Levilactobacillus brevis 47f: Bioadaptation to Low Doses of Xenobiotics in Aquaculture
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strain
2.2. Conditions of Bacterial Strain Cultivation, Lyophilization
2.3. Animal Collection and Maintenance
2.4. Experimental Design
2.5. Feed Preparation
2.6. RNA Isolation from Danio rerio Intestinal Tissue
2.7. RNA Preparation and Reverse Transcription Reaction
2.8. Real-Time PCR
2.9. Sample Preparation for Transcriptome Analysis of Levilactobacillus brevis 47f
2.10. Analysis of RNAseq Data
2.11. Sample Preparation for Proteomic Analysis of Levilactobacillus brevis 47f
2.12. Protein Electrophoresis of the Cellular Fraction of the Strain in a Polyacrylamide Gel
2.13. Trypsinolysis and Mass Spectrometric Analysis for the Identification of Proteins from Gel
2.14. Statistical Analysis
3. Results
3.1. Survival of Danio rerio Individuals Exposed to Bisphenol A
3.2. Measurement of Relative Cytokine Gene Expression Levels in Intestinal Tissues of Danio rerio Individuals Exposed to Bisphenol A
3.3. Analysis of Differential Gene Expression of Levilactobacillus brevis 47f Strain under Exposure to Different Doses of Bisphenol A
3.4. Protein Electrophoresis in Polyacrylamide Gel of Cell Fraction of Levilactobacillus brevis 47f upon Exposure to Different Doses of Bisphenol A
3.5. Identification of Proteins from the Gel by Mass Spectrometry Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Target Gene | R/F * | Nucleotide Sequence (5′→3′) | NCBI RefSeq |
---|---|---|---|
il-1b | F | CATTTGCAGGCCGTCAC | NM_212844.2 |
R | GGACATGCTGAAGCGCACT | ||
tnf-α | F | GCTGGATCTTCAAAGTCGGGTGT | NM_212859.2 |
R | TGTGAGTCTCAGCACACTTCCAT | ||
ifnphi1 | F | GAATGGCTTGGCCGATACAGGAT | NM_207640.1 |
R | TCCTCCACCTTTGACTTGTCCAT | ||
il-6 | F | TCAACTTCTCCAGCGTGAT | NM_001261449.1 |
R | TCTTTCCCTCTTTTCCTCCT | ||
il-8 | F | GTCGCTGCATTGAAACAGA | XM_001342570.7 |
R | CTTAACCCATGGAGCAGAG | ||
il-10 | F | CCCTATGGATGTCACGTCAT | NM_001020785.2 |
R | CATATCCCGCTTGAGTTCCT | ||
actb1 | F | ATGGATGAGGAAATCGCTGCC | NM_131031.2 |
R | CTCCCTGATGTCTGGGTCGT |
References
- Soucek, P. Xenobiotics. In Encyclopedia of Cancer; Schwab, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 3964–3967. ISBN 978-3-642-16483-5. [Google Scholar]
- Rubin, B.S. Bisphenol A: An Endocrine Disruptor with Widespread Exposure and Multiple Effects. J. Steroid Biochem. Mol. Biol. 2011, 127, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, L.; Fan, X.; Dong, C.; Wang, G.; Wang, Z. Chronic Exposure to Bisphenol A Resulted in Alterations of Reproductive Functions via Immune Defense, Oxidative Damage and Disruption DNA/Histone Methylation in Male Rare Minnow Gobiocypris Rarus. Aquat. Toxicol. 2021, 236, 105849. [Google Scholar] [CrossRef] [PubMed]
- Crain, D.A.; Eriksen, M.; Iguchi, T.; Jobling, S.; Laufer, H.; LeBlanc, G.A.; Guillette, L.J. An Ecological Assessment of Bisphenol-A: Evidence from Comparative Biology. Reprod. Toxicol. 2007, 24, 225–239. [Google Scholar] [CrossRef] [PubMed]
