nile tilapia Oreochromis niloticus. Assiut Vet. Med. J. 2017, 63, 44–50. [Google Scholar]
- Hassan, E.S.; Mahmoud, M.M.; Metwally, A.M.; Moktar, D.M. Lamproglena monodi (Copepoda: Lernaeidae), infesting gills of Oreochromis niloticus and Tilapia zillii. Glob. J. Fish Aquac. Res. 2013, 6, 1–16. [Google Scholar]
- Romeih, N.; Abdallah, E.S.H.; Mahmoud, M.M.; Elkamel, A.A.; Fouad, A. Expression profile of tumor necrosis factor alpha during spring viremia of carp virus infection in Nile tilapia. Assiut Vet. Med. J. 2023, 69, 122–131. [Google Scholar] [CrossRef]
- Whiley, R.A.; Kilian, M. International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of staphylococci and streptococci. Int. J. Syst. Evol. Microbiol. 2003, 53, 915–917. [Google Scholar] [CrossRef]
- Vendrell, D.; Balcázar, J.L.; Ruiz-Zarzuela, I.; De Blas, I.; Gironés, O.; Múzquiz, J.L. Lactococcus garvieae in fish: A review. Comp. Immunol. Microbiol. Infect. Dis. 2006, 29, 177–198. [Google Scholar] [CrossRef]
- Woo, P.; Bruno, D. Diseases and Disorders of Finfish in Cage Culture, 2nd ed.; CABI: Wallingford, UK, 2014. [Google Scholar]
- Toranzo, A.E.; Magariños, B.; Romalde, J.L. A review of the main bacterial fish diseases in mariculture systems. Aquaculture 2005, 246, 37–61. [Google Scholar] [CrossRef]
- Ghittino, C.; Latini, M.; Agnetti, F.; Panzieri, C.; Lauro, L.; Ciappelloni, R.; Petracca, G. Emerging pathologies in aquaculture: Effects on production and food safety. Vet. Res. Commun. 2003, 27, 471–479. [Google Scholar] [CrossRef]
- Evans, J.J.; Klesius, P.; Gilbert, P.; Shoemaker, C.; Al Sarawi, M.; Landsberg, J.; Duremdez, R.; Al Marzouk, A.; Al Zenki, S. Characterization of β-haemolytic Group B Streptococcus agalactiae in cultured seabream, Sparus auratus L., and wild mullet, Liza klunzingeri (Day), in Kuwait. J. Fish Dis. 2002, 25, 505–513. [Google Scholar] [CrossRef]
- Lancefield, R.C. A serological differentiation of specific types of bovine hemolytic streptococci (group B). J. Exp. Med. 1934, 59, 441. [Google Scholar] [CrossRef] [PubMed]
- Slotved, H.; Kong, F.; Lambertsen, L.; Sauer, S.; Gilbert, G. A proposed new Streptococcus agalactiae serotype, serotype IX. J. Clin. Microbiol. 2007, 45, 2929–2936. [Google Scholar] [CrossRef] [PubMed]
- Gherardi, G.; Imperi, M.; Baldassarri, L.; Pataracchia, M.; Alfarone, G.; Recchia, S.; Orefici, G.; Dicuonzo, G.; Creti, R. Molecular epidemiology and distribution of serotypes, surface proteins, and antibiotic resistance among group B streptococci in Italy. J. Clin. Microbiol. 2007, 45, 2909–2916. [Google Scholar] [CrossRef] [PubMed]
- Nizet, V. Streptococcal β-hemolysins: Genetics and role in disease pathogenesis. Trends Microbiol. 2002, 10, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Vos, P.; Garrity, G.; Jones, D.; Krieg, N.R.; Ludwig, W.; Rainey, F.A.; Schleifer, K.-H.; Whitman, W.B. Bergey’s Manual of Systematic Bacteriology: Volume 3: The Firmicutes; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; Volume 3. [Google Scholar]
- Evans, J.J.; Bohnsack, J.F.; Klesius, P.H.; Whiting, A.A.; Garcia, J.C.; Shoemaker, C.A.; Takahashi, S. Phylogenetic relationships among Streptococcus agalactiae isolated from piscine, dolphin, bovine and human sources: A dolphin and piscine lineage associated with a fish epidemic in Kuwait is also associated with human neonatal infections in Japan. J. Med. Microbiol. 2008, 57, 1369–1376. [Google Scholar] [CrossRef]
- Evans, J.J.; Pasnik, D.J.; Klesius, P.H. Differential pathogenicity of five Streptococcus agalactiae isolates of diverse geographic origin in Nile tilapia (Oreochromis niloticus L.). Aquac. Res. 2015, 46, 2374–2381. [Google Scholar] [CrossRef]
- Abdallah, E.S.H.; Metwally, W.G.M.; Bayoumi, S.A.L.H.; Abdel Rahman, M.A.M.; Mahmoud, M.M. Isolation and characterization of Streptococcus agalactiae inducing mass mortalities in cultured Nile tilapia (Oreochromis niloticus) with trials for disease control using zinc oxide nanoparticles and ethanolic leaf extracts of some medicinal plants. BMC Vet. Res. 2024, 20, 468. [Google Scholar] [CrossRef]
- Rahman, M.M.; Rahman, M.A.; Monir, M.S.; Haque, M.E.; Siddique, M.P.; Khasruzzaman, A.K.M.; Rahman, M.T.; Islam, M.A. Isolation and molecular detection of Streptococcus agalactiae from popped eye disease of cultured Tilapia and Vietnamese koi fishes in Bangladesh. J. Adv. Vet. Anim. Res. 2021, 8, 14–23. [Google Scholar] [CrossRef]
- Mian, G.; Godoy, D.; Leal, C.; Yuhara, T.; Costa, G.; Figueiredo, H. Aspects of the natural history and virulence of S. agalactiae infection in Nile tilapia. Vet. Microbiol. 2009, 136, 180–183. [Google Scholar] [CrossRef]
- Areechon, N.; Kannika, K.; Hirono, I.; Kondo, H.; Unajak, S. Draft genome sequences of Streptococcus agalactiae serotype Ia and III isolates from tilapia farms in Thailand. Genome Announc. 2016, 4, e00122-16. [Google Scholar] [CrossRef]
- Figueiredo, H.; Carneiro, D.; Faria, F.; Costa, G. Streptococcus agalactie associated to meningoencefalitis and systemic infection from tilapia (Oreochromis niloticus) in Brazil. Arq. Bras. Med. Vet. Zootec. 2006, 58, 678–680. [Google Scholar] [CrossRef]
- Zhu, J.; Fu, Q.; Ao, Q.; Tan, Y.; Luo, Y.; Jiang, H.; Li, C.; Gan, X. Transcriptomic profiling analysis of tilapia (Oreochromis niloticus) following Streptococcus agalactiae challenge. Fish Shellfish. Immunol. 2017, 62, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Zhang, Z.; Li, Y.; Hu, M.; Yu, A.; Zhang, H.; Lan, J.; Zhang, Z.; Yan, Y.; Lin, L. Epidemic and antibiotic resistance of Streptococcus agalactiae isolated from tilapia (GIFT Oreochromis niloticus) in Guangdong Province. J. Fish China 2016, 40, 503–511. [Google Scholar]
