Hypothalamic Regulation of Cardiorespiratory Functions: Insights into the Dorsomedial and Perifornical Pathways
Simple Summary
Abstract
1. Introduction
2. Method
2.1. Study Setting and Researchers’ Experience
2.2. Estimation of Bias and Quality of Outcome Measures
3. The Role of the DMH/PeF in Cardiorespiratory Function
3.1. Afferent Pathways to the DMH-PeF: Essential Connections for Cardiorespiratory Control
3.1.1. Cortical Regions
3.1.2. Amygdala and Limbic Structures
3.1.3. Periaqueductal Gray Matter (PAG)
3.1.4. Nucleus of Tractus Solitarius (NTS)
3.2. Efferent Pathways from the Dorsomedial and Perifornical Hypothalamus: A Unified Framework for Cardiorespiratory Regulation
3.2.1. Mesencephalic Structures
3.2.2. Pontine Nuclei
3.2.3. Medullary Nuclei
4. Clinical Implications
5. Limitations
6. Conclusions and Future Directions
- Mapping Specific Neural Pathways: A more detailed characterization of the specific neural pathways, including the precise neurotransmitters and receptors involved in DMH/PeF-driven responses, would help clarify how the DMH/PeF integrates information from various brain regions.
- Exploring Neurochemical Interactions: Investigating the interactions between orexin, leptin, and other neuropeptides within the DMH/PeF could provide insights into how metabolic states influence autonomic regulation during stress.
- Examining Functional Asymmetry: Given evidence suggesting lateralization in the DMH/PeF’s influence on cardiovascular control, understanding the functional implications of this asymmetry could enhance our knowledge of individualized autonomic responses to stress.
- Integrating Metabolic and Autonomic Studies: Exploring how the DMH/PeF integrates signals related to metabolic status (e.g., leptin levels) with autonomic outputs might reveal novel mechanisms by which the body maintains homeostasis in response to changing internal and external environments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
A5 | Region of the A5 noradrenergic cells |
dl PAG | Dorsolateral Periaqueductal Gray Matter |
DMH/PeF | Dorsomedial Hypothalamic Nucleus and Perifornical Area |
DRG | Dorsal Respiratory Group |
HDA | Hypothalamic Defense Area |
IC | Insular Cortex |
IML | Intermediolateral Cell Column |
KF | Kölliker-Fuse Nucleus |
l/dlPAG | Lateral/Dorsolateral Periaqueductal Gray Matter |
lPB | Lateral Parabrachial Nucleus |
mPB | Medial Parabrachial Nucleus |
nRA | Nucleus Retroambiguus |
NTS | Nucleus of Tractus Solitarius |
PAG | Periaqueductal Gray Matter |
PBc | Parabrachial Complex |
Pl PFC | Prelimbic Prefrontal Cortex |
PRG | Pontine Respiratory Group |
RP | Nucleus Raphe Pallidus |
RVLM | Rostral Ventrolateral Medulla |
VRG | Ventral Respiratory Group |
References
- Nakamura, K.; Morrison, S.F. Central sympathetic network for thermoregulatory responses to psychological stress. Auton. Neurosci. 2022, 237, 102918. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, E.; Beig, M.I.; Hodgson, D.M.; Braga, V.A.; Nalivaiko, E. Blockade of the dorsomedial hypothalamus and the perifornical area inhibits respiratory responses to arousing and stressful stimuli. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 308, R816–R822. [Google Scholar] [CrossRef] [PubMed]
- Bondarenko, E.; Hodgson, D.M.; Nalivaiko, E. Amygdala mediates respiratory responses to sudden arousing stimuli and to restraint stress in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2014, 306, R951–R959. [Google Scholar] [CrossRef]
