Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry
Simple Summary
Abstract
1. Introduction
2. Heat Stress Response
3. Heat Stress and Neuroendocrinology
3.1. Hypothalamic–Pituitary–Adrenal Axis (HPA)
3.2. Hypothalamic–Pituitary–Thyroid Axis (HPT)
3.3. Hypothalamic–Pituitary–Gonadal Axis (HPGA)
3.4. Sympathetic–Adrenal Medullary Axis (SAM)
4. Heat Stress and Organ Damage
4.1. Liver
4.2. Enteric
4.3. Lung
4.4. Immune Organs: Bursa of Fabricius, Spleen, and Thymus
4.5. Neuroendocrine System, Immunity, and Organ Damage
5. Nutritional Measures to Reduce Heat Stress in Poultry
5.1. Natural Plants
5.2. Probiotics
5.3. Amino Acids
5.4. Nanomaterials
5.5. Antioxidants
5.6. Nutritional Initiatives in Poultry Farming
6. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Heat Stress Treatment | Species | Main Findings About HPA | HPT | HPGA | SAM | Other Results About Organ Damage | REF | |
---|---|---|---|---|---|---|---|---|
CHS | 35 °C from 09:00 to 17:00 followed by 24 °C for the remaining time during 22–42 days of age | Male broiler chicks “Cobb500™” | ·Significantly increased serum CORT | ·Decreased serum T3 | ·Significantly increased serum H/L ·Increased serum AST and ALT | [50] | ||
34–36 °C for 5–7 h per day followed by 24 °C for 42 days | Mixed-sex Ross 308 broiler chicks | ·Significantly increased serum CORT | ·Decreased serum T3 ·No notable disparities in the levels of T4 and TSH. | ·Significantly increased serum AST and ALT ·Significantly decreased total lactic acid bacteria (LABC) counts in cecal ·Significantly increased total E. coli count (EC) and total coliform bacteria (CBC) in cecal | [52] | |||
37 ± 2 °C for 8 h/d (09:00–17:00) followed by 24 ± 2 °C for 16 h/d during 28–42 days of age | White feather broilers | ·Significantly increased CORT and ACTH concentrations in serum | ·Significantly increased T3 and T4 concentrations in serum | ·Decreased V/D in the jejunum ·Increased levels of apoptosis of the spleen ·Reduced splenic pro-inflammatory cytokine concentrations. | [25] | |||
32–36 °C during 14–42 days of age with different groups of period: ①heat stress from 11:00 to 12:00 ②from 11:00 to 13:00 ③from 11:00 to 14:00 | Cobb Slow™ and Hubbard Flex™ strains male chicks | ·No difference of T3 and T4 concentration ·Well-preserved thyroid morphology | [55] | |||||
33 ± 2 °C during 2–6 weeks of age | Unsexed Japanese quail chicks | ·No difference of T3 and T4 concentration and T3/T4 ratio | [54] | |||||
34 °C for 4 h from 12:00 to 16:00 for 10 days | Female Japanese quail (Coturnix japonica) | ·Significantly increased serum corticosterone after 30 min of heat challenge with no difference after 2 h | ·Decreased ovary weight, oviduct weight, and hierarchical follicle number | [32] | ||||
35 °C during 30–34 weeks of age | Hy-Line Brown laying hens | ·Increased plasma CORT | ·Decreased total egg number (EN), average egg weight (EW) | ·Increased H/L ·Significantly declined the VH and CD of layer intestines ·Clear villi disruptions | [175] | |||
35 ± 2 °C during 22–38 weeks of age | Hy-Line Brown hens | ·Significantly decreased CORT: Levels of CORT peaked at 26 wk of age, compared to that at 22 wk of age, and decreased until 38 wk of age. | ·Significantly decreased the levels of LH, estradiol, and FSH | [66] | ||||
34 °C for 28 days | Laying Fujian shelducks ducks | ·Increased plasma CORT | ·Less eggshell strength, eggshell thickness, and Haugh unit of the eggs ·Lighter yolk color ·Increased MDA content in yolk ·No differences in the egg shape index and albumen height ·Relatively reduced oviductal weights and shorter oviducts ·No differences in the number of large ovarian follicles ·Damaged tubular gland and the secretory mucosa cells of the magnum (oviduct) ·Interrupted connections between cells with the mucous lamina propria of the shell gland edematous in the ducks | ·Evident necrosis of the intestinal epithelium | [176] | |||
35 °C for 10 h/d followed by 29.5 °C for 14 h/d from 85% lay for 3 weeks | Pekin ducks | ·Significantly increased serum corticosterone and cortisol levels in female ducks, and no significant increase in male ducks | ·Significantly decreased in egg production at weeks 1 and 3 ·Decreased fertile eggs upon candling at 10 days of incubation ·Decreased hatched chicks after the incubation period ·Increase dead embryo upon hatching ·Decreased number of maturing ovarian follicles in female ducks ·No significant differences in the relative weights of spleen or testes in male ducks | [64] | ||||
35 ± 2 °C for 4 weeks | Jinding ducks | ·Significantly decreased laying rate, total egg weight, average egg weight, yolk weight, eggshell weight, eggshell strength, yolk ratio, and eggshell thickness ·No significant difference in egg shape index, Haugh unit, or albumen height ·Heat stress affects the production performance and egg quality of Jinding ducks by regulating the secretion of endocrine-related hormones and the release of neurotransmitters as well as the expression of miRNAs and mRNAs in pituitary and ovarian tissues. | [177] | |||||
34 ± 1 °C for 8 h per day for 18 days | Female Arbor Acres broilers | ·Increased serum CRH | ·Increased serum epinephrine | ·Decreased bursal index | [178] | |||
34 ± 1 °C from 09:00 to 17:00 followed by 24 ± 1 °C for the remaining time during 22–42 days of age | Male broiler chicks (Cobb500™) | ·Significantly increased serum corticosterone | ·Significantly increased H/L ·Significantly increased activity ALT and AST as well as the levels of creatinine and urea, indicating negative impacts of heat stress on liver functions | [123] | ||||
32 °C during 28–42 days of age | Arbor Acres male broilers | ·Significantly increased CRF level after 7 d of heat exposure in plasma ·Significantly increased CORT level after 7 d and of heat exposure in plasma | ·Significant increased panting after 7 d and 14 d of treatment ·Decreased thymus index after 7 d of heat exposure ·Lower organ indexes for the thymus and bursa of Fabricius after 14 d of heat exposure | [14] | ||||
34 ± 1 °C from 09:00 to 18:00 followed by 26 ± 1 °C from 18:00 to 9:00 during 28–49 days of age | White recessive rock (WRR) chickens and the Lingshan (LS) chickens | ·Significantly increased CORT concentrations in serum, with higher levels in the LS broilers | ·Higher H/L in blood | [26] | ||||
32 °C during 28–42 days of age | Male broiler chickens (Arbor Acres) | ·Significantly increased CORT concentrations in serum after 7 days of heat exposure ·No significant difference in CORT concentrations in serum after 14 days of heat exposure | ·Higher respiratory rates after 2 h, 3 D, and 7 D of heat exposure ·Increased relative weights of abdominal fat and liver | [86] | ||||
34 ± 1 °C during 17–23 d of ages | Male broilers (Cobb 500) | ·Increased serum CORT | [75] | |||||
35 °C for 16 h per day during 28–42 d of ages | Male broilers (Cobb 500) | ·Increased serum CORT | ·Increased serum H/L | [179] | ||||
34 ± 1 °C from 10:00 to 16:00 followed by 23 ± 1 °C for the remaining time during 22–42 days of age | Male broilers (Cobb 500) | ·Increased serum CORT | [27] | |||||
Two groups: 31 ± 1 °C and 36 ± 1 °C from 8:00 to 18:00 followed by 21 ± 1 °C for the remaining time during 35–42 days of age | Male broiler chickens | ·Increased serum CORT | ·Decreased relative weights of the spleen and thymus only in the HS36 °C group ·Decreased weight in the bursa of Fabricius in the HS31 °C and HS36 °C groups | [180] | ||||
