Infectious Diseases in Aquaculture: Mechanisms, Detection, and Control

A special issue of Biology (ISSN 2079-7737). This special issue belongs to the section "Zoology".

Deadline for manuscript submissions: closed (31 October 2024) | Viewed by 15861

Special Issue Editors

Network of Aquaculture Centres in Asia-Pacific, Ladyao, Jatujak, Bangkok 10900, Thailand
Interests: emerging diseases in aquaculture; epidemiology of crustacean; detection; diagnosis; biosecurity
Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
Interests: pathogenicity, epidemiology and control measures of marine mollusk diseases; mollusk herpesviruses; strain differentiation and evolution

Special Issue Information

Dear Colleagues,

Aquaculture is the fastest-growing sector in the global agrifood industry, which covers approximately half of the fish consumed by humans. However, the expansion of aquaculture has been accompanied by the emergence of infectious diseases, which have caused significant economic destruction and have even led to the collapse of entire industries. The increase in the international trade of live/fresh aquatic animals and the exchange of genetic resources has resulted in the introduction of exotic microorganisms associated with aquatic species into new environments, some of which potentially pose pathogenicity to local aquatic species, thereby leading to epidemics. Infectious diseases are particularly challenging because they threaten the sustainable development of aquaculture, making it important to pay attention to them.

This Special Issue focuses on the latest research outcomes on infectious diseases in aquaculture. These diseases are caused either by newly recognized or suspected infectious agents in aquaculture or known pathogenic organisms that have spread to a new geographical area or species. Research topics may include but are not limited to the following:

  • Descriptions of an occurrence or an outbreak of an unknown disease or an existing disease in a new geographical area or species, with deep analysis of the epidemiological data or the disease’s relationship with the species or environmental aspects;
  • Reports of newly recognized viruses, bacteria, fungi, or parasites isolated or identified from aquatic organisms, which may pose potential pathogenicity to an organism;
  • The identification and characterization of an infectious agent with its pathogenicity and associated pathology in populations susceptible to diseases;
  • The development of a specific or innovative method for the diagnosis of diseases in a laboratory or near ponds;
  • Molecular mechanisms of infection and pathogenesis by an infectious agent;
  • Investigation into the routes and mechanisms of transmission that contribute to local and long-distance spread;
  • The development and practice of measures to reduce clinical morbidity, to limit disease transmission, and to reduce industry losses.

We look forward to your contributions.

Dr. Jie Huang
Dr. Changming Bai
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aquaculture
  • emerging diseases
  • industry loss
  • mass mortality
  • detection
  • epidemiology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 5817 KiB  
Article
Efficacy of Feed Additives on Immune Modulation and Disease Resistance in Tilapia in Coinfection Model with Tilapia Lake Virus and Aeromonas hydrophila
by Aslah Mohamad, Jidapa Yamkasem, Suwimon Paimeeka, Matepiya Khemthong, Tuchakorn Lertwanakarn, Piyathip Setthawong, Waldo G. Nuez-Ortin, Maria Mercè Isern Subich and Win Surachetpong
Biology 2024, 13(11), 938; https://doi.org/10.3390/biology13110938 - 16 Nov 2024
Viewed by 417
Abstract
Coinfections by multiple pathogens, including viruses and bacteria, have severely impacted tilapia aquaculture globally. This study evaluated the impacts of dietary supplementation on red hybrid tilapia (Oreochromis spp.) coinfected with Tilapia lake virus (TiLV) and Aeromonas hydrophila. Fish were divided into [...] Read more.
Coinfections by multiple pathogens, including viruses and bacteria, have severely impacted tilapia aquaculture globally. This study evaluated the impacts of dietary supplementation on red hybrid tilapia (Oreochromis spp.) coinfected with Tilapia lake virus (TiLV) and Aeromonas hydrophila. Fish were divided into three groups: a control group on a normal diet, and two experimental groups received diets supplemented with strategy A, an organic acid blend combined with a lyso-phospholipid-based digestive enhancer, and strategy B, an organic acid blend combined with natural immunostimulants and nutrients. Following exposure to both pathogens, the fish supplemented with strategies A and B showed lower cumulative mortality rates of 50.0% and 41.7%, respectively, compared to 76.3% in the control group. Notably, fish fed with strategy B-supplemented diet displayed a stronger immune response, with a lower expression of il-8, mx, and rsad2, and showed less pathological changes in the liver, spleen, and intestines, suggesting enhanced resistance to coinfection. In contrast, fish receiving strategy A did not exhibit significant changes in the immune-related gene expression or pathogen load, but demonstrate less pathological alterations, indicating intestinal protection. These findings highlight the potential of feed additives, particularly strategy B, to reduce the impact of virus-bacterial coinfections and improve outcomes in tilapia farming. Full article
Show Figures

