Mitochondrial Genome Instability in W303-SK1 Yeast Cytoplasmic Hybrids
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Yeast Strains and Growth Conditions
2.2. Comparison of SK1 and W303 Genomes
2.3. Yeast Cybrid Strain Construction and Confirmation
2.4. Suppressivity Test (rho− mtDNA)
2.5. Growth Kinetics
2.6. Respirometry
2.7. Statistics, Data Visualization, and Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roger, A.J.; Muñoz-Gómez, S.A.; Kamikawa, R. The Origin and Diversification of Mitochondria. Curr. Biol. 2017, 27, R1177–R1192. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuis, B.P.S.; James, T.Y. The Frequency of Sex in Fungi. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2016, 371, 20150540. [Google Scholar] [CrossRef]
- Jakubke, C.; Roussou, R.; Maiser, A.; Schug, C.; Thoma, F.; Bunk, D.; Hörl, D.; Leonhardt, H.; Walter, P.; Klecker, T.; et al. Cristae-Dependent Quality Control of the Mitochondrial Genome. Sci. Adv. 2021, 7, eabi8886. [Google Scholar] [CrossRef] [PubMed]
- Roussou, R.; Metzler, D.; Padovani, F.; Thoma, F.; Schwarz, R.; Shraiman, B.; Schmoller, K.M.; Osman, C. Real-Time Assessment of Mitochondrial DNA Heteroplasmy Dynamics at the Single-Cell Level. EMBO J. 2024. [Google Scholar] [CrossRef]
- Dimitrov, L.N.; Brem, R.B.; Kruglyak, L.; Gottschling, D.E. Polymorphisms in Multiple Genes Contribute to the Spontaneous Mitochondrial Genome Instability of Saccharomyces Cerevisiae S288C Strains. Genetics 2009, 183, 365–383. [Google Scholar] [CrossRef]
- Contamine, V.; Picard, M. Maintenance and Integrity of the Mitochondrial Genome: A Plethora of Nuclear Genes in the Budding Yeast. Microbiol. Mol. Biol. Rev. 2000, 64, 281–315. [Google Scholar] [CrossRef]
- Stenberg, S.; Li, J.; Gjuvsland, A.B.; Persson, K.; Demitz-Helin, E.; González Peña, C.; Yue, J.-X.; Gilchrist, C.; Ärengård, T.; Ghiaci, P.; et al. Genetically Controlled mtDNA Deletions Prevent ROS Damage by Arresting Oxidative Phosphorylation. Elife 2022, 11, e76095. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.R.; Zeyl, C.; Cooke, E. Conflicting Levels of Selection in the Accumulation of Mitochondrial Defects in Saccharomyces Cerevisiae. Proc. Natl. Acad. Sci. USA 2002, 99, 3690–3694. [Google Scholar] [CrossRef]
- Kashko, N.D.; Karavaeva, I.; Glagoleva, E.S.; Logacheva, M.D.; Garushyants, S.K.; Knorre, D.A. Inheritance Bias of Deletion-Harbouring mtDNA in Yeast: The Role of Copy Number and Intracellular Selection. bioRxiv 2024. [CrossRef]
- Chambers, P.; Gingold, E. A Direct Study of the Relative Synthesis of Petite and Grande Mitochondrial DNA in Zygotes from Crosses Involving Suppressive Petite Mutants of Saccharomyces Cerevisiae. Curr. Genet. 1986, 10, 565–571. [Google Scholar] [CrossRef]
- Karavaeva, I.E.; Golyshev, S.A.; Smirnova, E.A.; Sokolov, S.S.; Severin, F.F.; Knorre, D.A. Mitochondrial Depolarization in Yeast Zygotes Inhibits Clonal Expansion of Selfish mtDNA. J. Cell Sci. 2017, 130, 1274–1284. [Google Scholar] [CrossRef] [PubMed]
- Blanc, H.; Dujon, B. Replicator Regions of the Yeast Mitochondrial DNA Responsible for Suppressiveness. Proc. Natl. Acad. Sci. USA 1980, 77, 3942–3946. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, E.; Yoshida, M.; Ling, F. Regulation of Small Mitochondrial DNA Replicative Advantage by Ribonucleotide Reductase in Saccharomyces Cerevisiae. G3 2017, 7, 3083–3090. [Google Scholar] [CrossRef] [PubMed]