34 ± 1 °C from 9:00 to 17:00 followed by 22 ± 1 °C for the remaining time during 22–42 days of age | Male Arbor Acres broiler chicks | ·Increased serum CORT | ·Significantly decreased weights of breast muscle, liver, and spleen | [181] | ||||
32 ± 1 °C from 10:00 to 16:00 for 9 weeks | Roman egg-laying hens | ·Increased serum CORT | ·Increased H/L ·Increased serum ALT activity ·Decreased liver weight | [182] | ||||
31–32 °C for 8 h per day followed by 27–28 °C during 22–42 d of ages | Ross 308 male broiler chickens | ·Increased feather CORT concentrations | ·Increased blood H/L | [28] | ||||
32 °C during 21–28 days and 30 °C during 29–35 days of age from 10:00 to 18:00, followed by 26 °C during 21–28 days and 24 °C during 29–35 days of age for the remaining time | Ross 308 male broiler chicks | ·Increased CORT in feather | [29] | |||||
35 °C from 8:00 to 16:00 during 24–38 days of age | Japanese quail (Coturnix coturnix Japonica) | ·No difference in CORT concentration in male birds ·Higher urate sphere corticosterone metabolite concentration | [183] | |||||
The temperature was increased from 24 °C at 8:30 during a 2-h period (about +0.1 °C/min) and maintained at 34 ± 1 °C until 16:30, then the temperature was gradually lowered returning to 24 °C approximately by 19:30 during 9 days. The following 3 days were used as a recovery period, reestablishing the thermoneutral temperatures (24 ± 2 °C). | Female Japanese quail | ·No difference in CORT concentration | ·Increased H/L | [184] | ||||
CHS and AHS | ·Chronic heat stress treatment: 30 ± 2 °C for 10 days ·Acute heat stress treatment: 35 ± 2 °C from 09:00 to 13:00 followed by 20 ± 2 °C from 13:00 to 09:00 during 26–35 days of age | Hubbard classic broiler chicks | ·Exposed to chronic heat stress: higher serum CORT levels on Day 3 ·Exposed to acute heat stress: the highest serum corticosterone levels on Days 3 and 10 | ·Both acute and chronic treatment: higher levels of serum endotoxins ·The highest prevalence of meat Salmonella infection in the chronic treatment in the liver followed by the acute heat stress treatment | [109] | |||
AHS | Acute cyclical heat stress: 40 ± 1 °C from 10:00 to 14:00 for 7 days at 5 weeks of age | CARIBRO Vishal broilers | ·Circulating corticosterone concentrations showed an inverse relationship concerning BW variation and HS duration | ·Tri-iodothyronine concentrations showed an inverse relationship concerning BW variation and HS duration | ·Reduced villi length and crypt depth | [185] | ||
35 ± 1 °C for 8 h at the age of Day 31 | Ross 708 male broiler chicks | ·Higher level of circulating CORT ·Decreased expression of corticotropin-releasing hormone receptor 1 (CRHR1) and increased expression of CRHR2 in the pituitary | ·Significantly decreased plasma T3 by 62% and contrastingly increased circulating levels of T4 by 38% ·Increased expression of thyroid-stimulating hormone β (TSHβ) and thyroid hormone receptor β (TRβ) in the pituitary | ·Higher mortality rate (20%) ·Higher blood pH ·Decreased pCO2 HCO3, K+, and total CO2 levels | [12] | |||
38 °C for 4 h at the age of 30 weeks | Broiler-type B-strain and 192 layer-type L2-strain TCCs roosters | ·Increased plasma corticosterone levels | ·Significantly decreased plasma T3 levels | ·Decreased sperm motility, viability, and concentrations in both strains TCCs on Day 1 after the stress ·Recovered semen quality of the B-strain TCCs by Day 7 ·Lower semen quality of the L2-strain TCCs on Day 7 after the stress. | [51] | |||
35–37 °C for 5 days (S1–S5) followed by 24–26 °C for 15 days (R1–R15) | Hy-Line Brown laying hens | ·Increased levels of corticotrophin-releasing hormone and corticosterone | ·Decreased laying rates from day S3 to R6 ·Reduced numbers of large yellow and hierarchical follicles ·Triggered apoptosis while increasing the expression of FasL, Fas, TNF-α, and TNF-receptor 1 in small and large yellow follicles ·Decreasing the estradiol/progesterone ratio in follicular fluid in small and large yellow follicles. | [15] | ||||
40 ± 0.5 °C for 2 h from 12:00 to 14:00 | Wenchang chicks | ·In female chicks, hypothalamic ERKs were upregulated in Weeks 1 and 2 while JNK and p38 were downregulated. ·Pituitary MAPKs were all downregulated in Week 3, but p38 was upregulated in Week 4. ·In the HS group, ovarian MAPKs were all upregulated during Week 5, whereas ERK was downregulated in Week 6. ·In contrast to the patterns of MAPK expression in female chicks, ERK in male chicks showed an opposite pattern in Weeks 1, 2, and 5, while p38 and JNK were downregulated in both female and male chicks under HS during Weeks 2 and 3. ·In the HS group, pituitary and testis MAPKs showed a pattern opposite to that observed in female chicks in Week 5; MAPKs were all downregulated. | [186] | |||||
35 ± 1 °C for 3 h | Male broilers (Arbor Acres) | ·Increased plasma CORT but with no statistical difference | ·Significantly increased respiratory rate and rectal temperature | [187] | ||||
34 ± 1 °C for 24 h | Female Arbor Acres broiler chicks | ·Increased serum CORT, ACTH, and CRH | ·Increased serum dopamine and adrenaline | [71] | ||||
25 ± 0.9 °C for 6 days followed by 38 °C for 24 h | meat quails (Coturnix coturnix coturnix) | ·Decreased T3 levels | ·Decreased weight of the liver ·Lower lymphocyte percentage, greater eosinophil percentage, and increased H/L ratio | [49] |
References
- Liu, L.; Ren, M.; Ren, K.; Jin, Y.; Yan, M. Heat stress impacts on broiler performance: A systematic review and meta-analysis. Poult. Sci. 2020, 99, 6205–6211. [Google Scholar] [CrossRef] [PubMed]
- Nawab, A.; Ibtisham, F.; Li, G.; Kieser, B.; Wu, J.; Liu, W.; Zhao, Y.; Nawab, Y.; Li, K.; Xiao, M.; et al. Heat stress in poultry production: Mitigation strategies to overcome the future challenges facing the global poultry industry. J. Therm. Biol. 2018, 78, 131–139. [Google Scholar] [CrossRef]
- Shakeri, M.; Oskoueian, E.; Le, H.H.; Shakeri, M. Strategies to Combat Heat Stress in Broiler Chickens: Unveiling the Roles of Selenium, Vitamin E and Vitamin C. Vet. Sci. 2020, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.R.; Alagawany, M. Physiological alterations of poultry to the high environmental temperature. J. Therm. Biol. 2018, 76, 101–106. [Google Scholar] [CrossRef]
- Ncho, C.M.; Gupta, V.; Choi, Y.-H. Effects of Dietary Glutamine Supplementation on Heat-Induced Oxidative Stress in Broiler Chickens: A Systematic Review and Meta-Analysis. Antioxidants 2023, 12, 570. [Google Scholar] [CrossRef]
- Chrousos, G.P. Organization and Integration of the Endocrine System: The Arousal and Sleep Perspective. Sleep Med. Clin. 2007, 2, 125–145. [Google Scholar] [CrossRef]
- Scanes, C. Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poult. Sci. 2016, 95, 2208–2215. [Google Scholar] [CrossRef]
- Rostagno, M.H. Effects of heat stress on the gut health of poultry. J. Anim. Sci. 2020, 98, skaa090. [Google Scholar] [CrossRef]
- Nawaz, A.H.; Amoah, K.; Leng, Q.Y.; Zheng, J.H.; Zhang, W.L.; Zhang, L. Poultry Response to Heat Stress: Its Physiological, Metabolic, and Genetic Implications on Meat Production and Quality Including Strategies to Improve Broiler Production in a Warming World. Front. Vet. Sci. 2021, 8, 699081. [Google Scholar] [CrossRef]
- Goel, A.; Ncho, C.M.; Choi, Y.-H. Regulation of gene expression in chickens by heat stress. J. Anim. Sci. Biotechnol. 2021, 12, 11. [Google Scholar] [CrossRef]
- Dwyer, J.B.; Aftab, A.; Radhakrishnan, R.; Widge, A.; Rodriguez, C.I.; Carpenter, L.L.; Nemeroff, C.B.; McDonald, W.M.; Kalin, N.H. APA Council of Research Task Force on Novel Biomarkers and Treatments Hormonal Treatments for Major Depressive Disorder: State of the Art. Am. J. Psychiatry 2020, 177, 686–705. [Google Scholar] [CrossRef]