- Bojarski, B.; Kot, B.; Witeska, M. Antibacterials in Aquatic Environment and Their Toxicity to Fish. Pharmaceuticals 2020, 13, 189. [Google Scholar] [CrossRef] [PubMed]
- Staples, C.A.; Dorn, P.B.; Klecka, G.M.; O’Block, S.T.; Harris, L.R. A Review of the Environmental Fate, Effects, and Exposures of Bisphenol A. Chemosphere 1998, 36, 2149–2173. [Google Scholar] [CrossRef]
- Makinwa, T.T.; Uadia, P.O. A Survey of the Level of Bisphenol A (BPA) in Effluents, Soil Leachates, Food Samples, Drinking Water and Consumer Products in South-Western Nigeria. World Environ. 2015, 5, 135–139. [Google Scholar]
- Kuziel, G.A.; Rakoff-Nahoum, S. The Gut Microbiome. Curr. Biol. 2022, 32, R257–R264. [Google Scholar] [CrossRef]
- Monciardini, P.; Iorio, M.; Maffioli, S.; Sosio, M.; Donadio, S. Discovering New Bioactive Molecules from Microbial Sources. Microb. Biotechnol. 2014, 7, 209–220. [Google Scholar] [CrossRef]
- Hill, C. Probiotics and Pharmabiotics. Bioeng. Bugs 2010, 1, 79–84. [Google Scholar] [CrossRef]
- Kantal, D.; Maiti, M.; Mishra, S.; Pradhan, S. Postbiotics in Aquaculture: Paradigm for Sustainable Health and Growth. In Handbook of Sustainable Aquaculture and Fisheries; Elite Publishing House: New Delhi, India, 2024; p. 55. [Google Scholar]
- Ağagündüz, D.; Gençer Bingöl, F.; Çelik, E.; Cemali, Ö.; Özenir, Ç.; Özoğul, F.; Capasso, R. Recent Developments in the Probiotics as Live Biotherapeutic Products (LBPs) as Modulators of Gut Brain Axis Related Neurological Conditions. J. Transl. Med. 2022, 20, 460. [Google Scholar] [CrossRef]
- Odorskaya, M.V.; Mavletova, D.A.; Nesterov, A.A.; Tikhonova, O.V.; Soloveva, N.A.; Reznikova, D.A.; Galanova, O.O.; Vatlin, A.A.; Slynko, N.M.; Vasilieva, A.R.; et al. The Use of Omics Technologies in Creating LBP and Postbiotics Based on the Limosilactobacillus fermentum U-21. Front. Microbiol. 2024, 15, 1416688. [Google Scholar] [CrossRef] [PubMed]
- Kim, P.S.; Shin, N.-R.; Lee, J.-B.; Kim, M.-S.; Whon, T.W.; Hyun, D.-W.; Yun, J.-H.; Jung, M.-J.; Kim, J.Y.; Bae, J.-W. Host Habitat Is the Major Determinant of the Gut Microbiome of Fish. Microbiome 2021, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- Kostic, A.D.; Howitt, M.R.; Garrett, W.S. Exploring Host-Microbiota Interactions in Animal Models and Humans. Genes. Dev. 2013, 27, 701–718. [Google Scholar] [CrossRef] [PubMed]
- Butt, R.L.; Volkoff, H. Gut Microbiota and Energy Homeostasis in Fish. Front. Endocrinol. 2019, 10, 9. [Google Scholar] [CrossRef]
- Sullam, K.E.; Essinger, S.D.; Lozupone, C.A.; O’Connor, M.P.; Rosen, G.L.; Knight, R.; Kilham, S.S.; Russell, J.A. Environmental and Ecological Factors That Shape the Gut Bacterial Communities of Fish: A Meta-Analysis. Mol. Ecol. 2012, 21, 3363–3378. [Google Scholar] [CrossRef]