- Corbi, D.; Amon, A. Decreasing Mitochondrial RNA Polymerase Activity Reverses Biased Inheritance of Hypersuppressive mtDNA. PLoS Genet. 2021, 17, e1009808. [Google Scholar] [CrossRef]
- Zweifel, S.G.; Fangman, W.L. A Nuclear Mutation Reversing a Biased Transmission of Yeast Mitochondrial DNA. Genetics 1991, 128, 241–249. [Google Scholar] [CrossRef]
- Kleff, S.; Kemper, B.; Sternglanz, R. Identification and Characterization of Yeast Mutants and the Gene for a Cruciform Cutting Endonuclease. EMBO J. 1992, 11, 699–704. [Google Scholar] [CrossRef]
- Hagström, E.; Freyer, C.; Battersby, B.J.; Stewart, J.B.; Larsson, N.-G. No Recombination of mtDNA after Heteroplasmy for 50 Generations in the Mouse Maternal Germline. Nucleic Acids Res. 2014, 42, 1111–1116. [Google Scholar] [CrossRef]
- Fritsch, E.S.; Chabbert, C.D.; Klaus, B.; Steinmetz, L.M. A Genome-Wide Map of Mitochondrial DNA Recombination in Yeast. Genetics 2014, 198, 755–771. [Google Scholar] [CrossRef]
- Michaelis, G.; Petrochilo, E.; Slonimski, P.P. Mitochondrial Genetics. 3. Recombined Molecules of Mitochondrial DNA Obtained from Crosses between Cytoplasmic Petite Mutants of Saccharomyces Cerevisiae: Physical and Genetic Characterization. Mol. Gen. Genet. 1973, 123, 51–65. [Google Scholar] [CrossRef]
- Sherman, F. Getting Started with Yeast. Methods Enzymol. 2002, 350, 3–41. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Galkina, K.V.; Zubareva, V.M.; Kashko, N.D.; Lapashina, A.S.; Markova, O.V.; Feniouk, B.A.; Knorre, D.A. Heterogeneity of Starved Yeast Cells in IF1 Levels Suggests the Role of This Protein in Vivo. Front. Microbiol. 2022, 13, 816622. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Dey, R.; Barrientos, A.; Moraes, C.T. Functional Constraints of Nuclear-Mitochondrial DNA Interactions in Xenomitochondrial Rodent Cell Lines. J. Biol. Chem. 2000, 275, 31520–31527. [Google Scholar] [CrossRef]
- Latorre-Pellicer, A.; Moreno-Loshuertos, R.; Lechuga-Vieco, A.V.; Sánchez-Cabo, F.; Torroja, C.; Acín-Pérez, R.; Calvo, E.; Aix, E.; González-Guerra, A.; Logan, A.; et al. Mitochondrial and Nuclear DNA Matching Shapes Metabolism and Healthy Ageing. Nature 2016, 535, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Jhuang, H.-Y.; Lee, H.-Y.; Leu, J.-Y. Mitochondrial-Nuclear Co-Evolution Leads to Hybrid Incompatibility through Pentatricopeptide Repeat Proteins. EMBO Rep. 2017, 18, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, L.; Moraes, C.T. Expanding the Functional Human Mitochondrial DNA Database by the Establishment of Primate Xenomitochondrial Cybrids. Proc. Natl. Acad. Sci. USA 1997, 94, 9131–9135. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Chou, J.-Y.; Cheong, L.; Chang, N.-H.; Yang, S.-Y.; Leu, J.-Y. Incompatibility of Nuclear and Mitochondrial Genomes Causes Hybrid Sterility between Two Yeast Species. Cell 2008, 135, 1065–1073. [Google Scholar] [CrossRef]
- Burton, R.S.; Barreto, F.S. A Disproportionate Role for mtDNA in Dobzhansky-Muller Incompatibilities? Mol. Ecol. 2012, 21, 4942–4957. [Google Scholar] [CrossRef]