- Beckford, R.C.; Ellestad, L.E.; Proszkowiec-Weglarz, M.; Farley, L.; Brady, K.; Angel, R.; Liu, H.-C.; Porter, T.E. Effects of heat stress on performance, blood chemistry, and hypothalamic and pituitary mRNA expression in broiler chickens. Poult. Sci. 2020, 99, 6317–6325. [Google Scholar] [CrossRef]
- Hammel, H.T. Regulation of internal body temperature. Annu. Rev. Physiol. 1968, 30, 641–710. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Bian, J.; Xing, T.; Zhao, L.; Li, J.; Zhang, L.; Gao, F. Effects of guanidinoacetic acid supplementation on growth performance, hypothalamus-pituitary-adrenal axis, and immunity of broilers challenged with chronic heat stress. Poult. Sci. 2023, 102, 103114. [Google Scholar] [CrossRef]
- Li, G.; Liu, L.; Yin, B.; Liu, Y.; Dong, W.; Gong, S.; Zhang, J.; Tan, J. Heat stress decreases egg production of laying hens by inducing apoptosis of follicular cells via activating the FasL/Fas and TNF-α systems. Poult. Sci. 2020, 99, 6084–6093. [Google Scholar] [CrossRef] [PubMed]
- Karaca, Z.; Grossman, A.; Kelestimur, F. Investigation of the Hypothalamo-pituitary-adrenal (HPA) axis: A contemporary synthesis. Rev. Endocr. Metab. Disord. 2021, 22, 179–204. [Google Scholar] [CrossRef] [PubMed]
- Bamberger, C.M.; Schulte, H.M.; Chrousos, G.P. Molecular determinants of glucocorticoid receptor function and tissue sensitivity to glucocorticoids. Endocr. Rev. 1996, 17, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, K.G.; Robbins, L.S.; Mortrud, M.T.; Cone, R.D. The cloning of a family of genes that encode the melanocortin receptors. Science 1992, 257, 1248–1251. [Google Scholar] [CrossRef]
- Smith, S.M.; Vale, W.W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006, 8, 383–395. [Google Scholar] [CrossRef]
- Mormède, P.; Andanson, S.; Aupérin, B.; Beerda, B.; Guémené, D.; Malmkvist, J.; Manteca, X.; Manteuffel, G.; Prunet, P.; van Reenen, C.G.; et al. Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiol. Behav. 2007, 92, 317–339. [Google Scholar] [CrossRef]
- Reul, J.M.; de Kloet, E.R. Two receptor systems for corticosterone in rat brain: Microdistribution and differential occupation. Endocrinology 1985, 117, 2505–2511. [Google Scholar] [CrossRef] [PubMed]
- Sanson, A.; Riva, M.A. Anti-stress Properties of Atypical Antipsychotics. Pharmaceuticals 2020, 13, 322. [Google Scholar] [CrossRef] [PubMed]
- Scammell, J.G.; Denny, W.B.; Valentine, D.L.; Smith, D.F. Overexpression of the FK506-binding immunophilin FKBP51 is the common cause of glucocorticoid resistance in three New World primates. Gen. Comp. Endocrinol. 2001, 124, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Touma, C.; Gassen, N.C.; Herrmann, L.; Cheung-Flynn, J.; Büll, D.R.; Ionescu, I.A.; Heinzmann, J.-M.; Knapman, A.; Siebertz, A.; Depping, A.-M.; et al. FK506 binding protein 5 shapes stress responsiveness: Modulation of neuroendocrine reactivity and coping behavior. Biol. Psychiatry 2011, 70, 928–936. [Google Scholar] [CrossRef] [PubMed]
- Meng, T.; Deng, J.; Xiao, D.; Arowolo, M.A.; Liu, C.; Chen, L.; Deng, W.; He, S.; He, J. Protective Effects and Potential Mechanisms of Dietary Resveratrol Supplementation on the Spleen of Broilers Under Heat Stress. Front. Nutr. 2022, 9, 821272. [Google Scholar] [CrossRef]
- Xu, Y.; Lai, X.; Li, Z.; Zhang, X.; Luo, Q. Effect of chronic heat stress on some physiological and immunological parameters in different breed of broilers. Poult. Sci. 2018, 97, 4073–4082. [Google Scholar] [CrossRef]
- Ramiah, S.K.; Awad, E.A.; Mookiah, S.; Idrus, Z. Effects of zinc oxide nanoparticles on growth performance and concentrations of malondialdehyde, zinc in tissues, and corticosterone in broiler chickens under heat stress conditions. Poult. Sci. 2019, 98, 3828–3838. [Google Scholar] [CrossRef]
- Kim, D.Y.; Kim, J.H.; Choi, W.J.; Han, G.P.; Kil, D.Y. Comparative effects of dietary functional nutrients on growth performance, meat quality, immune responses, and stress biomarkers in broiler chickens raised under heat stress conditions. Anim. Biosci. 2021, 34, 1839–1848. [Google Scholar] [CrossRef]
- Kim, D.; Lim, B.; Kim, J.; Kil, D. Integrated transcriptome analysis for the hepatic and jejunal mucosa tissues of broiler chickens raised under heat stress conditions. J. Anim. Sci. Biotechnol. 2022, 13, 79. [Google Scholar] [CrossRef]
- Oladokun, S.; Adewole, D. Research Note: Non-invasive urate sphere corticosterone metabolite as a novel biomarker for heat stress in poultry. Poult. Sci. 2024, 103, 103439. [Google Scholar] [CrossRef]
- Oladokun, S.; Adewole, D.I. Biomarkers of heat stress and mechanism of heat stress response in Avian species: Current insights and future perspectives from poultry science. J. Therm. Biol. 2022, 110, 103332. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Nagaoka, K.; Watanabe, G. Yolk immunoreactive corticosterone in hierarchical follicles of Japanese quail (Coturnix japonica) exposed to heat challenge. Gen. Comp. Endocrinol. 2019, 279, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Munck, A.; Guyre, P.M.; Holbrook, N.J. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr. Rev. 1984, 5, 25–44. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cai, H.Y.; Liu, G.H.; Dong, X.L.; Chang, W.H.; Zhang, S.; Zheng, A.J.; Chen, G.L. Effects of stress simulated by dexamethasone on jejunal glucose transport in broilers. Poult. Sci. 2009, 88, 330–337. [Google Scholar] [CrossRef]
- Shimizu, N.; Yoshikawa, N.; Ito, N.; Maruyama, T.; Suzuki, Y.; Takeda, S.; Nakae, J.; Tagata, Y.; Nishitani, S.; Takehana, K.; et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab. 2011, 13, 170–182. [Google Scholar] [CrossRef]
- Schiaffino, S.; Dyar, K.A.; Ciciliot, S.; Blaauw, B.; Sandri, M. Mechanisms regulating skeletal muscle growth and atrophy. FEBS J. 2013, 280, 4294–4314. [Google Scholar] [CrossRef]
- Zhou, H.; Cooper, M.S.; Seibel, M.J. Endogenous Glucocorticoids and Bone. Bone Res. 2013, 1, 107–119. [Google Scholar] [CrossRef]
- Groothuis, T.; Hsu, B.; Kumar, N.; Tschirren, B. Revisiting mechanisms and functions of prenatal hormone-mediated maternal effects using avian species as a model. Philos. Trans. R. Soc. B-Biol. Sci. 2019, 374, 20180115. [Google Scholar] [CrossRef]
- Oluwagbenga, E.; Tetel, V.; Tonissen, S.; Karcher, D.; Fraley, G. Chronic treatment with glucocorticoids does not affect egg quality but increases cortisol deposition into egg albumen and elicits changes to the heterophil to lymphocyte ratio in a sex-dependent manner. Front. Physiol. 2023, 14, 1132728. [Google Scholar] [CrossRef]
- Oluwagbenga, E.; Tetel, V.; Schober, J.; Fraley, G. Chronic Heat Stress Part 2: Increased Stress and Fear Responses in F1 Pekin Ducks Raised from Parents That Experienced Heat Stress. Animals 2023, 13, 1748. [Google Scholar] [CrossRef]
- Helmreich, D.L.; Tylee, D. Thyroid Hormone Regulation by Stress and Behavioral Differences in Adult Male Rats. Horm. Behav. 2011, 60, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Joseph-Bravo, P.; Jaimes-Hoy, L.; Charli, J.-L. Advances in TRH signaling. Rev. Endocr. Metab. Disord. 2016, 17, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Parra-Montes de Oca, M.A.; Sotelo-Rivera, I.; Gutiérrez-Mata, A.; Charli, J.-L.; Joseph-Bravo, P. Sex Dimorphic Responses of the Hypothalamus-Pituitary-Thyroid Axis to Energy Demands and Stress. Front. Endocrinol. 2021, 12, 746924. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.; Zhang, H.; Guan, S.; Zhao, Q.; Shan, Y. Receptor modulators associated with the hypothalamus -pituitary-thyroid axis. Front. Pharmacol. 2023, 14, 1291856. [Google Scholar] [CrossRef]