- Gokul, T.; Kumar, K.R.; Prema, P.; Arun, A.; Balaji, P.; Faggio, C. Particulate Pollution and Its Toxicity to Fish: An Overview. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2023, 270, 109646. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Alagawany, M.; Patra, A.K.; Kar, I.; Tiwari, R.; Dawood, M.A.O.; Dhama, K.; Abdel-Latif, H.M.R. The Functionality of Probiotics in Aquaculture: An Overview. Fish. Shellfish. Immunol. 2021, 117, 36–52. [Google Scholar] [CrossRef]
- Kochetkov, N.; Smorodinskaya, S.; Vatlin, A.; Nikiforov-Nikishin, D.; Nikiforov-Nikishin, A.; Danilenko, V.; Anastasia, K.; Reznikova, D.; Grishina, Y.; Antipov, S.; et al. Ability of Lactobacillus brevis 47f to Alleviate the Toxic Effects of Imidacloprid Low Concentration on the Histological Parameters and Cytokine Profile of Zebrafish (Danio rerio). Int. J. Mol. Sci. 2023, 24, 12290. [Google Scholar] [CrossRef]
- Luan, Y.; Li, M.; Zhou, W.; Yao, Y.; Yang, Y.; Zhang, Z.; Ringø, E.; Erik Olsen, R.; Liu Clarke, J.; Xie, S.; et al. The Fish Microbiota: Research Progress and Potential Applications. Engineering 2023, 29, 137–146. [Google Scholar] [CrossRef]
- Marsova, M.; Abilev, S.; Poluektova, E.; Danilenko, V. A Bioluminescent Test System Reveals Valuable Antioxidant Properties of Lactobacillus strains from Human Microbiota. World J. Microbiol. Biotechnol. 2018, 34, 27. [Google Scholar] [CrossRef]
- Olekhnovich, E.I.; Batotsyrenova, E.G.; Yunes, R.A.; Kashuro, V.A.; Poluektova, E.U.; Veselovsky, V.A.; Ilina, E.N.; Danilenko, V.N.; Klimina, K.M. The Effects of Levilactobacillus brevis on the Physiological Parameters and Gut Microbiota Composition of Rats Subjected to Desynchronosis. Microb. Cell Fact. 2021, 20, 226. [Google Scholar] [CrossRef] [PubMed]
- Marsova, M.; Odorskaya, M.; Novichkova, M.; Polyakova, V.; Abilev, S.; Kalinina, E.; Shtil, A.; Poluektova, E.; Danilenko, V. The Lactobacillus brevis 47 f Strain Protects the Murine Intestine from Enteropathy Induced by 5-Fluorouracil. Microorganisms 2020, 8, 876. [Google Scholar] [CrossRef] [PubMed]
- Shokryazdan, P.; Faseleh Jahromi, M.; Liang, J.B.; Ho, Y.W. Probiotics: From Isolation to Application. J. Am. Coll. Nutr. 2017, 36, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Horgan, R.P.; Kenny, L.C. ‘Omic’ Technologies: Genomics, Transcriptomics, Proteomics and Metabolomics. Obstet. Gynaecol. 2011, 13, 189–195. [Google Scholar] [CrossRef]
- Kwoji, I.D.; Aiyegoro, O.A.; Okpeku, M.; Adeleke, M.A. ‘Multi-Omics’ Data Integration: Applications in Probiotics Studies. npj Sci. Food 2023, 7, 25. [Google Scholar] [CrossRef]
- Mathieu-Denoncourt, J.; Wallace, S.J.; de Solla, S.R.; Langlois, V.S. Influence of Lipophilicity on the Toxicity of Bisphenol A and Phthalates to Aquatic Organisms. Bull. Environ. Contam. Toxicol. 2016, 97, 4–10. [Google Scholar] [CrossRef]
- Chen, X.N.; Hang, X.M.; Ke, W.B.; Ma, Z.Y.; Sun, Y.Q. Acute and Subacute Toxicity of Bisphenol A on Zebrafish (Danio rerio). Adv. Mater. Res. 2012, 356–360, 138–141. [Google Scholar] [CrossRef]