- Mohammed, M.; Kulasekara, K.; De Menezes, R.C.; Ootsuka, Y.; Blessing, W.W. Inactivation of neuronal function in the amygdaloid region reduces tail artery blood flow alerting responses in conscious rats. Neuroscience 2013, 228, 13–22. [Google Scholar] [CrossRef]
- Kabir, M.M.; Beig, M.I.; Baumert, M.; Trombini, M.; Mastorci, F.; Sgoifo, A.; Walker, F.R.; Day, T.A.; Nalivaiko, E. Respiratory pattern in awake rats: Effects of motor activity and of alerting stimuli. Physiol. Behav. 2010, 101, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Fontes, M.A.P.; Xavier, C.H.; de Menezes, R.C.A.; DiMicco, J.A. The dorsomedial hypothalamus and the central pathways involved in the cardiovascular response to emotional stress. Neuroscience 2011, 184, 64–74. [Google Scholar] [CrossRef]
- Fontes, M.A.P.; Filho, M.L.; Santos Machado, N.L.; de Paula, C.A.; Souza Cordeiro, L.M.; Xavier, C.H.; Ribeiro Marins, F.; Herdenson, L.; Macefield, V.G. Asymmetric sympathetic output: The dorsomedial hypothalamus as a potential link between emotional stress and cardiac arrhythmias. Auton. Neurosci. 2017, 207, 22–27. [Google Scholar] [CrossRef]
- Hess, W.R.; Brugger, M. Das subkortikale Zentrum der affektiven Abwehrreaktion. Helv. Physiol. Acta 1943, 1, 33–52. [Google Scholar]
- DiMicco, J.A.; Samuels, B.C.; Zaretskaia, M.V.; Zaretsky, D.V. The dorsomedial hypothalamus and the response to stress: Part renaissance, part revolution. Pharmacol. Biochem. Behav. 2002, 71, 469–480. [Google Scholar] [CrossRef]
- Dampney, R.A. Central neural control of the cardiovascular system: Current perspectives. Adv. Physiol. Educ. 2016, 40, 283–296. [Google Scholar] [CrossRef]
- Fukushi, I.; Yokota, S.; Okada, Y. The role of the hypothalamus in modulation of respiration. Respir. Physiol. Neurobiol. 2018, 265, 172–179. [Google Scholar] [CrossRef]
- Pang, Z.P.; Han, W. Regulation of synaptic functions in central nervous system by endocrine hormones and the maintenance of energy homoeostasis. Biosci. Rep. 2012, 32, 423–432. [Google Scholar] [CrossRef]
- Nakamura, K. Central circuitries for body temperature regulation and fever. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 301, R1207–R1228. [Google Scholar] [CrossRef]
- Rocha, I.; Silva-Carvalho, L.; Spyer, K.M. Effect of stimulation of anterior hypothalamic area on urinary bladder function of the anesthetized rat. Clin. Auton. Res. 2004, 14, 264–269. [Google Scholar] [CrossRef]
- Li, L.; Zhang, M.Q.; Sun, X.; Liu, W.-Y.; Huang, Z.-L.; Wang, Y.-Q. Role of Dorsomedial Hypothalamus GABAergic Neurons in Sleep-Wake States in Response to Changes in Ambient Temperature in Mice. Int. J. Mol. Sci. 2022, 23, 1270. [Google Scholar] [CrossRef]
- Ramirez-Plascencia, O.D.; De Luca, R.; Machado, N.L.S.; Eghlidi, D.; Khanday, M.A.; Bandaru, S.S.; Raffin, F.; Vujovic, N.; Arrigoni, E.; Saper, C.B. A hypothalamic circuit for circadian regulation of corticosterone secretion. Res. Sq. 2024, 12:rs.3.rs-4718850. [Google Scholar] [CrossRef]
- Houtz, J.; Liao, G.Y.; An, J.J.; Xu, B. Discrete TrkB-expressing neurons of the dorsomedial hypothalamus regulate feeding and thermogenesis. Proc. Natl. Acad. Sci. USA 2021, 118, e2017218118. [Google Scholar] [CrossRef]
- Fontes, M.A.P.; Tagawa, T.; Polson, J.W.; Cavanagh, S.J.; Dampney, R.A.L. Descending pathways mediating cardiovascular response from dorsomedial hypothalamic nucleus. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H2891–H2901. [Google Scholar] [CrossRef]