- Rosenthal, L.J.; Goldner, W.S.; O’Reardon, J.P. T3 Augmentation in Major Depressive Disorder: Safety Considerations. Am. J. Psychiatry 2011, 168, 1035–1040. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Chauhan, S.S.; Ha, M.; Fegan, N.; Dunshea, F.R.; Warner, R.D. Effects of heat stress on animal physiology, metabolism, and meat quality: A review. Meat Sci. 2020, 162, 108025. [Google Scholar] [CrossRef]
- Geraert, P.A.; Padilha, J.C.; Guillaumin, S. Metabolic and endocrine changes induced by chronic heat exposure in broiler chickens: Biological and endocrinological variables. Br. J. Nutr. 1996, 75, 205–216. [Google Scholar] [CrossRef]
- Bowen, S.J.; Washburn, K.W.; Huston, T.M. Involvement of the Thyroid Gland in the Response of Young Chickens to Heat Stress1. Poult. Sci. 1984, 63, 66–69. [Google Scholar] [CrossRef]
- Del Vesco, A.P.; Gasparino, E.; Zancanela, V.; Grieser, D.O.; Stanquevis, C.E.; Pozza, P.C.; Oliveira Neto, A.R. Effects of selenium supplementation on the oxidative state of acute heat stress-exposed quails. J. Anim. Physiol. Anim. Nutr. 2017, 101, 170–179. [Google Scholar] [CrossRef]
- Alaqil, A.A.; Abd El-Atty, H.K.; Abbas, A.O. Intermittent Lighting Program Relieves the Deleterious Effect of Heat Stress on Growth, Stress Biomarkers, Physiological Status, and Immune Response of Broiler Chickens. Animals 2022, 12, 1834. [Google Scholar] [CrossRef]
- Zhuang, Z.-X.; Chen, S.-E.; Chen, C.-F.; Lin, E.-C.; Huang, S.-Y. Single-nucleotide polymorphisms in genes related to oxidative stress and ion channels in chickens are associated with semen quality and hormonal responses to thermal stress. J. Therm. Biol. 2022, 105, 103220. [Google Scholar] [CrossRef] [PubMed]
- Hatipoglu, D.; Senturk, G.; Aydin, S.S.; Kirar, N.; Top, S.; Demircioglu, İ. Rye-grass-derived probiotics alleviate heat stress effects on broiler growth, health, and gut microbiota. J. Therm. Biol. 2024, 119, 103771. [Google Scholar] [CrossRef] [PubMed]
- Sohail, M.; Ijaz, A.; Yousaf, M.; Ashraf, K.; Zaneb, H.; Aleem, M.; Rehman, H. Alleviation of cyclic heat stress in broilers by dietary supplementation of mannan-oligosaccharide and Lactobacillus-based probiotic: Dynamics of cortisol, thyroid hormones, cholesterol, C-reactive protein, and humoral immunity. Poult. Sci. 2010, 89, 1934–1938. [Google Scholar] [CrossRef]
- El-Kholy, M.S.; El-Hindawy, M.M.; Alagawany, M.; Abd El-Hack, M.E.; El-Sayed, S.A.E.-G.A.E.-H. Dietary Supplementation of Chromium Can Alleviate Negative Impacts of Heat Stress on Performance, Carcass Yield, and Some Blood Hematology and Chemistry Indices of Growing Japanese Quail. Biol. Trace Elem. Res. 2017, 179, 148–157. [Google Scholar] [CrossRef]
- Bueno, J.P.R.; Gotardo, L.R.M.; Dos Santos, A.M.; Litz, F.H.; Olivieri, O.C.L.; Alves, R.L.O.R.; Moraes, C.A.; de Mattos Nascimento, M.R.B. Effect of cyclic heat stress on thyroidal hormones, thyroid histology, and performance of two broiler strains. Int. J. Biometeorol. 2020, 64, 1125–1132. [Google Scholar] [CrossRef]
- Jiang, S.; Mohammed, A.A.; Jacobs, J.A.; Cramer, T.A.; Cheng, H.W. Effect of synbiotics on thyroid hormones, intestinal histomorphology, and heat shock protein 70 expression in broiler chickens reared under cyclic heat stress. Poult. Sci. 2020, 99, 142–150. [Google Scholar] [CrossRef]
- Castañeda Cortés, D.C.; Langlois, V.S.; Fernandino, J.I. Crossover of the hypothalamic pituitary-adrenal/interrenal, -thyroid, and -gonadal axes in testicular development. Front. Endocrinol. 2014, 5, 139. [Google Scholar] [CrossRef]
- De Groef, B.; Goris, N.; Arckens, L.; Kuhn, E.R.; Darras, V.M. Corticotropin-releasing hormone (CRH)-induced thyrotropin release is directly mediated through CRH receptor type 2 on thyrotropes. Endocrinology 2003, 144, 5537–5544. [Google Scholar] [CrossRef]
- Phumsatitpong, C.; Wagenmaker, E.R.; Moenter, S.M. Neuroendocrine interactions of the stress and reproductive axes. Front. Neuroendocr. 2021, 63, 100928. [Google Scholar] [CrossRef]
- Yan, X.; Liu, H.; Hu, J.; Han, X.; Qi, J.; Ouyang, Q.; Hu, B.; He, H.; Li, L.; Wang, J.; et al. Transcriptomic analyses of the HPG axis-related tissues reveals potential candidate genes and regulatory pathways associated with egg production in ducks. BMC Genom. 2022, 23, 281. [Google Scholar] [CrossRef]
- Tsutsui, K.; Saigoh, E.; Ukena, K.; Teranishi, H.; Fujisawa, Y.; Kikuchi, M.; Ishii, S.; Sharp, P.J. A Novel Avian Hypothalamic Peptide Inhibiting Gonadotropin Release. Biochem. Biophys. Res. Commun. 2000, 275, 661–667. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.L.; Ubuka, T.; Tsutsui, K. Regulation of stress response on the hypothalamic-pituitary-gonadal axis via gonadotropin-inhibitory hormone. Front. Neuroendocr. 2022, 64, 100953. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, V.S.; Tomonaga, S.; Nishimura, S.; Tabata, S.; Cockrem, J.F.; Tsutsui, K.; Furuse, M. Hypothalamic gonadotropin-inhibitory hormone precursor mRNA is increased during depressed food intake in heat-exposed chicks. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2012, 162, 227–233. [Google Scholar] [CrossRef]
- Oluwagbenga, E.; Tetel, V.; Schober, J.; Fraley, G. Chronic heat stress part 1: Decrease in egg quality, increase in cortisol levels in egg albumen, and reduction in fertility of breeder pekin ducks. Front. Physiol. 2022, 13, 1019741. [Google Scholar] [CrossRef] [PubMed]
- Oluwagbenga, E.M.; Fraley, G.S. Heat stress and poultry production: A comprehensive review. Poult. Sci. 2023, 102, 103141. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Tong, Q.; Shi, Z.; Li, H.; Wang, Y.; Li, B.; Yan, G.; Chen, H.; Zheng, W. Effects of chronic heat stress and ammonia concentration on blood parameters of laying hens. Poult. Sci. 2020, 99, 3784–3792. [Google Scholar] [CrossRef]
- Donoghue, D.J.; Krueger, B.F.; Hargis, B.M.; Miller, A.M.; Halawani, M.E. Thermal Stress Reduces Serum Luteinizing Hormone and Bioassayable Hypothalamic Content of Luteinizing Hormone-Releasing Hormone in Hens1. Biol. Reprod. 1989, 41, 419–424. [Google Scholar] [CrossRef]
- Rozenboim, I.; Tabibzadeh, C.; Silsby, J.L.; el Halawani, M.E. Effect of ovine prolactin administration on hypothalamic vasoactive intestinal peptide (VIP), gonadotropin releasing hormone I and II content, and anterior pituitary VIP receptors in laying turkey hens. Biol. Reprod. 1993, 48, 1246–1250. [Google Scholar] [CrossRef]
- Wolfenson, D.; Frei, Y.F.; Snapir, N.; Berman, A. Heat stress effects on capillary blood flow and its redistribution in the laying hen. Pflug. Arch. Eur. J. Physiol. 1981, 390, 86–93. [Google Scholar] [CrossRef]
- Goldstein, D.S.; Kopin, I.J. Adrenomedullary, adrenocortical, and sympathoneural responses to stressors: A meta-analysis. Endocr. Regul. 2008, 42, 111–119. [Google Scholar]
- Li, Q.; Zhou, H.; Ouyang, J.; Guo, S.; Zheng, J.; Li, G. Effects of dietary tryptophan supplementation on body temperature, hormone, and cytokine levels in broilers exposed to acute heat stress. Trop. Anim. Health Prod. 2022, 54, 164. [Google Scholar] [CrossRef] [PubMed]