- Haimes, J.; Kelley, M. Demonstration of a ΔΔCq Calculation Method to Compute Relative Gene Expression from qPCR Data; Semantic Scholar: Seattle, WA, USA, 2015. [Google Scholar]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T.L. Primer-BLAST: A Tool to Design Target-Specific Primers for Polymerase Chain Reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast Universal RNA-Seq Aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve Years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Pedersen, B.S.; Quinlan, A.R. Mosdepth: Quick Coverage Calculation for Genomes and Exomes. Bioinformatics 2018, 34, 867–868. [Google Scholar] [CrossRef] [PubMed]
- García-Alcalde, F.; Okonechnikov, K.; Carbonell, J.; Cruz, L.M.; Götz, S.; Tarazona, S.; Dopazo, J.; Meyer, T.F.; Conesa, A. Qualimap: Evaluating next-Generation Sequencing Alignment Data. Bioinformatics 2012, 28, 2678–2679. [Google Scholar] [CrossRef] [PubMed]
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. featureCounts: An Efficient General Purpose Program for Assigning Sequence Reads to Genomic Features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor Package for Differential Expression Analysis of Digital Gene Expression Data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 17 October 2024).
- Martín, C.; Fernández-Vega, I.; Suárez, J.E.; Quirós, L.M. Adherence of Lactobacillus salivarius to HeLa Cells Promotes Changes in the Expression of the Genes Involved in Biosynthesis of Their Ligands. Front. Immunol. 2020, 10, 3019. [Google Scholar] [CrossRef]
- Wang, G.; Li, D.; Ma, X.; An, H.; Zhai, Z.; Ren, F.; Hao, Y. Functional Role of oppA Encoding an Oligopeptide-Binding Protein from Lactobacillus salivarius Ren in Bile Tolerance. J. Ind. Microbiol. Biotechnol. 2015, 42, 1167–1174. [Google Scholar] [CrossRef]
- Tang, X.; Chang, S.; Zhang, K.; Luo, Q.; Zhang, Z.; Wang, T.; Qiao, W.; Wang, C.; Shen, C.; Zhang, Z.; et al. Structural Basis for Bacterial Lipoprotein Relocation by the Transporter LolCDE. Nat. Struct. Mol. Biol. 2021, 28, 347–355. [Google Scholar] [CrossRef]
- Yang, X.; Teng, K.; Li, L.; Su, R.; Zhang, J.; Ai, G.; Zhong, J. Transcriptional Regulator AcrR Increases Ethanol Tolerance through Regulation of Fatty Acid Synthesis in Lactobacillus plantarum. Appl. Environ. Microbiol. 2019, 85, e01690-19. [Google Scholar] [CrossRef]
- Wu, R.; Zhang, W.; Sun, T.; Wu, J.; Yue, X.; Meng, H.; Zhang, H. Proteomic Analysis of Responses of a New Probiotic Bacterium Lactobacillus casei Zhang to Low Acid Stress. Int. J. Food Microbiol. 2011, 147, 181–187. [Google Scholar] [CrossRef]
- Liu, G.F.; Wang, X.X.; Su, H.Z.; Lu, G.T. Progress on the GntR Family Transcription Regulators in Bacteria. Genetics 2021, 43, 66–73. [Google Scholar] [CrossRef]
- Niehaus, T.D.; Elbadawi-Sidhu, M.; Huang, L.; Prunetti, L.; Gregory, J.F.; de Crécy-Lagard, V.; Fiehn, O.; Hanson, A.D. Evidence That the Metabolite Repair Enzyme NAD(P)HX Epimerase Has a Moonlighting Function. Biosci. Rep. 2018, 38, BSR20180223. [Google Scholar] [CrossRef] [PubMed]