- Horiuchi, J.; McAllen, R.M.; Allen, A.M.; Killinger, S.; Fontes, M.A.P.; Dampney, R.A.L. Descending vasomotor pathways from the dorsomedial hypothalamic nucleus: Role of medullary raphe and RVLM. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004, 287, R824–R832. [Google Scholar] [CrossRef]
- Queiroz, E.A.; Noboru Okada, M.; Fumega, U.; Peliky Fontes, M.A.; Dutra Moraes, M.F.; Siqueira Haibara, A. Excitatory amino acid receptors in the dorsomedial hypothalamus are involved in the cardiovascular and behavioural chemoreflex responses. Exp. Physiol. 2011, 96, 73–84. [Google Scholar] [CrossRef]
- Morin, S.M.; Stotz-Potter, E.H.; DiMicco, J.A. Injection of muscimol into dorsomedial hypothalamus and stress-induced Fos expression in paraventricular nucleus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 280, R1276–R1284. [Google Scholar] [CrossRef]
- Briski, K.P.; Gillen, E. Differential distribution of Fos expression within the male rat preoptic area and hypothalamus in response to physical vs. psychological stress. Brain Res. Bull. 2001, 55, 401–408. [Google Scholar] [CrossRef]
- McDowall, L.M.; Horiuchi, J.; Killinger, S.; Dampney, R.A. Modulation of the baroreceptor reflex by the dorsomedial hypothalamic nucleus and perifornical area. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006, 290, R1020–R1026. [Google Scholar] [CrossRef]
- Díaz-Casares, A.; López-González, M.V.; Dawid-Milner, M.S. Role of the Dorso- and Ventrolateral Pons in Cardiorespiratory Hypothalamic Defense Responses. In Hypothalamus in Health and Diseases; Baloyannis, S.J., Gordeladze, J.O., Eds.; IntechOpen: London, UK, 2018; pp. 47–71. [Google Scholar] [CrossRef]
- Silva, N.T.; Nalivaiko, E.; da Silva, L.G.; Haibara, A.S. Excitatory amino acid receptors in the dorsomedial hypothalamic area contribute to the chemoreflex tachypneic response. Respir. Physiol. Neurobiol. 2015, 212–214, 1–8. [Google Scholar] [CrossRef]
- Marins, F.R.; Limborço-Filho, M.; Xavier, C.H.; Biancardi, V.C.; Vaz, G.C.; Stern, J.E.; Oppenheimer, S.M.; Fontes, M.A.P. Functional topography of cardiovascular regulation along the rostrocaudal axis of the rat posterior insular cortex. Clin. Exp. Pharmacol. Physiol. 2016, 43, 484–493. [Google Scholar] [CrossRef]
- Oppenheimer, S. Cortical control of the heart. Clevel. Clin. J. Med. 2007, 74, S27–S29. [Google Scholar] [CrossRef]
- Marins, F.R.; Iddings, J.A.; Fontes, M.A.P.; Filosa, J.A. Evidence that remodeling of insular cortex neurovascular unit contributes to hypertension-related sympathoexcitation. Physiol. Rep. 2017, 5, e13156. [Google Scholar] [CrossRef]
- Oppenheimer, S.; Cechetto, D. The insular cortex and the regulation of cardiac function. Compr. Physiol. 2016, 6, 1081–1133. [Google Scholar] [CrossRef]
- Nagai, M.; Dote, K.; Kato, M. Autonomic response after hemorrhagic stroke in the right insular cortex: What is the common pathophysiology in rat and human? Auton. Neurosci. 2021, 230, 102755. [Google Scholar] [CrossRef]
- Marins, F.R.; Limborço-Filho, M.; D’Abreu, B.F.; Machado de Almeida, P.W.; Gavioli, M.; Xavier, C.H.; Oppenheimer, S.M.; Silvia Guatimosim, S.; Fontes, M.A.P. Autonomic and cardiovascular consequences resulting from experimental hemorrhagic stroke in the left or right intermediate insular cortex in rats. Auton. Neurosci. 2020, 227, 102695. [Google Scholar] [CrossRef]
- Fontes, M.A.P.; Dos Santos Machado, L.R.; Viana, A.C.R.; Cruz, M.H.; Nogueira, Í.S.; Oliveira, M.G.L.; Neves, C.B.; Godoy, A.C.V.; Henderson, L.A.; Macefield, V.G. The insular cortex, autonomic asymmetry and cardiovascular control: Looking at the right side of stroke. Clin. Auton. Res. 2024, 34, 549–560. [Google Scholar] [CrossRef]