- Mishra, A.; Nam, G.-H.; Gim, J.-A.; Lee, H.-E.; Jo, A.; Kim, H.-S. Current challenges of Streptococcus infection and effective molecular, cellular, and environmental control methods in aquaculture. Mol. Cells 2018, 41, 495–505. [Google Scholar] [PubMed]
- Laith, A.A.; Ambak, M.A.; Hassan, M.; Sheriff, S.M.; Nadirah, M.; Draman, A.S.; Wahab, W.; Ibrahim, W.N.; Aznan, A.S.; Jabar, A.; et al. Molecular identification and histopathological study of natural Streptococcus agalactiae infection in hybrid tilapia (Oreochromis niloticus). Vet. World 2017, 10, 101–111. [Google Scholar] [CrossRef]
- Natália Amoroso, F.; Leonardo Mantovani, F.; Facimoto, C.T.; Alais Maria Dall, A.; Gaeta, M.L.; Thalita Evani Silva de, O.; Daniela Dib, G.; Lopera-Barrero, N.M.; Ulisses de Pádua, P.; Giovana Wingeter Di, S. Clinical and Histopathological Evolution of Acute Intraperitoneal Infection by Streptococcus agalactiae Serotypes Ib and III in Nile Tilapia. Fishes 2024, 9, 279. [Google Scholar] [CrossRef]
- Ye, X.; Li, J.; Lu, M.; Deng, G.; Jiang, X.; Tian, Y.; Quan, Y.; Jian, Q. Identification and molecular typing of Streptococcus agalactiae isolated from pond-cultured tilapia in China. Fish Sci. 2011, 77, 623–632. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, J.; Chen, K.; Gao, T.; Yao, H.; Liu, Y.; Zhang, W.; Lu, C. Development of Streptococcus agalactiae vaccines for tilapia. Dis. Aquat. Org. 2016, 122, 163–170. [Google Scholar] [CrossRef]
- Chen, M.; Li, L.-P.; Wang, R.; Liang, W.-W.; Huang, Y.; Li, J.; Lei, A.-Y.; Huang, W.-Y.; Gan, X. PCR detection and PFGE genotype analyses of streptococcal clinical isolates from tilapia in China. Vet. Microbiol. 2012, 159, 526–530. [Google Scholar] [CrossRef]
- Sudpraseart, C.; Wang, P.-C.; Chen, S.-C. Phenotype, genotype and pathogenicity of Streptococcus agalactiae isolated from cultured tilapia (Oreochromis spp.) in Taiwan. J. Fish Dis. 2021, 44, 747–756. [Google Scholar] [CrossRef]
- Preenanka, R.; Safeena, M.P.; Vidhya, B.; Sumithra, T.G. Impact of salinity on Streptococcus agalactiae and health parameters of Oreochromis niloticus during streptococcosis outbreaks. Microbe 2024, 5, 100167. [Google Scholar] [CrossRef]
- Bowater, R.O.; Forbes-Faulkner, J.; Anderson, I.G.; Condon, K.; Robinson, B.; Kong, F.; Gilbert, G.L.; Reynolds, A.; Hyland, S.; McPherson, G.; et al. Natural outbreak of Streptococcus agalactiae (GBS) infection in wild giant Queensland grouper, Epinephelus lanceolatus (Bloch), and other wild fish in northern Queensland, Australia. J. Fish Dis. 2012, 35, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Soto, E.; Wang, R.; Wiles, J.; Baumgartner, W.; Green, C.; Plumb, J.; Hawke, J. Characterization of isolates of Streptococcus agalactiae from diseased farmed and wild marine fish from the US Gulf Coast, Latin America, and Thailand. J. Aquat. Anim. Health 2015, 27, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Iregui, C.; Comas, J.; Vásquez, G.; Verjan, N. Experimental early pathogenesis of Streptococcus agalactiae infection in red tilapia Oreochromis spp. J. Fish Dis. 2016, 39, 205–215. [Google Scholar] [CrossRef]
- Kayansamruaj, P.; Pirarat, N.; Hirono, I.; Rodkhum, C. Increasing of temperature induces pathogenicity of Streptococcus agalactiae and the up-regulation of inflammatory related genes in infected Nile tilapia (Oreochromis niloticus). Vet. Microbiol. 2014, 172, 265–271. [Google Scholar] [CrossRef]
- Li, L.; Wang, R.; Liang, W.; Gan, X.; Huang, T.; Huang, Y.; Li, J.; Shi, Y.; Chen, M.; Luo, H. Rare serotype occurrence and PFGE genotype diversity of streptococcus agalactiae isolated from tilapia in china. Vet. Microbiol. 2013, 167, 719–724. [Google Scholar] [CrossRef]
- Li, Y.; Liu, L.; Huang, P.; Fang, W.; Luo, Z.; Peng, H.; Wang, Y.; Li, A. Chronic streptococcosis in Nile tilapia, Oreochromis niloticus (L.), caused by Streptococcus agalactiae. J. Fish Dis. 2014, 37, 757–763. [Google Scholar] [CrossRef]
- Liu, G.; Zhang, W.; Lu, C. Comparative genomics analysis of Streptococcus agalactiae reveals that isolates from culturesd tilapia in china are closely related to human strains A909 in China are closely related to the human strain A909. BMC Genom. 2013, 17, 775. [Google Scholar]
- Pasnik, D.J.; Evans, J.J.; Klesius, P.H. Fecal strings associated with Streptococcus agalactiae infection in Nile tilapia, Oreochromis niloticus. Open Vet. Sci. J. 2009, 3, 6–8. [Google Scholar] [CrossRef]
- Pretto-Giordano, L.G.; Müller, E.E.; Freitas, J.C.d.; Silva, V.G.d. Evaluation on the Pathogenesis of Streptococcus agalactiae in Nile Tilapia (Oreochromis niloticus). Braz. Arch. Biol. Technol. 2010, 53, 87–92. [Google Scholar] [CrossRef]
- Rodkhum, C.; Kayansamruaj, P.; Pirarat, N. Effect of water temperature on susceptibility to Streptococcus agalactiae serotype Ia infection in Nile tilapia (Oreochromis niloticus). Thai J. Vet. Med. 2011, 41, 309–314. [Google Scholar] [CrossRef]
- Duremdez, R.; Al-Marzouk, A.; Qasem, J.; Al-Harbi, A.; Gharabally, H. Isolation of Streptococcus agalactiae from cultured silver pomfret, Pampus argenteus (Euphrasen), in Kuwait. J. Fish Dis. 2004, 27, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Delannoy, C.M.J.; Crumlish, M.; Fontaine, M.C.; Pollock, J.; Foster, G.; Dagleish, M.P.; Turnbull, J.F.; Zadoks, R.N. Human Streptococcus agalactiae strains in aquatic mammals and fish. BMC Microbiol. 2013, 13, 41. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ke, X.; Liu, L.; Lu, M.; Shi, C.; Liu, Z. Streptococcus agalactiae from tilapia (Oreochromis sp.) transmitted to a new host, bighead carp (Aristichthys nobilis), in China. Aquac. Int. 2018, 26, 885–897. [Google Scholar] [CrossRef]