- Al Ebrahim, R.N.; Alekseeva, M.G.; Bazhenov, S.V.; Fomin, V.V.; Mavletova, D.A.; Nesterov, A.A.; Poluektova, E.U.; Danilenko, V.N.; Manukhov, I.V. ClpL Chaperone as a Possible Component of the Disaggregase Activity of Limosilactobacillus fermentum U-21. Biology 2024, 13, 592. [Google Scholar] [CrossRef] [PubMed]
- Qadir, S.; Iqbal, F. Effect of Subleathal Concentrtion of Imidacloprid on the Histology of Heart, Liver and Kidney in Labeo rohitr. Pak. J. Pharm. Sci. 2016, 29, 2033–2038. [Google Scholar] [PubMed]
- Masli, S.; Turpie, B. Anti-Inflammatory Effects of Tumour Necrosis Factor (TNF)-α Are Mediated via TNF-R2 (P75) in Tolerogenic Transforming Growth Factor-β-Treated Antigen-Presenting Cells. Immunology 2009, 127, 62–72. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, W.; Zhang, T.; Jiang, B.; Mu, W. L-Arabinose Isomerases: Characteristics, Modification, and Application. Trends Food Sci. Technol. 2018, 78, 25–33. [Google Scholar] [CrossRef]
- Li, S.; Zhang, T.; Feng, Y.; Sun, J. Extracellular ATP-Mediated Purinergic Immune Signaling in Teleost Fish: A Review. Aquaculture 2021, 537, 736511. [Google Scholar] [CrossRef]
- Young Kwon, H.; Park, S.-S. Protein Expression via the Molecular Chaperone ClpL. J. Microb. Biochem. Technol. 2016, 8, 2. [Google Scholar] [CrossRef]
- Bohl, V.; Hollmann, N.M.; Melzer, T.; Katikaridis, P.; Meins, L.; Simon, B.; Flemming, D.; Sinning, I.; Hennig, J.; Mogk, A. The Listeria monocytogenes Persistence Factor ClpL Is a Potent Stand-Alone Disaggregase. eLife 2024, 12, RP92746. [Google Scholar] [CrossRef]
- Padmini, E. Physiological Adaptations of Stressed Fish to Polluted Environments: Role of Heat Shock Proteins. In Reviews of Environmental Contamination and Toxicology Volume 206; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2010; pp. 1–27. ISBN 978-1-4419-6260-7. [Google Scholar]
Geneid | Product | Gene | Fold Change | FDR |
---|---|---|---|---|
AAX72_RS00490 | L-arabinose isomerase | araA | 2.508 | 0.012 |
AAX72_RS00495 | L-ribulose-5-phosphate 4-epimerase | araD | 2.517 | 0.012 |
AAX72_RS00500 | FGGY-family carbohydrate kinase | araB | 2.562 | 0.013 |
AAX72_RS02630 | oligopeptide ABC transporter substrate-binding protein | - | 2.205 | 0.028 |
AAX72_RS05195 | peptide ABC transporter substrate-binding protein | oppA | −26.556 | 0.028 |
AAX72_RS04190 | ABC transporter ATP-binding protein | lolD | 2.157 | 0.013 |
AAX72_RS07190 | TetR/AcrR family transcriptional regulator | acrR | 2.240 | 0.032 |
AAX72_RS07195 | ABC transporter ATP-binding protein/permease | - | 2.945 | 0.021 |
AAX72_RS07520 | glucosamine-6-phosphate deaminase | nagB | 3.218 | 0.032 |
AAX72_RS08605 | ABC transporter ATP-binding protein | ccmA | 4.012 | 0.003 |
AAX72_RS08610 | GntR family transcriptional regulator | - | 4.193 | 0.013 |
AAX72_RS09615 | NAD(P)H-hydrate epimerase | nnr1 | 2.023 | 0.035 |