- Kataoka, N.; Shima, Y.; Nakajima, K.; Nakamura, K. A central master driver of psychosocial stress responses in the rat. Science 2020, 367, 1105–1112. [Google Scholar] [CrossRef]
- LeDoux, J. The amygdala. Curr. Biol. 2007, 17, R868–R874. [Google Scholar] [CrossRef]
- Soltis, R.P.; Cook, J.C.; Gregg, A.E.; Stratton, J.M.; Flickinger, K.A. EAA receptors in the dorsomedial hypothalamic area mediate the cardiovascular response to activation of the amygdala. Am. J. Physiol. 1998, 275, R624–R631. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, N.; Sakurai, T.; Kuwaki, T. Orexin neurons in the hypothalamus mediate cardiorespiratory responses induced by disinhibition of the amygdala and bed nucleus of the stria terminalis. Brain Res. 2009, 1262, 25–37. [Google Scholar] [CrossRef]
- Ressler, K.; Berretta, S.; Bolshakov, V.Y.; Rosso, I.M.; Meloni, E.G.; Rauch, S.L.; William, A.; Carlezon, J.R. Post-traumatic stress disorder: Clinical and translational neuroscience from cells to circuits. Nat. Rev. Neurol. 2022, 18, 273–288. [Google Scholar] [CrossRef]
- Bonnet, L.; Comte, A.; Tatu, L.; Millot, J.L.; Moulin, T.; Medeiros de Bustos, E. The role of the amygdala in the perception of positive emotions: An “intensity detector”. Front. Behav. Neurosci. 2015, 9, 178. [Google Scholar] [CrossRef]
- Thompson, R.H.; Swanson, L.W. Organization of inputs to the dorsomedial nucleus of the hypothalamus: A reexamination with Fluorogold and PHAL in the rat. Brain Res. Brain Res. Rev. 1998, 27, 89–118. [Google Scholar] [CrossRef]
- Horiuchi, J.; McDowall, L.M.; Dampney, R.A. Vasomotor and respiratory responses evoked from the dorsolateral periaqueductal grey are mediated by the dorsomedial hypothalamus. J. Physiol. 2009, 587, 5149–5162. [Google Scholar] [CrossRef]
- De Menezes, R.C.; Zaretsky, D.V.; Fontes, M.A.; DiMicco, J.A. Cardiovascular and thermal responses evoked from the periaqueductal grey require neuronal activity in the hypothalamus. J. Physiol. 2009, 587, 1201–1215. [Google Scholar] [CrossRef]
- Zafar, T.; Brouillard, C.; Lanfumey, L.; Sévoz-Couche, C. A hypothalamo-midbrain-medullary pathway involved in the inhibition of the respiratory chemoreflex response induced by potassium cyanide in rodents. Neuropharmacology 2018, 128, 152–167. [Google Scholar] [CrossRef]
- Silva-Carvalho, L.; Dawid-Milner, M.S.; Goldsmith, G.E.; Spyer, K.M. Hypothalamic modulation of the arterial chemoreceptor reflex in the anaesthetized cat: Role of the nucleus tractus solitarii. J. Physiol. 1995, 487, 751–760. [Google Scholar] [CrossRef]
- Silva-Carvalho, L.; Dawid-Milner, M.S.; Spyer, K.M. The pattern of excitatory inputs to the nucleus tractus solitarii evoked on stimulation in the hypothalamic defence area in the cat. J. Physiol. 1995, 487, 727–737. [Google Scholar] [CrossRef]
- Silva-Carvalho, L.; Dawid-Milner, M.S.; Goldsmith, G.E.; Spyer, K.M. Hypothalamic-evoked effects in cat nucleus tractus solitarius facilitating chemoreceptor reflexes. Exp. Physiol. 1993, 78, 425–428. [Google Scholar] [CrossRef]
- Hosoya, Y.; Ito, R.; Kohno, K. The topographical organization of neurons in the dorsal hypothalamic area that project to the spinal cord or to the nucleus raphe pallidus in the rat. Exp. Brain Res. 1987, 66, 500–506. [Google Scholar] [CrossRef]
- Thompson, R.H.; Canteras, N.S.; Swanson, L.W. Organization of projections from the dorsomedial nucleus of the hypothalamus: A PHA-L study in the rat. J. Comp. Neurol. 1996, 376, 143–173. [Google Scholar] [CrossRef]