- Geng, Y.; Wang, K.; Huang, X.; Chen, D.; Li, C.; Ren, S.; Liao, Y.; Zhou, Z.; Liu, Q.; Du, Z. Streptococcus agalactiae, an emerging pathogen for cultured ya-fish, Schizothorax prenanti, in China. Transbound. Emerg. Dis. 2012, 59, 369–375. [Google Scholar] [CrossRef]
- Salvador, R.; Muller, E.E.; Freitas, J.C.d.; Leonhadt, J.H.; Pretto-Giordano, L.G.; Dias, J.A. Isolation and characterization of Streptococcus spp. group B in Nile tilapias (Oreochromis niloticus) reared in hapas nets and earth nurseries in the northern region of Parana State, Brazil. Ciênc. Rural. 2005, 35, 1374–1378. [Google Scholar] [CrossRef]
- Suanyuk, N.; Kong, F.; Ko, D.; Gilbert, G.L.; Supamattaya, k. Streptococcus agalactiae in cultured red tilapia Oreochromis sp. and Nile tilapia O. niloticus in Thailand-Relationship to human isolates. Aquaculture 2008, 284, 35–40. [Google Scholar] [CrossRef]
- Amal, M.N.; Zamri-Saad, M.; Iftikhar, A.R.; Siti-Zahrah, A.; Aziel, S.; Fahmi, S. An outbreak of Streptococcus agalactiae infection in cage-cultured golden pompano, Trachinotus blochii (Lacépède), in Malaysia. J. Fish Dis. 2012, 35, 849–852. [Google Scholar] [CrossRef]
- Amal, M.N.A.; Saad, M.Z.; Zahrah, A.S.; Zulkafli, A.R. Water quality influences the presence of Streptococcus agalactiae in cage cultured red hybrid tilapia, Oreochromis niloticus × Oreochromis mossambicus. Aquac. Res. 2015, 46, 313–323. [Google Scholar] [CrossRef]
- Barato, P.; Martins, E.R.; Melo-Cristino, J.; Iregui, C.; Ramirez, M. Persistence of a single clone of Streptococcus agalactiae causing disease in tilapia (Oreochromis sp.) cultured in Colombia over 8 years. J. Fish Dis. 2015, 38, 1083–1087. [Google Scholar] [CrossRef]
- Al-Harbi, A.H. Phenotypic and genotypic characterization of Streptococcus agalactiae isolated from hybrid tilapia (Oreochromis niloticus × O. aureus). Aquaculture 2016, 464, 515–520. [Google Scholar] [CrossRef]
- Suhermanto, A.; Sukenda, S.; Zairin Jr, M.; Lusiastuti, A.M.; Nuryati, S. Characterization of Streptococcus agalactiae bacterium isolated from tilapia (Oreochromis niloticus) culture in Indonesia. Aquacult. Aquar. Conserv. Legis. 2019, 12, 756–766. [Google Scholar]
- Plumb, J.A.; Hanson, L.A. Health Maintenance and Principal Microbial Diseases of Cultured Fishes; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Woo, P.T.; Cipriano, R.C. Fish Viruses and Bacteria: Pathobiology and Protection; CABI: Wallingford, UK, 2017. [Google Scholar]
- Tavares, G.C.; de Alcântara Costa, F.A.; Santos, R.R.D.; Barony, G.M.; Leal, C.A.G.; Figueiredo, H.C.P. Nonlethal sampling methods for diagnosis of Streptococcus agalactiae infection in Nile tilapia, Oreochromis niloticus (L.). Aquaculture 2016, 454, 237–242. [Google Scholar] [CrossRef]
- Al-Marzouk, A.; Duremdez, R.; Yuasa, K.; Al-Zenki, S.; Al-Gharabally, H.; Munday, B. Fish kill of mullet Liza klunzingeri in Kuwait Bay: The role of Streptococcus agalactiae and the influence of temperature. In Diseases in Asian Aquaculture V; Walker, R.L., Bondad-Reantaso, M.G., Eds.; Fish Health Section, Asian Fisheries Society: Manila, Philippines, 2005; pp. 143–153. [Google Scholar]
- Eldar, A.; Bejerano, Y.; Livoff, A.; Horovitcz, A.; Bercovier, H. Experimental streptococcal meningo-encephalitis in cultured fish. Vet. Microbiol. 1995, 43, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Wongsathein, D.; Raksri, S.; Urit, T.; Kaewngernsong, N. Experimental Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus) via different routes. Vet. Integr. Sci. 2019, 17, 233–243. [Google Scholar]
- Owatari, M.S.; Cardoso, L.; Pereira, S.A.; Pereira, U.d.P.; Tachibana, L.; Martins, M.L.; Mouriño, J.L.P. Laboratory-controlled challenges of streptococcosis in Nile tilapia using the oral route (infected-feed) for infection. Fish Shellfish. Immunol. 2022, 120, 295–303. [Google Scholar] [CrossRef]
- Pradeep, P.; Suebsing, R.; Sirthammajak, S.; Kampeera, J.; Jitrakorn, S.; Saksmerprome, V.; Turner, W.; Palang, I.; Vanichviriyakit, R.; Senapin, S. Evidence of vertical transmission and tissue tropism of streptococcosis from naturally infected red tilapia (Oreochromis spp.). Aquac. Rep. 2016, 3, 58–66. [Google Scholar] [CrossRef]
- Zamri-Saad, M.; Amal, M.; Siti-Zahrah, A.; Zulkafli, A. Control and prevention of streptococcosis in cultured tilapia in Malaysia: A review. Pertanika J. Trop. Agric. Sci. 2014, 37, 389–410. [Google Scholar]
- Evans, J.J.; Pasnik, D.J.; Brill, G.C.; Klesius, P.H. Un-ionized ammonia exposure in Nile tilapia: Toxicity, stress response, and susceptibility to Streptococcus agalactiae. N. Am. J. Aquac. 2006, 68, 23–33. [Google Scholar] [CrossRef]
- Liao, P.-C.; Tsai, Y.-L.; Chen, Y.-C.; Wang, P.-C.; Liu, S.-C.; Chen, S.-C. Analysis of Streptococcal Infection and Correlation with Climatic Factors in Cultured Tilapia Oreochromis spp. in Taiwan. Appl. Sci. 2020, 10, 4018. [Google Scholar] [CrossRef]
- Hernández, E.; Figueroa, J.; Iregui, C. Streptococcosis on a red tilapia, Oreochromis sp., farm: A case study. J. Fish Dis. 2009, 32, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Siti-Zahrah, A.; Padilah, B.; Azila, A.; Rimatulhana, R.; Shahidan, H. Multiple streptococcal species infection in cage-cultured red tilapia but showing similar clinical signs. In Diseases in Asian Aquaculture VI; Bondad-Reantaso, M.G., Mohan, C.V., Crumlish, M., Subasinghe, R.P., Eds.; Fish Health Section, Asian Fisheries Society: Manila, Philippines, 2008; pp. 313–320. [Google Scholar]
- Zamri-Saad, M.; Amal, M.; Siti-Zahrah, A. Pathological changes in red tilapias (Oreochromis spp.) naturally infected by Streptococcus agalactiae. J. Comp. Pathol. 2010, 143, 227–229. [Google Scholar] [CrossRef] [PubMed]