- Voth, W.P.; Olsen, A.E.; Sbia, M.; Freedman, K.H.; Stillman, D.J. ACE2, CBK1, and BUD4 in Budding and Cell Separation. Eukaryot. Cell 2005, 4, 1018–1028. [Google Scholar] [CrossRef]
- Kane, S.M.; Roth, R. Carbohydrate Metabolism during Ascospore Development in Yeast. J. Bacteriol. 1974, 118, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Zhuk, A.S.; Lada, A.G.; Pavlov, Y.I. Polymorphism of Saccharomyces Cerevisiae Strains in DNA Metabolism Genes. Int. J. Mol. Sci. 2023, 24, 7795. [Google Scholar] [CrossRef] [PubMed]
- Loeillet, S.; Nicolas, A. DNA Polymerase δ: A Single Pol31 Polymorphism Suppresses the Strain Background-Specific Lethality of Pol32 Inactivation in Saccharomyces Cerevisiae. DNA Repair 2023, 127, 103514. [Google Scholar] [CrossRef] [PubMed]
- Conrad, M.; Schothorst, J.; Kankipati, H.N.; Van Zeebroeck, G.; Rubio-Texeira, M.; Thevelein, J.M. Nutrient Sensing and Signaling in the Yeast Saccharomyces Cerevisiae. FEMS Microbiol. Rev. 2014, 38, 254–299. [Google Scholar] [CrossRef]
- Paliwal, S.; Fiumera, A.C.; Fiumera, H.L. Mitochondrial-Nuclear Epistasis Contributes to Phenotypic Variation and Coadaptation in Natural Isolates of Saccharomyces Cerevisiae. Genetics 2014, 198, 1251–1265. [Google Scholar] [CrossRef]
- Nguyen, T.H.M.; Sondhi, S.; Ziesel, A.; Paliwal, S.; Fiumera, H.L. Mitochondrial-Nuclear Coadaptation Revealed through mtDNA Replacements in Saccharomyces Cerevisiae. BMC Evol. Biol. 2020, 20, 128. [Google Scholar] [CrossRef]
- Schaack, S.; Ho, E.K.H.; Macrae, F. Disentangling the Intertwined Roles of Mutation, Selection and Drift in the Mitochondrial Genome. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020, 375, 20190173. [Google Scholar] [CrossRef]
- Røyrvik, E.C.; Johnston, I.G. MtDNA Sequence Features Associated with “Selfish Genomes” Predict Tissue-Specific Segregation and Reversion. Nucleic Acids Res. 2020, 48, 8290–8301. [Google Scholar] [CrossRef] [PubMed]
- Kotrys, A.V.; Durham, T.J.; Guo, X.A.; Vantaku, V.R.; Parangi, S.; Mootha, V.K. Single-Cell Analysis Reveals Context-Dependent, Cell-Level Selection of mtDNA. Nature 2024, 629, 458–466. [Google Scholar] [CrossRef]
- Conde, J.; Fink, G.R. A Mutant of Saccharomyces Cerevisiae Defective for Nuclear Fusion. Proc. Natl. Acad. Sci. USA 1976, 73, 3651–3655. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Epremyan, K.K.; Burlaka, A.A.; Markova, O.V.; Galkina, K.V.; Knorre, D.A. Mitochondrial Genome Instability in W303-SK1 Yeast Cytoplasmic Hybrids. Biology 2024, 13, 927. https://doi.org/10.3390/biology13110927
Epremyan KK, Burlaka AA, Markova OV, Galkina KV, Knorre DA. Mitochondrial Genome Instability in W303-SK1 Yeast Cytoplasmic Hybrids. Biology. 2024; 13(11):927. https://doi.org/10.3390/biology13110927
Chicago/Turabian StyleEpremyan, Khoren K., Arteom A. Burlaka, Olga V. Markova, Kseniia V. Galkina, and Dmitry A. Knorre. 2024. "Mitochondrial Genome Instability in W303-SK1 Yeast Cytoplasmic Hybrids" Biology 13, no. 11: 927. https://doi.org/10.3390/biology13110927
APA StyleEpremyan, K. K., Burlaka, A. A., Markova, O. V., Galkina, K. V., & Knorre, D. A. (2024). Mitochondrial Genome Instability in W303-SK1 Yeast Cytoplasmic Hybrids. Biology, 13(11), 927. https://doi.org/10.3390/biology13110927