- Bernet, F.; Dedieu, J.F.; Laborie, C.; Montel, V.; Dupouy, J.P. Circulating neuropeptide Y (NPY) and catecholamines in rat under resting and stress conditions. Arguments for extra-adrenal origin of NPY, adrenal and extra-adrenal sources of catecholamines. Neurosci. Lett. 1998, 250, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Dennis, R. Adrenergic and noradrenergic regulation of poultry behavior and production. Domest. Anim. Endocrinol. 2016, 56, S94–S100. [Google Scholar] [CrossRef] [PubMed]
- William Tank, A.; Lee Wong, D. Peripheral and Central Effects of Circulating Catecholamines. In Comprehensive Physiology; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 1–15. ISBN 978-0-470-65071-4. [Google Scholar]
- Calefi, A.S.; Fonseca, J.G.S.; Nunes, C.A.Q.; Lima, A.P.N.; Quinteiro-Filho, W.M.; Flório, J.C.; Zager, A.; Ferreira, A.J.P.; Palermo-Neto, J. Heat Stress Modulates Brain Monoamines and Their Metabolites Production in Broiler Chickens Co-Infected with Clostridium perfringens Type A and Eimeria spp. Vet. Sci. 2019, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Lyte, J.; Lyte, M.; Daniels, K.; Oluwagbenga, E.; Fraley, G. Catecholamine concentrations in duck eggs are impacted by hen exposure to heat stress. Front. Physiol. 2023, 14, 1122414. [Google Scholar] [CrossRef]
- Yan, F.; Hester, P.; Enneking, S.; Cheng, H. Effects of perch access and age on physiological measures of stress in caged White Leghorn pullets. Poult. Sci. 2013, 92, 2853–2859. [Google Scholar] [CrossRef]
- Ma, B.; Xing, T.; Li, J.; Zhang, L.; Jiang, Y.; Gao, F. Chronic heat stress causes liver damage via endoplasmic reticulum stress-induced apoptosis in broilers. Poult. Sci. 2022, 101, 102063. [Google Scholar] [CrossRef]
- Oretomiloye, F.; Adewole, D. Exploring the modulatory effects of brown seaweed meal and extracts on intestinal microbiota and morphology of broiler chickens challenged with heat stress. Poult. Sci. 2024, 103, 103562. [Google Scholar] [CrossRef]
- Yang, Y.; Li, C.; Liu, N.; Wang, M.; Zhou, X.; Kim, I.H.; Wu, Z. Ursolic acid alleviates heat stress-induced lung injury by regulating endoplasmic reticulum stress signaling in mice. J. Nutr. Biochem. 2021, 89, 108557. [Google Scholar] [CrossRef]
- Liu, W.; Ou, B.; Liang, Z.; Zhang, R.; Zhao, Z. Algae-derived polysaccharides supplementation ameliorates heat stress-induced impairment of bursa of Fabricius via modulating NF-κB signaling pathway in broilers. Poult. Sci. 2021, 100, 101139. [Google Scholar] [CrossRef]
- Mao, Y.; Kong, X.; Liang, Z.; Yang, C.; Wang, S.; Fan, H.; Ning, C.; Xiao, W.; Wu, Y.; Wu, J.; et al. Viola yedoensis Makino alleviates heat stress-induced inflammation, oxidative stress, and cell apoptosis in the spleen and thymus of broilers. J. Ethnopharmacol. 2024, 319, 117350. [Google Scholar] [CrossRef] [PubMed]
- Emami, N.K.; Jung, U.; Voy, B.; Dridi, S. Radical Response: Effects of Heat Stress-Induced Oxidative Stress on Lipid Metabolism in the Avian Liver. Antioxidants 2020, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Dixon, J.B. Mechanisms of chylomicron uptake into lacteals. Ann. N. Y. Acad. Sci. 2010, 1207, E52–E57. [Google Scholar] [CrossRef]
- Hermier, D. Lipoprotein Metabolism and Fattening in Poultry1. J. Nutr. 1997, 127, 805S–808S. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; He, X.F.; Ma, B.B.; Zhang, L.; Li, J.L.; Jiang, Y.; Zhou, G.H.; Gao, F. Increased fat synthesis and limited apolipoprotein B cause lipid accumulation in the liver of broiler chickens exposed to chronic heat stress. Poult. Sci. 2019, 98, 3695–3704. [Google Scholar] [CrossRef]
- Lu, Z.; He, X.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Dietary taurine supplementation decreases fat synthesis by suppressing the liver X receptor α pathway and alleviates lipid accumulation in the liver of chronic heat-stressed broilers. J. Sci. Food Agric. 2019, 99, 5631–5637. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, H.; Cong, W.; Zhang, K.; Jia, Y.; Wu, L. Chronic Heat Stress Affects Bile Acid Profile and Gut Microbiota in Broilers. Int. J. Mol. Sci. 2023, 24, 10238. [Google Scholar] [CrossRef]
- Fang, W.; Wen, X.; Meng, Q.; Wu, W.; Everaert, N.; Xie, J.; Zhang, H. Alteration in bile acids profile in Large White pigs during chronic heat exposure. J. Therm. Biol. 2019, 84, 375–383. [Google Scholar] [CrossRef]
- Kim, D.Y.; Han, G.P.; Lim, C.; Kim, J.-M.; Kil, D.Y. Effect of dietary betaine supplementation on the liver transcriptome profile in broiler chickens under heat stress conditions. Anim. Biosci. 2023, 36, 1632–1646. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Ding, K.-N.; Shen, X.-L.; Liu, H.-X.; Zhang, Y.-A.; Liu, Y.-Q.; He, Y.-M.; Tang, L.-P. Chronic heat stress promotes liver inflammation in broilers via enhancing NF-κB and NLRP3 signaling pathway. BMC Vet. Res. 2022, 18, 289. [Google Scholar] [CrossRef]
- Ding, K.-N.; Lu, M.-H.; Guo, Y.-N.; Liang, S.-S.; Mou, R.-W.; He, Y.-M.; Tang, L.-P. Resveratrol relieves chronic heat stress-induced liver oxidative damage in broilers by activating the Nrf2-Keap1 signaling pathway. Ecotoxicol. Environ. Saf. 2023, 249, 114411. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.-P.; Liu, Y.-L.; Zhang, J.-X.; Ding, K.-N.; Lu, M.-H.; He, Y.-M. Heat stress in broilers of liver injury effects of heat stress on oxidative stress and autophagy in liver of broilers. Poult. Sci. 2022, 101, 102085. [Google Scholar] [CrossRef] [PubMed]
- Lan, R.; Luo, H.; Wu, F.; Wang, Y.; Zhao, Z. Chitosan Oligosaccharides Alleviate Heat-Stress-Induced Lipid Metabolism Disorders by Suppressing the Oxidative Stress and Inflammatory Response in the Liver of Broilers. Antioxidants 2023, 12, 1497. [Google Scholar] [CrossRef] [PubMed]
- Tokutake, Y.; Takanashi, R.; Kikusato, M.; Toyomizu, M.; Sato, K. Effect of Dietary 4-Phenylbuthyric Acid Supplementation on Acute Heat-Stress-Induced Hyperthermia in Broiler Chickens. Animals 2022, 12, 2056. [Google Scholar] [CrossRef]
- Jing, J.; Zeng, H.; Shao, Q.; Tang, J.; Wang, L.; Jia, G.; Liu, G.; Chen, X.; Tian, G.; Cai, J.; et al. Selenomethionine alleviates environmental heat stress induced hepatic lipid accumulation and glycogen infiltration of broilers via maintaining mitochondrial and endoplasmic reticulum homeostasis. Redox Biol. 2023, 67, 102912. [Google Scholar] [CrossRef]
- Tan, G.-Y.; Yang, L.; Fu, Y.-Q.; Feng, J.-H.; Zhang, M.-H. Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chickens. Poult. Sci. 2010, 89, 115–122. [Google Scholar] [CrossRef]
- Deeb, N.; Cahaner, A. Genotype-by-environment interaction with broiler genotypes differing in growth rate. 3. Growth rate and water consumption of broiler progeny from weight-selected versus nonselected parents under normal and high ambient temperatures. Poult. Sci. 2002, 81, 293–301. [Google Scholar] [CrossRef]
- Park, J.S.; Kang, D.R.; Shim, K.S. Proteomic changes in broiler liver by body weight differences under chronic heat stress. Poult. Sci. 2022, 101, 101794. [Google Scholar] [CrossRef]
- Lim, C.; Lim, B.; Kil, D.Y.; Kim, J.M. Hepatic transcriptome profiling according to growth rate reveals acclimation in metabolic regulatory mechanisms to cyclic heat stress in broiler chickens. Poult. Sci. 2022, 101, 102167. [Google Scholar] [CrossRef]
- Li, T.; He, W.; Liao, X.; Lin, X.; Zhang, L.; Lu, L.; Guo, Y.; Liu, Z.; Luo, X. Zinc alleviates the heat stress of primary cultured hepatocytes of broiler embryos via enhancing the antioxidant ability and attenuating the heat shock responses. Anim. Nutr. 2021, 7, 621–630. [Google Scholar] [CrossRef]
- He, X.; Lu, Z.; Ma, B.; Zhang, L.; Li, J.; Jiang, Y.; Zhou, G.; Gao, F. Effects of chronic heat exposure on growth performance, intestinal epithelial histology, appetite-related hormones and genes expression in broilers. J. Sci. Food Agric. 2018, 98, 4471–4478. [Google Scholar] [CrossRef] [PubMed]