Protein | C | 2 mg/L | 50 mg/L | Functions and Biochemical Pathways |
---|---|---|---|---|
L-arabinose isomerase | 0.0 | 6.8 | 21.8 | Conversion of L-arabinose to L-ribulose |
catabolite control protein A | 10.0 | 31.5 | 27.4 | Transcriptional regulator of carbon catabolism |
gluconokinase | 0.0 | 21.4 | 32.5 | The pentose phosphate pathway |
phosphopentomutase | 0.0 | 17.4 | 63.9 | |
NADP-dependent phosphogluconate dehydrogenase | 20.4 | 23.5 | 79.3 | |
glucose-6-phosphate dehydrogenase | 0.0 | 23.8 | 16.5 | |
type I glyceraldehyde-3-phosphate dehydrogenase | 36.8 | 144.5 | 235.7 | Glycolysis |
phosphoglycerate kinase | 1745.0 | 1232.9 | 1344.8 | |
glucose-6-phosphate isomerase | 24.0 | 52.8 | 45.0 | |
phosphopyruvate hydratase | 217.8 | 279.6 | 484.5 | |
elongation factor Tu | 819.8 | 890.0 | 1640.1 | Binding of aminoacyl-tRNA to the A-site of the ribosome |
peptide chain release factor 1 | 20.4 | 6.3 | 27.9 | Translation |
trigger factor | 21.0 | 25.1 | 46.6 | The first chaperone that interacts with the newly synthesized polypeptide chain as it leaves the ribosome into the cytoplasm |
ATP-dependent Clp protease ATP-binding subunit | 21.3 | 22.0 | 34.6 | Chaperone subunit |
30S ribosomal protein S1 | 28.0 | 717.2 | 591.0 | Translation, mRNA binding to the 30S subunit of the ribosome, control of RNA stability |
F0F1 ATP synthase beta subunit | 0.0 | 26.7 | 33.3 | ATP synthesis |
F0F1 ATP synthase alpha subunit | 0.0 | 0.0 | 37.1 | |
serine hydroxymethyltransferase | 6.9 | 10.7 | 46.3 | Serine metabolism |
serine-tRNA ligase | 0.0 | 0.0 | 21.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reznikova, D.; Kochetkov, N.; Vatlin, A.; Nikiforov-Nikishin, D.; Galanova, O.; Klimuk, A.; Smorodinskaya, S.; Matyushkina, D.; Kovalenko, A.; Butenko, I.; et al. Levilactobacillus brevis 47f: Bioadaptation to Low Doses of Xenobiotics in Aquaculture. Biology 2024, 13, 925. https://doi.org/10.3390/biology13110925
Reznikova D, Kochetkov N, Vatlin A, Nikiforov-Nikishin D, Galanova O, Klimuk A, Smorodinskaya S, Matyushkina D, Kovalenko A, Butenko I, et al. Levilactobacillus brevis 47f: Bioadaptation to Low Doses of Xenobiotics in Aquaculture. Biology. 2024; 13(11):925. https://doi.org/10.3390/biology13110925
Chicago/Turabian StyleReznikova, Diana, Nikita Kochetkov, Alexey Vatlin, Dmitry Nikiforov-Nikishin, Olesya Galanova, Anastasia Klimuk, Svetlana Smorodinskaya, Daria Matyushkina, Alexey Kovalenko, Ivan Butenko, and et al. 2024. "Levilactobacillus brevis 47f: Bioadaptation to Low Doses of Xenobiotics in Aquaculture" Biology 13, no. 11: 925. https://doi.org/10.3390/biology13110925
APA StyleReznikova, D., Kochetkov, N., Vatlin, A., Nikiforov-Nikishin, D., Galanova, O., Klimuk, A., Smorodinskaya, S., Matyushkina, D., Kovalenko, A., Butenko, I., Marsova, M., & Danilenko, V. (2024). Levilactobacillus brevis 47f: Bioadaptation to Low Doses of Xenobiotics in Aquaculture. Biology, 13(11), 925. https://doi.org/10.3390/biology13110925