- Jiménez, A.; Tibatá, V.; Junca, H.; Ariza, F.; Verjan, N.; Iregui, C. Evaluating a nested-PCR assay for detecting Streptococcus agalactiae in red tilapia (Oreochromis sp.) tissue. Aquaculture 2011, 321, 203–206. [Google Scholar] [CrossRef]
- Doran, K.S.; Nizet, V. Molecular pathogenesis of neonatal group B streptococcal infection: No longer in its infancy. Mol. Microbiol. 2004, 54, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Johri, A.K.; Paoletti, L.C.; Glaser, P.; Dua, M.; Sharma, P.K.; Grandi, G.; Rappuoli, R. Group B Streptococcus: Global incidence and vaccine development. Nat. Rev. Microbiol. 2006, 4, 932–942. [Google Scholar] [CrossRef]
- Pereira, U.; Mian, G.; Oliveira, I.; Benchetrit, L.; Costa, G.; Figueiredo, H. Genotyping of Streptococcus agalactiae strains isolated from fish, human and cattle and their virulence potential in Nile tilapia. Vet. Microbiol. 2010, 140, 186–192. [Google Scholar] [CrossRef]
- Chen, C.; Chao, C.; Bowser, P. Comparative histopathology of Streptococcus iniae and Streptococcus agalactiae-infected tilapia. Bull. Eur. Assoc. Fish Pathol. 2007, 27, 2. [Google Scholar]
- Musa, N.; Wei, L.S.; Musa, N.; Hamdan, R.H.; Leong, L.K.; Wee, W.; Amal, M.N.; Kutty, B.M.; Abdullah, S.Z. Streptococcosis in red hybrid tilapia (Oreochromis niloticus) commercial farms in Malaysia. Aquac. Res. 2009, 40, 630–632. [Google Scholar] [CrossRef]
- Cao, J.; Liu, Z.; Zhang, D.; Guo, F.; Gao, F.; Wang, M.; Yi, M.; Lu, M. Distribution and localization of Streptococcus agalactiae in different tissues of artificially infected tilapia (Oreochromis niloticus). Aquaculture 2022, 546, 737370. [Google Scholar] [CrossRef]
- Guo, C.M.; Chen, R.R.; Kalhoro, D.H.; Wang, Z.F.; Liu, G.J.; Lu, C.P.; Liu, Y.J. Identification of genes preferentially expressed by highly virulent piscine Streptococcus agalactiae upon interaction with macrophages. PLoS ONE 2014, 9, e87980. [Google Scholar] [CrossRef]
- Le Doare, K.; Heath, P.T. An overview of global GBS epidemiology. Vaccine 2013, 31, D7–D12. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Kong, F.; Zeng, X.; Gidding, H.; Morgan, J.; Gilbert, G. Distribution of genotypes and antibiotic resistance genes among invasive Streptococcus agalactiae (group B streptococcus) isolates from Australasian patients belonging to different age groups. Clin. Microbiol. Infect. 2008, 14, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Rubens, C.; Wessels, M.; Heggen, L.; Kasper, D. Transposon mutagenesis of type III group B Streptococcus: Correlation of capsule expression with virulence. Proc. Natl. Acad. Sci. USA 1987, 84, 7208–7212. [Google Scholar] [CrossRef] [PubMed]
- Wessels, M.R.; Rubens, C.E.; Benedi, V.-J.; Kasper, D.L. Definition of a bacterial virulence factor: Sialylation of the group B streptococcal capsule. Proc. Natl. Acad. Sci. USA 1989, 86, 8983–8987. [Google Scholar] [CrossRef] [PubMed]
- Marques, M.B.; Kasper, D.; Pangburn, M.; Wessels, M. Prevention of C3 deposition by capsular polysaccharide is a virulence mechanism of type III group B streptococci. Infect. Immun. 1992, 60, 3986–3993. [Google Scholar] [CrossRef]
- Campbell, J.R.; Baker, C.J.; Edwards, M.S. Deposition and degradation of C3 on type III group B streptococci. Infect. Immun. 1991, 59, 1978–1983. [Google Scholar] [CrossRef]
- Lemire, P.; Houde, M.; Lecours, M.-P.; Fittipaldi, N.; Segura, M. Role of capsular polysaccharide in Group B Streptococccus interactions with dendritic cells. Microbes Infect. 2012, 14, 1064–1076. [Google Scholar] [CrossRef]
- Bernheimer, A.W.; Linder, R.; Avigad, L.S. Nature and mechanism of action of the CAMP protein of group B streptococci. Infect. Immun. 1979, 23, 838–844. [Google Scholar] [CrossRef]
- Lang, S.; Palmer, M. Characterization of Streptococcus agalactiae CAMP factor as a pore-forming toxin. J. Biol. Chem. 2003, 278, 38167–38173. [Google Scholar] [CrossRef]
- Jürgens, D.; Sterzik, B.; Fehrenbach, F. Unspecific binding of group B streptococcal cocytolysin (CAMP factor) to immunoglobulins and its possible role in pathogenicity. J. Exp. Med. 1987, 165, 720–732. [Google Scholar] [CrossRef]
- Hensler, M.E.; Quach, D.; Hsieh, C.-J.; Doran, K.S.; Nizet, V. CAMP factor is not essential for systemic virulence of Group B Streptococcus. Microb. Pathog. 2008, 44, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Brefo-Mensah, E.; Fan, W.; Zeng, W.; Li, Y.; Zhang, Y.; Palmer, M. Crystal structure of the Streptococcus agalactiae CAMP factor provides insights into its membrane-permeabilizing activity. J. Biol. Chem. 2018, 293, 11867–11877. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zeng, W.; Fan, W.; Ma, H.; Fan, X.; Jiang, J.; Brefo-Mensah, E.; Zhang, Y.; Yang, M.; Dong, Z. Structure determination of the CAMP factor of Streptococcus agalactiae with the aid of an MBP tag and insights into membrane-surface attachment. Acta Crystallogr. Sect. D Struct. Biol. 2019, 75, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Podbielski, A.; Blankenstein, O.; Lütticken, R. Molecular characterization of the cfb gene encoding group B streptococcal CAMP-factor. Med. Microbiol. Immunol. 1994, 183, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, D.G.; Lin, B.; Willingham, T.R.; Baker, J.R. Characterization of the group B streptococcal hyaluronate lyase. Arch. Biochem. Biophys. 1994, 315, 431–437. [Google Scholar] [CrossRef]
- Kolar, S.L.; Kyme, P.; Tseng, C.W.; Soliman, A.; Kaplan, A.; Liang, J.; Nizet, V.; Jiang, D.; Murali, R.; Arditi, M.; et al. Group B Streptococcus Evades Host Immunity by Degrading Hyaluronan. Cell Host Microbe 2015, 18, 694–704. [Google Scholar] [CrossRef]