- Tsiouris, V.; Georgopoulou, I.; Batzios, C.; Pappaioannou, N.; Ducatelle, R.; Fortomaris, P. Heat stress as a predisposing factor for necrotic enteritis in broiler chicks. Avian Pathol. 2018, 47, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Won, S.Y.; Han, G.P.; Kwon, C.H.; Lee, E.C.; Kil, D.Y. Effect of individual or combination of dietary betaine and glycine on productive performance, stress response, liver health, and intestinal barrier function in broiler chickens raised under heat stress conditions. Poult. Sci. 2023, 102, 102771. [Google Scholar] [CrossRef] [PubMed]
- Ruff, J.; Barros, T.L.; Tellez, G.; Blankenship, J.; Lester, H.; Graham, B.D.; Selby, C.A.M.; Vuong, C.N.; Dridi, S.; Greene, E.S.; et al. Research Note: Evaluation of a heat stress model to induce gastrointestinal leakage in broiler chickens. Poult. Sci. 2020, 99, 1687–1692. [Google Scholar] [CrossRef] [PubMed]
- Mehaisen, G.M.K.; Ibrahim, R.M.; Desoky, A.A.; Safaa, H.M.; El-Sayed, O.A.; Abass, A.O. The importance of propolis in alleviating the negative physiological effects of heat stress in quail chicks. PLoS ONE 2017, 12, e0186907. [Google Scholar] [CrossRef]
- Wasti, S.; Sah, N.; Singh, A.K.; Lee, C.N.; Jha, R.; Mishra, B. Dietary supplementation of dried plum: A novel strategy to mitigate heat stress in broiler chickens. J. Anim. Sci. Biotechnol. 2021, 12, 58. [Google Scholar] [CrossRef]
- Pearce, S.C.; Mani, V.; Boddicker, R.L.; Johnson, J.S.; Weber, T.E.; Ross, J.W.; Rhoads, R.P.; Baumgard, L.H.; Gabler, N.K. Heat stress reduces intestinal barrier integrity and favors intestinal glucose transport in growing pigs. PLoS ONE 2013, 8, e70215. [Google Scholar] [CrossRef]
- Alhenaky, A.; Abdelqader, A.; Abuajamieh, M.; Al-Fataftah, A.-R. The effect of heat stress on intestinal integrity and Salmonella invasion in broiler birds. J. Therm. Biol. 2017, 70, 9–14. [Google Scholar] [CrossRef]
- Aburto, M.R.; Cryan, J.F. Gastrointestinal and brain barriers: Unlocking gates of communication across the microbiota–gut–brain axis. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 222–247. [Google Scholar] [CrossRef]
- Loh, J.S.; Mak, W.Q.; Tan, L.K.S.; Ng, C.X.; Chan, H.H.; Yeow, S.H.; Foo, J.B.; Ong, Y.S.; How, C.W.; Khaw, K.Y. Microbiota–gut–brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct. Target. Ther. 2024, 9, 37. [Google Scholar] [CrossRef]
- Wickramasuriya, S.S.; Park, I.; Lee, K.; Lee, Y.; Kim, W.H.; Nam, H.; Lillehoj, H.S. Role of Physiology, Immunity, Microbiota, and Infectious Diseases in the Gut Health of Poultry. Vaccines 2022, 10, 172. [Google Scholar] [CrossRef] [PubMed]
- Wasti, S.; Sah, N.; Mishra, B. Impact of Heat Stress on Poultry Health and Performances, and Potential Mitigation Strategies. Animals 2020, 10, 1266. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, M.; Cottrell, J.J.; Wilkinson, S.; Le, H.H.; Suleria, H.A.R.; Warner, R.D.; Dunshea, F.R. Growth Performance and Characterization of Meat Quality of Broiler Chickens Supplemented with Betaine and Antioxidants under Cyclic Heat Stress. Antioxidants 2019, 8, 336. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.-H.; Ding, K.-N.; Liang, S.-S.; Guo, Y.-N.; He, Y.-M.; Tang, L.-P. Resveratrol inhibits oxidative damage in lungs of heat-stressed broilers by activating Nrf2 signaling pathway and autophagy. Ecotoxicol. Environ. Saf. 2023, 258, 114949. [Google Scholar] [CrossRef]
- Bhattacharya, J.; Matthay, M.A. Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu. Rev. Physiol. 2013, 75, 593–615. [Google Scholar] [CrossRef]
- Leiby, K.L.; Raredon, M.S.B.; Niklason, L.E. Bioengineering the Blood-gas Barrier. Compr. Physiol. 2020, 10, 415–452. [Google Scholar] [CrossRef]
- Wang, P.; Luo, R.; Zhang, M.; Wang, Y.; Song, T.; Tao, T.; Li, Z.; Jin, L.; Zheng, H.; Chen, W.; et al. A cross-talk between epithelium and endothelium mediates human alveolar-capillary injury during SARS-CoV-2 infection. Cell Death Dis. 2020, 11, 1042. [Google Scholar] [CrossRef]
- Wu, X.-Y.; Wang, F.-Y.; Chen, H.-X.; Dong, H.-L.; Zhao, Z.-Q.; Si, L.-F. Chronic heat stress induces lung injury in broiler chickens by disrupting the pulmonary blood-air barrier and activating TLRs/NF-κB signaling pathway. Poult. Sci. 2023, 102, 103066. [Google Scholar] [CrossRef]
- Liu, X.-D.; Zhang, F.; Shan, H.; Wang, S.-B.; Chen, P.-Y. mRNA expression in different developmental stages of the chicken bursa of Fabricius. Poult. Sci. 2016, 95, 1787–1794. [Google Scholar] [CrossRef]
- He, S.; Yu, Q.; He, Y.; Hu, R.; Xia, S.; He, J. Dietary resveratrol supplementation inhibits heat stress-induced high-activated innate immunity and inflammatory response in spleen of yellow-feather broilers. Poult. Sci. 2019, 98, 6378–6387. [Google Scholar] [CrossRef]
- Hirakawa, R.; Nurjanah, S.; Furukawa, K.; Murai, A.; Kikusato, M.; Nochi, T.; Toyomizu, M. Heat Stress Causes Immune Abnormalities via Massive Damage to Effect Proliferation and Differentiation of Lymphocytes in Broiler Chickens. Front. Vet. Sci. 2020, 7, 46. [Google Scholar] [CrossRef] [PubMed]
- Alzarah, M.I.; Althobiati, F.; Abbas, A.O.; Mehaisen, G.M.K.; Kamel, N.N. Citrullus colocynthis Seeds: A Potential Natural Immune Modulator Source for Broiler Reared under Chronic Heat Stress. Animals 2021, 11, 1951. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.M.; Alqhtani, A.H.; Swelum, A.A.; Babalghith, A.O.; Melebary, S.J.; Soliman, S.M.; Khafaga, A.F.; Selim, S.; El-Saadony, M.T.; El-Tarabily, K.A.; et al. Heat stress in poultry with particular reference to the role of probiotics in its amelioration: An updated review. J. Therm. Biol. 2022, 108, 103302. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.H.; Hao, Y.; Wang, X.L. Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 2. Intestinal oxidative stress. Poult. Sci. 2012, 91, 790–799. [Google Scholar] [CrossRef]
- Zhou, J.-Y.; Zhong, H.-J.; Yang, C.; Yan, J.; Wang, H.-Y.; Jiang, J.-X. Corticosterone exerts immunostimulatory effects on macrophages via endoplasmic reticulum stress. Br. J. Surg. 2010, 97, 281–293. [Google Scholar] [CrossRef]
- Cain, D.W.; Cidlowski, J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 2017, 17, 233. [Google Scholar] [CrossRef]
- Chrousos, G.P. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 2009, 5, 374–381. [Google Scholar] [CrossRef]
- Pugin, J. How tissue injury alarms the immune system and causes a systemic inflammatory response syndrome. Ann. Intensive Care 2012, 2, 27. [Google Scholar] [CrossRef]
- Leon, L.R.; Helwig, B.G. Heat stroke: Role of the systemic inflammatory response. J. Appl. Physiol. 2010, 109, 1980–1988. [Google Scholar] [CrossRef]
- Ritter, M.J.; Amano, I.; Hollenberg, A.N. Thyroid Hormone Signaling and the Liver. Hepatology 2020, 72, 742–752. [Google Scholar] [CrossRef]
- Song, Y.; Xu, C.; Shao, S.; Liu, J.; Xing, W.; Xu, J.; Qin, C.; Li, C.; Hu, B.; Yi, S.; et al. Thyroid-stimulating hormone regulates hepatic bile acid homeostasis via SREBP-2/HNF-4α/CYP7A1 axis. J. Hepatol. 2015, 62, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pérez, L.; Guerra, B.; Díaz-Chico, J.C.; Flores-Morales, A. Estrogens regulate the hepatic effects of growth hormone, a hormonal interplay with multiple fates. Front. Endocrinol. 2013, 4, 66. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Chen, M.; Zeng, Q.; Lu, S.; Li, P.; Ma, Z.; Lin, N.; Zheng, C.; Zhou, H.; Zeng, S.; et al. Up-regulation of hepatic CD36 by increased corticosterone/cortisol levels via GR leads to lipid accumulation in liver and hypertriglyceridaemia during pregnancy. Br. J. Pharmacol. 2022, 179, 4440–4456. [Google Scholar] [CrossRef] [PubMed]