Figure 1

17 pages, 787 KiB  
Article
Effects of Different Cultivation Modes on Morphological Traits and Correlations between Traits and Body Mass of Crayfish (Procambarus clarkii)
by Jinlong Li, Qin Qin, Xing Tian, Jiarong Guo, Bowen Tang, Zhigang He, Zhonggui Xie, Yude Wang and Dongwu Wang
Biology 2024, 13(6), 395; https://doi.org/10.3390/biology13060395 - 30 May 2024
Viewed by 847
Abstract
In this study, juvenile crayfish hatched from the same population were cultured in different growing environments: pond (D1), paddy field (D2), and aquaculture barrel (D3), and fed for 60 days. Crayfishes were selected randomly, [...] Read more.
In this study, juvenile crayfish hatched from the same population were cultured in different growing environments: pond (D1), paddy field (D2), and aquaculture barrel (D3), and fed for 60 days. Crayfishes were selected randomly, females and males, 50 tails each from six groups (D1-♀, D1-♂, D2-♀, D2-♂, D3-♀, D3-♂) to measure the following morphological traits: full length (X1), body length (X2), chelicerae length (X3), chelicerae weight (X4), cephalothorax length (X5), cephalothorax width (X6), cephalothorax height (X7), eye spacing (X8), caudal peduncle length (X9), and caudal peduncle weight (X10). We found that the coefficient of variation (CV) of X4 was the largest in each culture mode, and males (28.58%~38.67%) were larger than females (37.76%~66.74%). The CV of X4 of crayfish cultured in D1 and D2 was larger than that of D3. All traits except X8 were positively correlated with body weight (p < 0.05). After pathway analysis, we found that X4, X5, X7, and X10 were significantly correlated with the body weight of D1-♀; the equation was YD1-♀ = −29.803 + 1.249X4 + 0.505X5 + 0.701X7 + 1.483X10 (R2 = 0.947). However, X2, X4, and X6 were significantly correlated with the body weight of D1-♂; the equation was YD1-♂ = −40.881 + 0.39X2 + 0.845X4 + 1.142X6 (R2 = 0.927). In D2-♀, X1, X4, X5, and X10 were significantly correlated with body weight; the equation was YD2-♀ = −12.248 + 0.088X1 + 1.098X4 + 0.275X5 + 0.904X10 (R2 = 0.977). X4 and X5 played a major role in the body weight of D2-♂ with the equation: YD2-♂ = −24.871 + 1.177X4 + 0.902X5 (R2 = 0.973). X3 and X10 mainly contributed to the body weight of D3-♀ with the equation: YD3-♀ = −22.476 + 0.432X3 + 3.153X10 (R2 = 0.976). X1 and X4 mainly contributed to the body weight of D3-♂ with the equation: YD3-♂ = −34.434 + 0.363X1 + 0.669X4 (R2 = 0.918). Comparing the pathway analysis with the gray relation analysis, we could conclude that the traits most correlated with body weight in D1-♀ were X10 and X7; in D1-♂, X6; in D2-♀, X10, X1, and X5; in D2-♂, X5; in D3-♀, X10; and in D3-♂, X4 and X1. Full article
Show Figures