- Sutcliffe, I.C.; Black, G.W.; Harrington, D.J. Bioinformatic insights into the biosynthesis of the Group B carbohydrate in Streptococcus agalactiae. Microbiology 2008, 154, 1354–1363. [Google Scholar] [CrossRef]
- Su, Y.; Feng, J.; Liu, C.; Li, W.; Xie, Y.; Li, A. Dynamic bacterial colonization and microscopic lesions in multiple organs of tilapia infected with low and high pathogenic Streptococcus agalactiae strains. Aquaculture 2017, 471, 190–203. [Google Scholar] [CrossRef]
- Li, W.; Su, Y.L.; Mai, Y.Z.; Li, Y.W.; Mo, Z.Q.; Li, A.X. Comparative proteome analysis of two Streptococcus agalactiae strains from cultured tilapia with different virulence. Vet. Microbiol. 2014, 170, 135–143. [Google Scholar] [CrossRef]
- Xu, J.; Xie, Y.D.; Liu, L.; Guo, S.; Su, Y.L.; Li, A.X. Virulence regulation of cel-EIIB protein mediated PTS system in Streptococcus agalactiae in Nile tilapia. J. Fish Dis. 2019, 42, 11–19. [Google Scholar] [CrossRef]
- Miller, M.B.; Bassler, B.L. Quorum sensing in bacteria. Annu. Rev. Microbiol. 2001, 55, 165–199. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Ma, K.; Nie, M.; Dong, Y.; Lu, C.; Liu, Y. Role of luxS in immune evasion and pathogenicity of piscine Streptococcus agalactiae is not dependent on autoinducer-2. Fish Shellfish. Immunol. 2020, 99, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Hao, L.; Ke, H.; Liang, Z.; Ma, J.; Liu, Z.; Li, Y. LuxS/AI-2 in Streptococcus agalactiae reveals a key role in acid tolerance and virulence. Res. Vet. Sci. 2017, 115, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Konto-Ghiorghi, Y.; Mairey, E.; Mallet, A.; Duménil, G.; Caliot, E.; Trieu-Cuot, P.; Dramsi, S. Dual role for pilus in adherence to epithelial cells and biofilm formation in Streptococcus agalactiae. PLoS Pathog. 2009, 5, e1000422. [Google Scholar] [CrossRef]
- Di Xia, F.; Mallet, A.; Caliot, E.; Gao, C.; Trieu-Cuot, P.; Dramsi, S. Capsular polysaccharide of Group B Streptococcus mediates biofilm formation in the presence of human plasma. Microbes Infect. 2015, 17, 71–76. [Google Scholar] [CrossRef]
- EL-Lakany, R.R.; Abdelmaged, E.S.; Shams, M.; Hassan, R.; Rizk, D.E. Incidence of virulence determinants among Streptococcus agalactiae isolated from pregnant women and association with their serotypes. Egypt. J. Basic Appl. Sci. 2023, 10, 650–670. [Google Scholar] [CrossRef]
- Delamare-Deboutteville, J.; Bowater, R.; Condon, K.; Reynolds, A.; Fisk, A.; Aviles, F.; Barnes, A. Infection and pathology in Queensland grouper, Epinephelus lanceolatus, (Bloch), caused by exposure to Streptococcus agalactiae via different routes. J. Fish Dis. 2015, 38, 1021–1035. [Google Scholar] [CrossRef]
- Suanyuk, N.; Kanghear, H.; Khongpradit, R.; Supamattaya, K. Streptococcus agalactiae infection in tilapia (Oreochromis niloticus). Songklanakarin J. Sci. Technol. 2005, 27, 307–319. [Google Scholar]
- Austin, B.; Austin, D.A. Bacterial Fish Pathogens: Disease of Farmed and Wild Fish; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Ali Abuseliana, A.A.; Hassan Daud, H.D.; Saleha Abdul Aziz, S.A.A.; Siti Khairani Bejo, S.K.B.; Milud Alsaid, M.A. Streptococcus agalactiae the etiological agent of mass mortality in farmed red tilapia (Oreochromis sp.). J. Anim. Vet. Adv. 2010, 9, 2640–2646. [Google Scholar] [CrossRef]
- Abuseliana, A.F.; Daud, H.H.M.; Aziz, S.A.; Bejo, S.K.; Alsaid, M. Pathogenicity of Streptococcus agalactiae isolated from a fish farm in Selangor to juvenile red tilapia (Oreochromis sp.). J. Anim. Vet. Adv. 2011, 10, 914–919. [Google Scholar] [CrossRef]
- Soto, E.; Zayas, M.; Tobar, J.; Illanes, O.; Yount, S.; Francis, S.; Dennis, M. Laboratory-controlled challenges of Nile tilapia (Oreochromis niloticus) with Streptococcus agalactiae: Comparisons between immersion, oral, intracoelomic and intramuscular routes of infection. J. Comp. Pathol. 2016, 155, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Mata, A.; Gibello, A.; Casamayor, A.; Blanco, M.; Domínguez, L.; Fernández-Garayzábal, J. Multiplex PCR assay for detection of bacterial pathogens associated with warm-water streptococcosis in fish. Appl. Environ. Microbiol. 2004, 70, 3183–3187. [Google Scholar] [CrossRef] [PubMed]
- Assis, G.; Tavares, G.; Pereira, F.; Figueiredo, H.; Leal, C. Natural coinfection by Streptococcus agalactiae and Francisella noatunensis subsp. orientalis in farmed Nile tilapia (Oreochromis niloticus L.). J. Fish Dis. 2017, 40, 51–63. [Google Scholar] [CrossRef] [PubMed]
- Noga, E.J. Fish Disease: Diagnosis and Treatment, 2nd ed.; Wiley: Hoboken, NJ, USA, 2010; Volume 2. [Google Scholar]
- Facimoto, C.T.; Chideroli, R.T.; Gonçalves, D.D.; Carmo, A.O.d.; Kalaphotakis, E.; Pereira, U.d.P. Whole-genome sequence of Streptococcus agalactiae strain S13, isolated from a fish eye from a Nile Tilapia farm in Southern Brazil. Genome Announc. 2017, 5, e00917-17. [Google Scholar] [CrossRef]
- Koh, T.H.; Cao, D.Y.; Khoo, B.C.; Ong, L.H.; Teo, F.; Tan, T.W. Group B Streptococci in Sushi and Sashimi. Ann. Acad. Med. Singap. 2017, 46, 74–75. [Google Scholar] [CrossRef]
- Evans, J.J.; Pasnik, D.J.; Klesius, P.H. A commercial rapid optical immunoassay detects Streptococcus agalactiae from aquatic cultures and clinical specimens. Vet. Microbiol. 2010, 144, 422–428. [Google Scholar] [CrossRef]
- Assis, G.B.; Pereira, F.L.; Zegarra, A.U.; Tavares, G.C.; Leal, C.A.; Figueiredo, H.C. Use of MALDI-TOF mass spectrometry for the fast identification of gram-positive fish pathogens. Front. Microbiol. 2017, 8, 281504. [Google Scholar] [CrossRef]