- Lelou, E.; Corlu, A.; Nesseler, N.; Rauch, C.; Mallédant, Y.; Seguin, P.; Aninat, C. The Role of Catecholamines in Pathophysiological Liver Processes. Cells 2022, 11, 1021. [Google Scholar] [CrossRef]
- Onagbesan, O.M.; Uyanga, V.A.; Oso, O.; Tona, K.; Oke, O.E. Alleviating heat stress effects in poultry: Updates on methods and mechanisms of actions. Front. Vet. Sci. 2023, 10, 1255520. [Google Scholar] [CrossRef]
- Behboodi, H.R.; Sedaghat, A.; Baradaran, A.; Nazarpak, H.H. The effects of the mixture of betaine, vitamin C, St John’s wort (Hypericum perforatum L.), lavender, and Melissa officinalis on performance and some physiological parameters in broiler chickens exposed to heat stress. Poult. Sci. 2021, 100, 101344. [Google Scholar] [CrossRef]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef]
- Hu, R.; He, Y.; Arowolo, M.A.; Wu, S.; He, J. Polyphenols as Potential Attenuators of Heat Stress in Poultry Production. Antioxidants 2019, 8, 67. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, F.; Li, Z.; Jin, X.; Chen, X.; Geng, Z.; Hu, H.; Zhang, C. Effects of Resveratrol on Growth Performance, Intestinal Development, and Antioxidant Status of Broilers under Heat Stress. Animals 2021, 11, 1427. [Google Scholar] [CrossRef]
- Liu, M.; Lu, Y.; Gao, P.; Xie, X.; Li, D.; Yu, D.; Yu, M. Effect of curcumin on laying performance, egg quality, endocrine hormones, and immune activity in heat-stressed hens. Poult. Sci. 2020, 99, 2196–2202. [Google Scholar] [CrossRef]
- Shakeri, A.; Zirak, M.R.; Wallace Hayes, A.; Reiter, R.; Karimi, G. Curcumin and its analogues protect from endoplasmic reticulum stress: Mechanisms and pathways. Pharmacol. Res. 2019, 146, 104335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bai, K.W.; He, J.; Niu, Y.; Lu, Y.; Zhang, L.; Wang, T. Curcumin attenuates hepatic mitochondrial dysfunction through the maintenance of thiol pool, inhibition of mtDNA damage, and stimulation of the mitochondrial thioredoxin system in heat-stressed broilers. J. Anim. Sci. 2018, 96, 867–879. [Google Scholar] [CrossRef] [PubMed]
- Beldowska, A.; Barszcz, M.; Dunislawska, A. State of the art in research on the gut-liver and gut-brain axis in poultry. J. Anim. Sci. Biotechnol. 2023, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Yan, F.-F.; Hu, J.-Y.; Mohammed, A.; Cheng, H.-W. Bacillus subtilis-Based Probiotic Improves Skeletal Health and Immunity in Broiler Chickens Exposed to Heat Stress. Animals 2021, 11, 1494. [Google Scholar] [CrossRef]
- Bermúdez-Humarán, L.G.; Salinas, E.; Ortiz, G.G.; Ramirez-Jirano, L.J.; Morales, J.A.; Bitzer-Quintero, O.K. From Probiotics to Psychobiotics: Live Beneficial Bacteria Which Act on the Brain-Gut Axis. Nutrients 2019, 11, 890. [Google Scholar] [CrossRef]
- Del Toro-Barbosa, M.; Hurtado-Romero, A.; Garcia-Amezquita, L.E.; García-Cayuela, T. Psychobiotics: Mechanisms of Action, Evaluation Methods and Effectiveness in Applications with Food Products. Nutrients 2020, 12, 3896. [Google Scholar] [CrossRef]
- Knezevic, J.; Starchl, C.; Tmava Berisha, A.; Amrein, K. Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function? Nutrients 2020, 12, 1769. [Google Scholar] [CrossRef]
- Ringseis, R.; Eder, K. Heat stress in pigs and broilers: Role of gut dysbiosis in the impairment of the gut-liver axis and restoration of these effects by probiotics, prebiotics and synbiotics. J. Anim. Sci. Biotechnol. 2022, 13, 126. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Jiang, S.; Jacobs, J.A.; Cheng, H.W. Effect of a synbiotic supplement on cecal microbial ecology, antioxidant status, and immune response of broiler chickens reared under heat stress. Poult. Sci. 2019, 98, 4408–4415. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.S. Benefits of probiotics and/or prebiotics for antibiotic-reduced poultry. Poult. Sci. 2018, 97, 3807–3815. [Google Scholar] [CrossRef]
- Tavaniello, S.; Slawinska, A.; Sirri, F.; Wu, M.; De Marzo, D.; Siwek, M.; Maiorano, G. Performance and meat quality traits of slow-growing chickens stimulated in ovo with galactooligosaccharides and exposed to heat stress. Poult. Sci. 2022, 101, 101972. [Google Scholar] [CrossRef] [PubMed]
- Elbaz, A.M.; Ashmawy, E.S.; Ali, S.A.M.; Mourad, D.M.; El-Samahy, H.S.; Badri, F.B.; Thabet, H.A. Effectiveness of probiotics and clove essential oils in improving growth performance, immuno-antioxidant status, ileum morphometric, and microbial community structure for heat-stressed broilers. Sci. Rep. 2023, 13, 18846. [Google Scholar] [CrossRef] [PubMed]
- Uyanga, V.A.; Oke, E.O.; Amevor, F.K.; Zhao, J.; Wang, X.; Jiao, H.; Onagbesan, O.M.; Lin, H. Functional roles of taurine, L-theanine, L-citrulline, and betaine during heat stress in poultry. J. Anim. Sci. Biotechnol. 2022, 13, 23. [Google Scholar] [CrossRef]
- Oke, O.E.; Akosile, O.A.; Oni, A.I.; Opowoye, I.O.; Ishola, C.A.; Adebiyi, J.O.; Odeyemi, A.J.; Adjei-Mensah, B.; Uyanga, V.A.; Abioja, M.O. Oxidative stress in poultry production. Poult. Sci. 2024, 103, 104003. [Google Scholar] [CrossRef]
- Sarsour, A.H.; Persia, M.E. Effects of sulfur amino acid supplementation on broiler chickens exposed to acute and chronic cyclic heat stress. Poult. Sci. 2022, 101, 101952. [Google Scholar] [CrossRef]
- Reyes Ocampo, J.; Lugo Huitrón, R.; González-Esquivel, D.; Ugalde-Muñiz, P.; Jiménez-Anguiano, A.; Pineda, B.; Pedraza-Chaverri, J.; Ríos, C.; Pérez de la Cruz, V. Kynurenines with neuroactive and redox properties: Relevance to aging and brain diseases. Oxidative Med. Cell. Longev. 2014, 2014, 646909. [Google Scholar] [CrossRef]
- Sun, M.; Ma, N.; He, T.; Johnston, L.J.; Ma, X. Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR). Crit. Rev. Food Sci. Nutr. 2020, 60, 1760–1768. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhou, H.; Li, Q.; Zheng, J.; Chen, C.; Guo, S.; You, J.; Li, G. Tryptophan Alleviates Acute Heat Stress-Induced Impairment of Antioxidant Status and Mitochondrial Function in Broilers. Front. Vet. Sci. 2022, 9, 863156. [Google Scholar] [CrossRef]
- Saeed, M.; Khan, M.S.; Kamboh, A.A.; Alagawany, M.; Khafaga, A.F.; Noreldin, A.E.; Qumar, M.; Safdar, M.; Hussain, M.; Abd El-Hack, M.E.; et al. L-theanine: An astounding sui generis amino acid in poultry nutrition. Poult. Sci. 2020, 99, 5625–5636. [Google Scholar] [CrossRef]
- Saeed, M.; Yatao, X.; Tiantian, Z.; Qian, R.; Chao, S. 16S ribosomal RNA sequencing reveals a modulation of intestinal microbiome and immune response by dietary L-theanine supplementation in broiler chickens. Poult. Sci. 2019, 98, 842–854. [Google Scholar] [CrossRef]
- Zhang, C.; Geng, Z.Y.; Chen, K.K.; Zhao, X.H.; Wang, C. L-theanine attenuates transport stress-induced impairment of meat quality of broilers through improving muscle antioxidant status. Poult. Sci. 2019, 98, 4648–4655. [Google Scholar] [CrossRef] [PubMed]
- Baxter, M.F.A.; Greene, E.S.; Kidd, M.T.; Tellez-Isaias, G.; Orlowski, S.; Dridi, S. Water amino acid-chelated trace mineral supplementation decreases circulating and intestinal HSP70 and proinflammatory cytokine gene expression in heat-stressed broiler chickens. J. Anim. Sci. 2020, 98, skaa049. [Google Scholar] [CrossRef] [PubMed]
- Michalak, I.; Dziergowska, K.; Alagawany, M.; Farag, M.R.; El-Shall, N.A.; Tuli, H.S.; Emran, T.B.; Dhama, K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet. Q. 2022, 42, 68–94. [Google Scholar] [CrossRef] [PubMed]