Figure 1

21 pages, 10563 KiB  
Article
Expression and Immune Characterization of Major Histocompatibility Complex in Paralichthys olivaceus after Antigen Stimulation
by Jing Xing, Zhaoxia An, Xiaoqian Tang, Xiuzhen Sheng, Heng Chi and Wenbin Zhan
Biology 2023, 12(12), 1464; https://doi.org/10.3390/biology12121464 - 24 Nov 2023
Cited by 1 | Viewed by 1453
Abstract
The Major histocompatibility complex (Mhc) is an important molecule for antigen presenting and binds to T cell receptors, activating T lymphocytes and triggering specific immune responses. To investigate the role of MhcII in adaptive immunity, in this study, mhcIIα and mhcIIβ of flounder [...] Read more.
The Major histocompatibility complex (Mhc) is an important molecule for antigen presenting and binds to T cell receptors, activating T lymphocytes and triggering specific immune responses. To investigate the role of MhcII in adaptive immunity, in this study, mhcIIα and mhcIIβ of flounder (Paralichthys olivaceus) were cloned, polyclonal antibodies (Abs) against their extracellular regions were produced, respectively, and their distribution on cells and tissues and expression patterns, which varied by antigen stimulation or pathogen infection, were investigated. The results showed that the open reading frame (ORF) of mhcIIα is 708 bp, including 235 amino acids (aa); and the ORF of mhcIIβ is 741 bp, encoding 246aa. The mhcIIα and mhcIIβ were significantly expressed in gills, spleen, and peripheral blood leukocytes (PBLs). Their antibodies could specifically recognize eukaryotic expressed MhcIIα and MhcIIβ. MhcIIα+ and MhcIIβ+ cells were 30.2 ± 2.9% of the percentage in peripheral blood leukocytes. MhcII molecules were co-localized with CD83 and IgM on leukocytes, respectively, but not on CD4+ or CD8+ T lymphocyte subpopulations. The expression of both mhcIIα and mhcIIβ were significantly upregulated in flounder after bacteria and virus challenges. The percentages of MhcII+ cells, MhcII+/CD83+, and MhcII+/IgM+ double-positive cells increased significantly after PHA and ConA stimulation, respectively; they varied significantly in PBLs after polyI:C stimulation, and no variations were found after LPS treatment. In the meantime, variations in MhcII+ cells were consistent with that of CD4+ T lymphocytes. These results suggest that MhcII, mainly expressed in B cells and dendritic cells, play an essential role in antigen presentation, and respond significantly to exogenous antigens and T cell-dependent antigens. These results may provide an important reference for the study of cellular immunity in teleosts. Full article
Show Figures

Figure 1

19 pages, 4084 KiB  
Article
Proteomic and Phosphoproteomic Analysis Reveals Differential Immune Response to Hirame Novirhabdovirus (HIRRV) Infection in the Flounder (Paralichthys olivaceus) under Different Temperature
by Xiaoqian Tang, Yingfeng Zhang, Jing Xing, Xiuzhen Sheng, Heng Chi and Wenbin Zhan
Biology 2023, 12(8), 1145; https://doi.org/10.3390/biology12081145 - 18 Aug 2023
Cited by 1 | Viewed by 1685
Abstract
Hirame novirhabdovirus (HIRRV) is one of most serious viral pathogens causing significant economic losses to the flounder (Paralichthys olivaceus)-farming industry. Previous studies have shown that the outbreak of HIRRV is highly temperature-dependent, and revealed the viral replication was significantly affected by [...] Read more.
Hirame novirhabdovirus (HIRRV) is one of most serious viral pathogens causing significant economic losses to the flounder (Paralichthys olivaceus)-farming industry. Previous studies have shown that the outbreak of HIRRV is highly temperature-dependent, and revealed the viral replication was significantly affected by the antiviral response of flounders under different temperatures. In the present study, the proteome and phosphoproteome was used to analyze the different antiviral responses in the HIRRV-infected flounder under 10 °C and 20 °C. Post viral infection, 472 differentially expressed proteins (DEPs) were identified in the spleen of flounder under 10 °C, which related to NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, RNA transport and so on. Under 20 °C, 652 DEPs were identified and involved in focal adhesion, regulation of actin cytoskeleton, phagosome, NOD-like receptor signaling pathway and RIG-I-like receptor signaling pathway. Phosphoproteome analysis showed that 675 differentially expressed phosphoproteins (DEPPs) were identified in the viral infected spleen under 10 °C and significantly enriched in Spliceosome, signaling pathway, necroptosis and RNA transport. Under 20 °C, 1304 DEPPs were identified and significantly enriched to Proteasome, VEGF signaling pathway, apoptosis, Spliceosome, mTOR signaling pathway, mRNA surveillance pathway, and RNA transport. To be noted, the proteins and phosphoproteins involved in interferon production and signaling showed significant upregulations in the viral infected flounder under 20 °C compared with that under 10 °C. Furthermore, the temporal expression profiles of eight selected antiviral-related mRNA including IRF3, IRF7, IKKβ, TBK1, IFIT1, IFI44, MX1 and ISG15 were detected by qRT-PCR, which showed a significantly stronger response at early infection under 20 °C. These results provided fundamental resources for subsequent in-depth research on the HIRRV infection mechanism and the antiviral immunity of flounder, and also gives evidences for the high mortality of HIRRV-infected flounder under low temperature. Full article
Show Figures