- Berridge, B.R.; Bercovier, H.; Frelier, P.F. Streptococcus agalactiae and Streptococcus difficile 16S–23S intergenic rDNA: Genetic homogeneity and species-specific PCR. Vet. Microbiol. 2001, 78, 165–173. [Google Scholar] [CrossRef]
- Su, Y.L.; Feng, J.; Li, Y.W.; Bai, J.S.; Li, A.X. Development of a quantitative PCR assay for monitoring Streptococcus agalactiae colonization and tissue tropism in experimentally infected tilapia. J. Fish Dis. 2016, 39, 229–238. [Google Scholar] [CrossRef]
- Ke, X.; Huo, H.; Lu, M.; Liu, Z.; Zhu, H.; Gao, F. Development of Loop-mediated Isothermal Amplification (LAMP) for the Rapid Detection of Streptococcus agalactiae in Tilapia, Oreochromis niloticus. J. World Aquac. Soc. 2014, 45, 586–594. [Google Scholar] [CrossRef]
- Nguyen, N.-P.; Warnow, T.; Pop, M.; White, B. A perspective on 16S rRNA operational taxonomic unit clustering using sequence similarity. NPJ Biofilms Microbiomes 2016, 2, 16004. [Google Scholar] [CrossRef] [PubMed]
- Matsui, H.; Kimura, J.; Higashide, M.; Takeuchi, Y.; Okue, K.; Cui, L.; Nakae, T.; Sunakawa, K.; Hanaki, H. Immunochromatographic detection of the group B streptococcus antigen from enrichment cultures. Clin. Vaccine Immunol. 2013, 20, 1381–1387. [Google Scholar] [CrossRef] [PubMed]
- Altaie, S.S.; Bridges, J.; Loghmanee, D.; Lele, A.; Kahn, K.R. Preincubation of cervical swabs in Lim broth improves performance of ICON rapid test for detection of group B streptococci. Infect. Dis. Obstet. Gynecol. 1996, 4, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Baya, A.; Lupiani, B.; Hetrick, F.; Roberson, B.; Lukacovic, R.; May, E.; Poukish, C. Association of Streptococcus sp. with fish mortalities in the Chesapeake Bay and its tributaries. J. Fish Dis. 1990, 13, 251–253. [Google Scholar] [CrossRef]
- Aisyhah, M.; Amal, M.; Zamri-Saad, M.; Siti-Zahrah, A.; Shaqinah, N. Streptococcus agalactiae isolates from cultured fishes in Malaysia manifesting low resistance pattern towards selected antibiotics. J. Fish Dis. 2015, 38, 1093–1098. [Google Scholar] [CrossRef]
- Faria, F.; Leal, C.; Carvalho-Castro, G.; Leite, R.; Figueiredo, H. Carrier state induced by oxytetracycline therapy against streptococcosis in Nile tilapia, Oreochromis niloticus (L.). J. Fish Dis. 2014, 37, 853–857. [Google Scholar] [CrossRef]
- Miller, R.A.; Reimschuessel, R. Epidemiologic cutoff values for antimicrobial agents against Aeromonas salmonicida isolates determined by frequency distributions of minimal inhibitory concentration and diameter of zone of inhibition data. Am. J. Vet. Res. 2006, 67, 1837–1843. [Google Scholar] [CrossRef]
- Chideroli, R.T.; Amoroso, N.; Mainardi, R.M.; Suphoronski, S.A.; de Padua, S.B.; Alfieri, A.F.; Alfieri, A.A.; Mosela, M.; Moralez, A.T.; de Oliveira, A.G. Emergence of a new multidrug-resistant and highly virulent serotype of Streptococcus agalactiae in fish farms from Brazil. Aquaculture 2017, 479, 45–51. [Google Scholar] [CrossRef]
- de Oliveira, T.F. Therapeutic Efficacy of Florfenicol Against Streptoccoccus Agalactiae Infection in Nile Tilápia (Oreochromis nicoticus); Federal University of Minas Gerais: Belo Horizonte, Brazil, 2016. [Google Scholar]
- Smith, P.; Hiney, M.P.; Samuelsen, O.B. Bacterial resistance to antimicrobial agents used in fish farming: A critical evaluation of method and meaning. Annu. Rev. Fish Dis. 1994, 4, 273–313. [Google Scholar] [CrossRef]
- Kuebutornye, F.K.A.; Abarike, E.D. The contribution of medicinal plants to tilapia aquaculture: A review. Aquac. Int. 2020, 28, 965–983. [Google Scholar] [CrossRef]
- Yılmaz, S.; Ergün, S. Dietary supplementation with allspice Pimenta dioica reduces the occurrence of streptococcal disease during first feeding of Mozambique tilapia fry. J. Aquat. Anim. Health 2014, 26, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Olusola, S.; Emikpe, B.; Olaifa, F. The potentials of medicinal plant extracts as bio-antimicrobials in aquaculture. Int. J. Med. Arom. Plants 2013, 3, 404–412. [Google Scholar]
- Reverter, M.; Bontemps, N.; Lecchini, D.; Banaigs, B.; Sasal, P. Use of plant extracts in fish aquaculture as an alternative to chemotherapy: Current status and future perspectives. Aquaculture 2014, 433, 50–61. [Google Scholar] [CrossRef]
- Inglis, V.; Roberts, R.J.a.; Bromage, N.R. Bacterial Diseases of Fish; Blackwell Scientific Publication: Oxford, UK, 1993; 312p. [Google Scholar]
- Nicky, B. Bacteria from Fish and Other Aquatic Animals (A Practical Identification Manual); CABI Publishing (A division of CAB International): Wallingford, UK, 2004; Volume 106, pp. 83–116. [Google Scholar]
- Defoirdt, T.; Sorgeloos, P.; Bossier, P. Alternatives to antibiotics for the control of bacterial disease in aquaculture. Curr. Opin. Microbiol. 2011, 14, 251–258. [Google Scholar] [CrossRef]
- Naylor, R.; Burke, M. Aquaculture and ocean resources: Raising tigers of the sea. Annu. Rev. Environ. Resour. 2005, 30, 185–218. [Google Scholar] [CrossRef]
- Cabello, F.C. Heavy use of prophylactic antibiotics in aquaculture: A growing problem for human and animal health and for the environment. Environ. Microbiol. 2006, 8, 1137–1144. [Google Scholar] [CrossRef]
- Kümmerer, K. Antibiotics in the aquatic environment—A review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef]
- Barlow, M. What antimicrobial resistance has taught us about horizontal gene transfer. Horiz. Gene Transf. Genomes Flux 2009, 532, 397–411. [Google Scholar] [CrossRef]
- Cabello, F.C.; Godfrey, H.P.; Tomova, A.; Ivanova, L.; Dölz, H.; Millanao, A.; Buschmann, A.H. Antimicrobial use in aquaculture re-examined: Its relevance to antimicrobial resistance and to animal and human health. Environ. Microbiol. 2013, 15, 1917–1942. [Google Scholar] [CrossRef]