- Lochi, G.M.; Shah, M.G.; Gandahi, J.A.; Gadahi, J.A.; Hadi, S.A.; Farooq, T.; Vistro, W.A.; Rahmani, M.M. Effect of Selenium Nanoparticles and Chitosan on Production Performance and Antioxidant Integrity of Heat-Stressed Broiler. Biol. Trace Elem. Res. 2023, 201, 1977–1986. [Google Scholar] [CrossRef]
- Ramiah, S.K.; Atta Awad, E.; Hemly, N.I.M.; Ebrahimi, M.; Joshua, O.; Jamshed, M.; Saminathan, M.; Soleimani, A.F.; Idrus, Z. Effects of zinc oxide nanoparticles on regulatory appetite and heat stress protein genes in broiler chickens subjected to heat stress. J. Anim. Sci. 2020, 98, skaa300. [Google Scholar] [CrossRef]
- Huang, M.-Y.; An, Y.-C.; Zhang, S.-Y.; Qiu, S.-J.; Yang, Y.-Y.; Liu, W.-C. Metabolomic analysis reveals biogenic selenium nanoparticles improve the meat quality of thigh muscle in heat-stressed broilers is related to the regulation of ferroptosis pathway. Poult. Sci. 2024, 103, 103554. [Google Scholar] [CrossRef]
- Eldiasty, J.G.; Al-Sayed, H.M.A.; Farsi, R.M.; Algothmi, K.M.; Alatawi, F.S.; AlGhabban, A.J.; Alnawwar, W.H.; Alatawi, A.O.; Hamdy, H.M. The beneficial impacts of nano-propolis liposomes as an anti-stressor agent on broiler chickens kept under cyclic heat stress. Poult. Sci. 2024, 103, 103695. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhang, C.; Deng, C.; Wen, A.; Zhou, H.; You, J.; Li, G. Dietary vitamin B6 supplementation alleviates heat stress-induced intestinal barrier impairment by regulating the gut microbiota and metabolites in broilers. Poult. Sci. 2024, 103, 104202. [Google Scholar] [CrossRef]
- Pečjak, M.; Leskovec, J.; Levart, A.; Salobir, J.; Rezar, V. Effects of Dietary Vitamin E, Vitamin C, Selenium and Their Combination on Carcass Characteristics, Oxidative Stability and Breast Meat Quality of Broiler Chickens Exposed to Cyclic Heat Stress. Animals 2022, 12, 1789. [Google Scholar] [CrossRef]
- Calik, A.; Emami, N.K.; Schyns, G.; White, M.B.; Walsh, M.C.; Romero, L.F.; Dalloul, R.A. Influence of dietary vitamin E and selenium supplementation on broilers subjected to heat stress, Part II: Oxidative stress, immune response, gut integrity, and intestinal microbiota. Poult. Sci. 2022, 101, 101858. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, M.; Sun, H.; Yang, J.-C.; Huang, Y.-X.; Huang, J.-Q.; Lei, X.; Sun, L.-H. Selenium deficiency-induced multiple tissue damage with dysregulation of immune and redox homeostasis in broiler chicks under heat stress. Sci. China. Life Sci. 2023, 66, 2056–2069. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Li, K.; Peng, X.; Yao, T.; Zhu, C.; Gu, H.; Liu, H.-Y.; Sun, M.-A.; Hu, Y.; Ennab, W.; et al. Zinc intake ameliorates intestinal morphology and oxidative stress of broiler chickens under heat stress. Front. Immunol. 2023, 14, 1308907. [Google Scholar] [CrossRef] [PubMed]
- Elokil, A.; Li, S.; Chen, W.; Farid, O.; Abouelezz, K.; Zohair, K.; Nassar, F.; El-Komy, E.; Farag, S.; Elattrouny, M. Ethoxyquin attenuates enteric oxidative stress and inflammation by promoting cytokine expressions and symbiotic microbiota in heat-stressed broilers. Poult. Sci. 2024, 103, 103761. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.O.; Alaqil, A.A.; Mehaisen, G.M.K.; El Sabry, M.I. Effect of Organic Selenium-Enriched Yeast on Relieving the Deterioration of Layer Performance, Immune Function, and Physiological Indicators Induced by Heat Stress. Front. Vet. Sci. 2022, 9, 880790. [Google Scholar] [CrossRef]
- Ma, X.; Lin, Y.; Zhang, H.; Chen, W.; Wang, S.; Ruan, D.; Jiang, Z. Heat stress impairs the nutritional metabolism and reduces the productivity of egg-laying ducks. Anim. Reprod. Sci. 2014, 145, 182–190. [Google Scholar] [CrossRef]
- Xin, Q.; Li, L.; Zhao, B.; Shi, W.; Hao, X.; Zhang, L.; Miao, Z.; Zhu, Z.; Huang, Q.; Zheng, N. The network regulation mechanism of the effects of heat stress on the production performance and egg quality of Jinding duck was analyzed by miRNA–mRNA. Poult. Sci. 2024, 103, 103255. [Google Scholar] [CrossRef]
- Li, Q.; Ouyang, J.; Deng, C.; Zhou, H.; You, J.; Li, G. Effects of dietary tryptophan supplementation on rectal temperature, humoral immunity, and cecal microflora composition of heat-stressed broilers. Front. Vet. Sci. 2023, 10, 1247260. [Google Scholar] [CrossRef]
- Archer, G.S. Evaluation of an Extract Derived from the Seaweed Ascophyllum nodosum to Reduce the Negative Effects of Heat Stress on Broiler Growth and Stress Parameters. Animals 2023, 13, 259. [Google Scholar] [CrossRef]
- Quinteiro, W.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.; Sakai, M.; Sá, L.; Ferreira, A.; Palermo-Neto, J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 2010, 89, 1905–1914. [Google Scholar] [CrossRef]
- Zhang, J.F.; Bai, K.W.; Su, W.P.; Wang, A.A.; Zhang, L.L.; Huang, K.H.; Wang, T. Curcumin attenuates heat-stress-induced oxidant damage by simultaneous activation of GSH-related antioxidant enzymes and Nrf2-mediated phase II detoxifying enzyme systems in broiler chickens. Poult. Sci. 2018, 97, 1209–1219. [Google Scholar] [CrossRef]
- Nawab, A.; Tang, S.; Li, G.; An, L.; Wu, J.; Liu, W.; Xiao, M. Dietary curcumin supplementation effects on blood immunological profile and liver enzymatic activity of laying hens after exposure to high temperature conditions. J. Therm. Biol. 2020, 90, 102573. [Google Scholar] [CrossRef] [PubMed]
- Huff, G.R.; Huff, W.E.; Wesley, I.V.; Anthony, N.B.; Satterlee, D.G. Response of restraint stress-selected lines of Japanese quail to heat stress and Escherichia coli challenge. Poult. Sci. 2013, 92, 603–611. [Google Scholar] [CrossRef]
- Nazar, F.N.; Videla, E.A.; Marin, R.H. Thymol supplementation effects on adrenocortical, immune and biochemical variables recovery in Japanese quail after exposure to chronic heat stress. Animal 2019, 13, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Gogoi, S.; Kolluri, G.; Tyagi, J.; Marappan, G.; Manickam, K.; Narayan, R. Impact of heat stress on broilers with varying body weights: Elucidating their interactive role through physiological signatures. J. Therm. Biol. 2021, 97, 102840. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.H.; Yu, Z.Q.; Chen, Z. Effect of heat stress on mitogen-activated protein kinases in the hypothalamic-pituitary-gonadal axis of developing Wenchang chicks. Poult. Sci. 2020, 99, 567–577. [Google Scholar] [CrossRef]
- Han, A.Y.; Zhang, M.H.; Zuo, X.L.; Zheng, S.S.; Zhao, C.F.; Feng, J.H.; Cheng, C. Effect of acute heat stress on calcium concentration, proliferation, cell cycle, and interleukin-2 production in splenic lymphocytes from broiler chickens. Poult. Sci. 2010, 89, 2063–2070. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Y.; Cai, H.; Han, Y.; Yang, P. Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry. Biology 2024, 13, 926. https://doi.org/10.3390/biology13110926
Huang Y, Cai H, Han Y, Yang P. Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry. Biology. 2024; 13(11):926. https://doi.org/10.3390/biology13110926
Chicago/Turabian StyleHuang, Yuyin, Hongying Cai, Yunsheng Han, and Peilong Yang. 2024. "Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry" Biology 13, no. 11: 926. https://doi.org/10.3390/biology13110926
APA StyleHuang, Y., Cai, H., Han, Y., & Yang, P. (2024). Mechanisms of Heat Stress on Neuroendocrine and Organ Damage and Nutritional Measures of Prevention and Treatment in Poultry. Biology, 13(11), 926. https://doi.org/10.3390/biology13110926