Figure 1

17 pages, 10105 KiB  
Article
Identification and Characterization of Infectious Pathogens Associated with Mass Mortalities of Pacific Oyster (Crassostrea gigas) Cultured in Northern China
by Xiang Zhang, Bo-Wen Huang, Yu-Dong Zheng, Lu-Sheng Xin, Wen-Bo Chen, Tao Yu, Chen Li, Chong-Ming Wang and Chang-Ming Bai
Biology 2023, 12(6), 759; https://doi.org/10.3390/biology12060759 - 23 May 2023
Cited by 10 | Viewed by 3141
Abstract
The Pacific oyster (Crassostrea gigas) aquaculture industry increased rapidly in China with the introduction and promotion of triploid oysters in recent years. Mass mortalities affecting different life stages of Pacific oysters emerged periodically in several important production areas of Northern China. [...] Read more.
The Pacific oyster (Crassostrea gigas) aquaculture industry increased rapidly in China with the introduction and promotion of triploid oysters in recent years. Mass mortalities affecting different life stages of Pacific oysters emerged periodically in several important production areas of Northern China. During 2020 and 2021, we conducted a passive two-year investigation of infectious pathogens linked to mass mortality. Ostreid herpesvirus-1 (OsHV-1) was detected to be associated with mass mortalities of hatchery larvae, but not juveniles and adults in the open sea. Protozoan parasites, such as Marteilia spp., Perkinsus spp. and Bonamia spp. were not detected. Bacterial isolation and identification revealed that Vibrio natriegens and Vibrio alginolyticus were the most frequently (9 out of 13) identified two dominant bacteria associated with mass mortalities. Pseudoalteromonas spp. was identified as the dominant bacteria in three mortality events that occurred during the cold season. Further bacteriological analysis was conducted on two representative isolates of V. natriegens and V. alginolyticus, designated as CgA1-1 and CgA1-2. Multisequence analysis (MLSA) showed that CgA1-1 and CgA1-2 were closely related to each other and nested within the Harveyi clade. Bacteriological investigation revealed faster growth, and more remarkable haemolytic activity and siderophore production capacity at 25 °C than at 15 °C for both CgA1-1 and CgA1-2. The accumulative mortalities of experimental immersion infections were also higher at 25 °C (90% and 63.33%) than at 15 °C (43.33% and 33.33%) using both CgA1-1 and CgA1-2, respectively. Similar clinical and pathological features were identified in samples collected during both naturally and experimentally occurring mortalities, such as thin visceral mass, discolouration, and connective tissue and digestive tube lesions. The results presented here highlight the potential risk of OsHV-1 to hatchery production of larvae, and the pathogenic role of V. natriegens and V. alginolyticus during mass mortalities of all life stages of Pacific oysters in Northern China. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

20 pages, 1452 KiB  
Review
Streptococcus agalactiae Infection in Nile Tilapia (Oreochromis niloticus): A Review
by Ebtsam Sayed Hassan Abdallah, Walaa Gomaa Mohamed Metwally, Mootaz Ahmed Mohamed Abdel-Rahman, Marco Albano and Mahmoud Mostafa Mahmoud
Biology 2024, 13(11), 914; https://doi.org/10.3390/biology13110914 - 11 Nov 2024
Viewed by 585
Abstract
Streptococcus agalactiae (Group B Lancefield) has emerged as a significant pathogen affecting both humans and animals, including aquatic species. Infections caused by S. agalactiae are becoming a growing concern in aquaculture and have been reported globally in various freshwater and marine fish species, [...] Read more.
Streptococcus agalactiae (Group B Lancefield) has emerged as a significant pathogen affecting both humans and animals, including aquatic species. Infections caused by S. agalactiae are becoming a growing concern in aquaculture and have been reported globally in various freshwater and marine fish species, particularly those inhabiting warm water environments. This has led to numerous outbreaks with high morbidity and mortality in fish. Nile tilapia (Oreochromis niloticus), a member of the Cichlid family, is one of the severely affected fish species by S. agalactiae. The current study aims to focus on S. agalactiae infection in cultured O. niloticus with reference to its transmission and sources of infection; risk factors influencing GBS infection, disease clinical signs, lesions, and pathogenesis; S. agalactiae virulence factors; and how to diagnose, treat, control, and prevent infection including vaccination and herbal extract medication. Full article
Show Figures