- Diana, J.S.; Egna, H.S.; Chopin, T.; Peterson, M.S.; Cao, L.; Pomeroy, R.; Verdegem, M.; Slack, W.T.; Bondad-Reantaso, M.G.; Cabello, F. Responsible aquaculture in 2050: Valuing local conditions and human innovations will be key to success. BioScience 2013, 63, 255–262. [Google Scholar] [CrossRef]
- Verschuere, L.; Rombaut, G.; Sorgeloos, P.; Verstraete, W. Probiotic bacteria as biological control agents in aquaculture. Microbiol. Mol. Biol. Rev. 2000, 64, 655–671. [Google Scholar] [CrossRef]
- Press, C.M.; Lillehaug, A. Vaccination in European salmonid aquaculture: A review of practices and prospects. Br. Vet. J. 1995, 151, 45–69. [Google Scholar] [CrossRef] [PubMed]
- Håstein, T.; Gudding, R.; Evensen, O. Bacterial vaccines for fish-an update of the current situation worldwide. Dev. Biol. 2005, 121, 55–74. [Google Scholar]
- Miyabe, F.M.; Suphoronski, S.A.; Chideroli, R.T.; de Padua Pereira, U. Systematic review evaluation of vaccine efficacy against Streptococcus agalactiae in fish. Ann. Vaccines Immun. 2017, 3, 1013. [Google Scholar]
- Eldar, A.; Shapiro, O.; Bejerano, Y.; Bercovier, H. Vaccination with whole-cell vaccine and bacterial protein extract protects tilapia against Streptococcus difficile meningoencephalitis. Vaccine 1995, 13, 867–870. [Google Scholar] [CrossRef]
- Pasnik, D.J.; Evans, J.J.; Klesius, P.H. Duration of protective antibodies and correlation with survival in Nile tilapia Oreochromis niloticus following Streptococcus agalactiae vaccination. Dis. Aquat. Org. 2005, 66, 129–134. [Google Scholar] [CrossRef]
- Pretto-Giordano, L.G.; Müller, E.E.; Klesius, P.; Da Silva, V.G. Efficacy of an experimentally inactivated Streptococcus agalactiae vaccine in Nile tilapia (Oreochromis niloticus) reared in Brazil. Aquac. Res. 2010, 41, 1539–1544. [Google Scholar]
- Tengjaroenkul, B.; Yowarach, S. Efficacy of vaccine combined Freud’s complete adjuvant to prevent streptococcosis in Nile tilapia. KKU Vet. J. 2011, 19, 188–196. [Google Scholar]
- Munang’andu, H.M.; Paul, J.; Evensen, Ø. An Overview of Vaccination Strategies and Antigen Delivery Systems for Streptococcus agalactiae Vaccines in Nile Tilapia (Oreochromis niloticus). Vaccines 2016, 4, 48. [Google Scholar] [CrossRef]
- Evans, J.J.; Klesius, P.H.; Shoemaker, C.A. Efficacy of Streptococcus agalactiae (group B) vaccine in tilapia (Oreochromis niloticus) by intraperitoneal and bath immersion administration. Vaccine 2004, 22, 3769–3773. [Google Scholar] [CrossRef]
- Evans, J.J.; Klesius, P.H.; Shoemaker, C.A.; Fitzpatrick, B.T. Streptococcus agalactiae vaccination and infection stress in Nile tilapia, Oreochromis niloticus. J. Appl. Aquac. 2005, 16, 105–115. [Google Scholar] [CrossRef]
- Fyrand, K.; Xu, C.; Evensen, Ø. Characterization of Streptococcus agalactiae 1a isolated from farmed Nile tilapia (Oreochromis niloticus) in North America, Central America, and Southeast Asia. Fish Shellfish. Immunol. 2024, 154, 109919. [Google Scholar] [CrossRef] [PubMed]
- Kannika, K.; Sirisuay, S.; Kondo, H.; Hirono, I.; Areechon, N.; Unajak, S. Trial Evaluation of Protection and Immunogenicity of Piscine Bivalent Streptococcal Vaccine: From the Lab to the Farms. Vaccines 2022, 10, 1625. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.W.; Ngu, D.Y.S.; Dan, L.A.; Ooi, A.; Lim, R.L.H. Detection of antibiotic resistance in probiotics of dietary supplements. Nutr. J. 2015, 14, 95. [Google Scholar] [CrossRef] [PubMed]
- van Reenen, C.A.; Dicks, L.M.T. Horizontal gene transfer amongst probiotic lactic acid bacteria and other intestinal microbiota: What are the possibilities? A review. Arch. Microbiol. 2011, 193, 157–168. [Google Scholar] [CrossRef]
- Gabriel, N.N. Review on the progress in the role of herbal extracts in tilapia culture. Cogent Food Agric. 2019, 5, 1619651. [Google Scholar] [CrossRef]
- Preenanka, R.; Safeena, M.P. Morphological, biological and genomic characterization of lytic phages against Streptococcus agalactiae causing streptococcosis in tilapia. Microb. Pathog. 2023, 174, 105919. [Google Scholar] [CrossRef]
- Russell, H.; Norcross, N.L.; Kahn, D.E. Isolation and characterization of Streptococcus agalactiae Bacteriophage. J. Gen. Virol. 1969, 5, 315–317. [Google Scholar] [CrossRef]
- Luo, X.; Liao, G.; Liu, C.; Jiang, X.; Lin, M.; Zhao, C.; Tao, J.; Huang, Z. Characterization of bacteriophage HN48 and its protective effects in Nile tilapia Oreochromis niloticus against Streptococcus agalactiae infections. J. Fish Dis. 2018, 41, 1477–1484. [Google Scholar] [CrossRef]
- Borisutpeth, P.; Kanbutra, P.; Weerakhun, S.; Sarachoo, K.; Porntrakulpipat, S. Antibacterial activity of Thai medicinal plant extracts on Aeromonas hydrophila and Streptococcus agalactiae isolated from diseased tilapia (Oreochromis niloticus). In Proceedings of the 31st Congress on Science and Tecnology of Thailand at Suranaree Univ of Technology, Nakhon Ratchasima, Thailand, 18–20 October 2005; pp. 18–20. [Google Scholar]
- Pirarat, N.; Rodkhum, C.; Ponpornpisit, A.; Suthikrai, W. In vitro efficacy of Red Kwao Krua (Butea superba Roxb.) extract against Streptococcal bacteria isolated from diseased tilapia (Oreochromis niloticus). Thai J. Vet. Med. 2012, 42, 101–105. [Google Scholar] [CrossRef]
- Wongthai, P.; Jenchangkol, P.; Sripipattanakul, P.; Tachapermpon, R.; Cholpraipimolrat, W.; Phongkhoaw, S. Efficacy of Citrus grandis (C. maximus) extracts on the inhibition against Aeromonas hydrophila, Pseudomonas aerugenosa and Streptococcus agalactiae in fresh-water fishes. J. Mahanakorn Vet. Med. 2011, 6, 21–32. [Google Scholar]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Prophylactic effect of Andrographis paniculata extracts against Streptococcus agalactiae infection in Nile tilapia (Oreochromis niloticus). J. Biosci. Bioeng. 2009, 107, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Effect of Cratoxylum formosum on innate immune response and disease resistance against Streptococcus agalactiae in tilapia Oreochromis niloticus. Fish Sci. 2010, 76, 653–659. [Google Scholar] [CrossRef]
- Zilberg, D.; Tal, A.; Froyman, N.; Abutbul, S.; Dudai, N.; Golan-Goldhirsh, A. Dried leaves of Rosmarinus officinalis as a treatment for streptococcosis in tilapia. J. Fish Dis. 2010, 33, 361–369. [Google Scholar] [CrossRef] [PubMed]
- Suebsomran, P.; Taveekitjakan, P. Effects of Pseuderatherum palatiferum leaf extract on growth performance, haematology, immune response and resistance to against Streptococcus agalactiae in Nile tilapia,(Oreochromis niloticus). In Proceedings of the 49th Kasetsart University Annual Conference, Kasetsart University, Bangkok, Thailand, 1–4 February 2011; Volume 3, Subject: Fisheries. pp. 1–9. [Google Scholar]
- Dong, J.; Zhang, Y.; Yang, Q.; Liu, Y.; Zhou, S.; Ai, X. Fraxetin Targeting to Sortase A Decreases the Pathogenicity of Streptococcus agalactiae to Nile Tilapia. Animals 2024, 14, 1337. [Google Scholar] [CrossRef]
- Samrongpan, C.; Areechon, N.; Yoonpundh, R.; Sirsapoome, P. Effects of mannan-oligosaccharide on growth, survival and disease resistance of Nile tilapia (Oreochromis niloticus linnaeus) fry. In Proceedings of the 8th International Symposium on Tilapia in Aquaculture, Cairo, Egypt, 12–14 October 2008. [Google Scholar]
- Ng, W.K.; Koh, C.B.; Sudesh, K.; Siti-Zahrah, A. Effects of dietary organic acids on growth, nutrient digestibility and gut microflora of red hybrid tilapia, Oreochromis sp., and subsequent survival during a challenge test with Streptococcus agalactiae. Aquac. Res. 2009, 40, 1490–1500. [Google Scholar] [CrossRef]
- Srisapoome, P.; Chaiwat, M.; Areechone, N. Efficacy of viable Bacillus pumilus isolated from farmed fish on immune responses and increased disease resistance in Nile tilapia (Oreochromis niloticus): Laboratory and on-farm trials. Fish Shellfish. Immunol. 2011, 67, 199–210. [Google Scholar] [CrossRef]
Host | Accession Number | Country | Reference |
---|---|---|---|
Silver pomfret, Pampus argenteus | NS | Kuwait | Duremdez et al. (2004) [50] |
Nile tilapias reared in hapas nets and earth nurseries | NS | Parana State, Brazil | Salvador et al. (2005) [54] |
Cultured red tilapia Oreochromis sp. and Nile tilapia O. niloticus | NS | Thailand | Suanyuk et al. (2008) [55] |
Cultured Nile tilapia | EU853480-EU853508 | Brazil | Mian et al. (2009) [27] |
Pond cultured tilapia | GU217535, GU217531 | China | Ye et al. (2011) [35] |
Cage-cultured golden pompano (Trachinotus blochii) | EF092913 | Malaysia | Amal et al. (2012) [56] |
Wild giant Queensland grouper, Epinephelus lanceolatus | NS | Australia | Bowater et al. (2012) [40] |
Cage cultured red hybrid tilapia, Oreochromis niloticus × O. mossambicus | EF092913 | Malaysia | Amal et al. (2015) [57] |
Cultured O. niloticus | NS | Columbia | Barato et al. (2015) [58] |
Hybrid tilapia (Oreochromis niloticus × O. aureus) | NR117503 | Saudi Arabia | Al-Harbi (2016) [59] |
Hybrid tilapia | KT869025 | Egypt | Laith et al. (2017) [33] |
Cultured Nile tilapia | MF113267 | Indonesia | Suhermanto et al. (2019) [60] |
Cultured tilapia (Oreochromis spp.) | NS | Taiwan | Sudpraseart et al. (2021) [38] |
Cultured O. niloticus | NS | Bangladesh | Rahman et al. (2021) [26] |
Cultured O. niloticus | OP580171, OP580064 and OP584472 | India | Preenanka et al. (2024) [39] |
Cultured O. niloticus | MW599202 | Egypt | Abdallah et al. (2024) [25] |
Antibiotic | Reference | |
---|---|---|
Sensitive | Chloramphenicol, Erythromycin, Rifampicin, Ampicillin, Sulfamethoxazole/trimethoprim, Tetracycline, Oxytetracycline, Gentamicin, Ciprofloxacin, Amoxicillin/clavulanic acid, Linomycin, Cephalexin, Nitrofurantoin, Ceftiofur, Florfenicol, Penicillin, Imipenem, Ceftriaxone, and Streptomycin | Evans et al. [17], Soto et al. [41], Ali Abuseliana et al. [112], Aisyhah et al. [129], Faria et al. [130], Chideroli et al. [132]. |
Resistant | Rifampin, Ampicillin, Amoxicillin/clavulanic acid, Streptomycin, Kanamycin, Neomycin, Amikacin, Enrofloxacin, Ciprofloxacin, Norfloxacin, Marbofloxacin, Gentamicin, Tobramycin, Sulfamethoxazole/trimethoprim, Tetracycline, Oxytetracycline, Oxolinic acid, Florfenicol, Nitrofurantion, Penicilin, and Erythromycin | Evans et al. [17], Soto et al. [41], Ali Abuseliana et al. [112], Aisyhah et al. [129], Faria et al. [130], Chideroli et al. [132]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdallah, E.S.H.; Metwally, W.G.M.; Abdel-Rahman, M.A.M.; Albano, M.; Mahmoud, M.M. Streptococcus agalactiae Infection in Nile Tilapia (Oreochromis niloticus): A Review. Biology 2024, 13, 914. https://doi.org/10.3390/biology13110914
Abdallah ESH, Metwally WGM, Abdel-Rahman MAM, Albano M, Mahmoud MM. Streptococcus agalactiae Infection in Nile Tilapia (Oreochromis niloticus): A Review. Biology. 2024; 13(11):914. https://doi.org/10.3390/biology13110914
Chicago/Turabian StyleAbdallah, Ebtsam Sayed Hassan, Walaa Gomaa Mohamed Metwally, Mootaz Ahmed Mohamed Abdel-Rahman, Marco Albano, and Mahmoud Mostafa Mahmoud. 2024. "Streptococcus agalactiae Infection in Nile Tilapia (Oreochromis niloticus): A Review" Biology 13, no. 11: 914. https://doi.org/10.3390/biology13110914
APA StyleAbdallah, E. S. H., Metwally, W. G. M., Abdel-Rahman, M. A. M., Albano, M., & Mahmoud, M. M. (2024). Streptococcus agalactiae Infection in Nile Tilapia (Oreochromis niloticus): A Review. Biology, 13(11), 914. https://doi.org/10.3390/biology13110914