Figure 1

19 pages, 985 KiB  
Review
Genetics and Genomics of Infectious Diseases in Key Aquaculture Species
by Nguyen Hong Nguyen
Biology 2024, 13(1), 29; https://doi.org/10.3390/biology13010029 - 4 Jan 2024
Cited by 2 | Viewed by 3319
Abstract
Diseases pose a significant and pressing concern for the sustainable development of the aquaculture sector, particularly as their impact continues to grow due to climatic shifts such as rising water temperatures. While various approaches, ranging from biosecurity measures to vaccines, have been devised [...] Read more.
Diseases pose a significant and pressing concern for the sustainable development of the aquaculture sector, particularly as their impact continues to grow due to climatic shifts such as rising water temperatures. While various approaches, ranging from biosecurity measures to vaccines, have been devised to combat infectious diseases, their efficacy is disease and species specific and contingent upon a multitude of factors. The fields of genetics and genomics offer effective tools to control and prevent disease outbreaks in aquatic animal species. In this study, we present the key findings from our recent research, focusing on the genetic resistance to three specific diseases: White Spot Syndrome Virus (WSSV) in white shrimp, Bacterial Necrotic Pancreatitis (BNP) in striped catfish, and skin fluke (a parasitic ailment) in yellowtail kingfish. Our investigations reveal that all three species possess substantial heritable genetic components for disease-resistant traits, indicating their potential responsiveness to artificial selection in genetic improvement programs tailored to combat these diseases. Also, we observed a high genetic association between disease traits and survival rates. Through selective breeding aimed at enhancing resistance to these pathogens, we achieved substantial genetic gains, averaging 10% per generation. These selection programs also contributed positively to the overall production performance and productivity of these species. Although the effects of selection on immunological traits or immune responses were not significant in white shrimp, they yielded favorable results in striped catfish. Furthermore, our genomic analyses, including shallow genome sequencing of pedigreed populations, enriched our understanding of the genomic architecture underlying disease resistance traits. These traits are primarily governed by a polygenic nature, with numerous genes or genetic variants, each with small effects. Leveraging a range of advanced statistical methods, from mixed models to machine and deep learning, we developed prediction models that demonstrated moderate-to-high levels of accuracy in forecasting these disease-related traits. In addition to genomics, our RNA-seq experiments identified several genes that undergo upregulation in response to infection or viral loads within the populations. Preliminary microbiome data, while offering limited predictive accuracy for disease traits in one of our studied species, underscore the potential for combining such data with genome sequence information to enhance predictive power for disease traits in our populations. Lastly, this paper briefly discusses the roles of precision agriculture systems and AI algorithms and outlines the path for future research to expedite the development of disease-resistant genetic lines tailored to our target species. In conclusion, our study underscores the critical role of genetics and genomics in fortifying the aquaculture sector against the threats posed by diseases, paving the way for more sustainable and resilient aquaculture development. Full article
Show Figures

Figure 1

33 pages, 2630 KiB  
Review
Synbiotic Agents and Their Active Components for Sustainable Aquaculture: Concepts, Action Mechanisms, and Applications
by Vijayaram Srirengaraj, Hary L. Razafindralambo, Holy N. Rabetafika, Huu-Thanh Nguyen and Yun-Zhang Sun
Biology 2023, 12(12), 1498; https://doi.org/10.3390/biology12121498 - 6 Dec 2023
Cited by 1 | Viewed by 2871
Abstract
Aquaculture is a fast-emerging food-producing sector in which fishery production plays an imperative socio-economic role, providing ample resources and tremendous potential worldwide. However, aquatic animals are exposed to the deterioration of the ecological environment and infection outbreaks, which represent significant issues nowadays. One [...] Read more.
Aquaculture is a fast-emerging food-producing sector in which fishery production plays an imperative socio-economic role, providing ample resources and tremendous potential worldwide. However, aquatic animals are exposed to the deterioration of the ecological environment and infection outbreaks, which represent significant issues nowadays. One of the reasons for these threats is the excessive use of antibiotics and synthetic drugs that have harmful impacts on the aquatic atmosphere. It is not surprising that functional and nature-based feed ingredients such as probiotics, prebiotics, postbiotics, and synbiotics have been developed as natural alternatives to sustain a healthy microbial environment in aquaculture. These functional feed additives possess several beneficial characteristics, including gut microbiota modulation, immune response reinforcement, resistance to pathogenic organisms, improved growth performance, and enhanced feed utilization in aquatic animals. Nevertheless, their mechanisms in modulating the immune system and gut microbiota in aquatic animals are largely unclear. This review discusses basic and current research advancements to fill research gaps and promote effective and healthy aquaculture production. Full article
Show Figures

Figure 1

Back to TopTop