- Dampney, R.A. Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R429–R443. [Google Scholar] [CrossRef]
- Linnman, C.; Moulton, E.A.; Barmettler, G.; Becerra, L.; Borsook, D. Neuroimaging of the periaqueductal gray: State of the field. Neuroimage 2012, 60, 505–522. [Google Scholar] [CrossRef]
- Vaughn, E.; Eichhorn, S.; Jung, W.; Zhuang, X.; Dulac, C. Three dimensional interrogation of cell types and instinctive behavior in the periaqueductal gray. bioRxiv 2022. [Google Scholar] [CrossRef]
- da Silva, L.G.; de Menezes, R.C.; dos Santos, R.A.; Campagnole-Santos, M.J.; Fontes, M.A.P. Role of periaqueductal gray on the cardiovascular response evoked by disinhibition of the dorsomedial hypothalamus. Brain Res. 2003, 984, 206–214. [Google Scholar] [CrossRef]
- de Menezes, R.C.; Zaretsky, D.V.; Fontes, M.A.; DiMicco, J.A. Microinjection of muscimol into caudal periaqueductal gray lowers body temperature and attenuates increases in temperature and activity evoked from the dorsomedial hypothalamus. Brain Res. 2006, 1092, 129–137. [Google Scholar] [CrossRef]
- De Oliveira, R.W.; Del Bel, E.A.; Guimaraes, F.S. Behavioral and c-fos expression changes induced by nitric oxide donors microinjected into the dorsal periaqueductal gray. Brain Res. Bull. 2000, 51, 457–464. [Google Scholar] [CrossRef]
- Borelli, K.G.; Ferreira-Netto, C.; Brandao, M.L. Distribution of Fos immunoreactivity in the rat brain after freezing or escape elicited by inhibition of glutamic acid decarboxylase or antagonism of GABA-A receptors in the inferior colliculus. Behav. Brain Res. 2006, 170, 84–93. [Google Scholar] [CrossRef]
- Villela, D.C.; da Silva Junior, L.G.; Fontes, M.A.P. Activation of 5-HT receptors in the periaqueductal gray attenuates the tachycardia evoked from dorsomedial hypothalamus. Auton. Neurosci. 2009, 148, 36–43. [Google Scholar] [CrossRef]
- Johnson, P.L.; Lightman, S.L.; Lowry, C.A. A functional subset of serotonergic neurons in the rat ventrolateral periaqueductal gray implicated in the inhibition of sympathoexcitation and panic. Ann. N. Y. Acad. Sci. 2004, 1018, 58–64. [Google Scholar] [CrossRef]
- Cao, W.H.; Fan, W.; Morrison, S.F. Medullary pathways mediating specific sympathetic responses to activation of dorsomedial hypothalamus. Neuroscience 2004, 126, 229–240. [Google Scholar] [CrossRef]
- López-González, M.V.; González-García, M.; Peinado-Aragonés, C.A.; Barbancho, M.A.; Díaz-Casares, A.; Dawid-Milner, M.S. Pontine A5 region modulation of the cardiorespiratory response evoked from the midbrain dorsolateral periaqueductal grey. J. Physiol. Biochem. 2020, 76, 561–572. [Google Scholar] [CrossRef]
- González-García, M.; Carrillo-Franco, L.; Morales-Luque, C.; Dawid-Milner, M.S.; López-González, M.V. Central Autonomic Mechanisms Involved in the Control of Laryngeal Activity and Vocalization. Biology 2024, 13, 118. [Google Scholar] [CrossRef]
- Hartmann, K.; Brecht, M. A Functionally and Anatomically Bipartite Vocal Pattern Generator in the Rat Brain Stem. iScience 2020, 23, 101804. [Google Scholar] [CrossRef]
- Subramanian, H.H.; Huang, Z.G.; Silburn, P.A.; Balnave, R.J.; Holstege, G. The physiological motor patterns produced by neurons in the nucleus retroambiguus in the rat and their modulation by vagal, peripheral chemosensory, and nociceptive stimulation. J. Comp. Neurol. 2018, 526, 229–242. [Google Scholar] [CrossRef]
- Fulwiler, C.E.; Saper, C.B. Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res. 1984, 319, 229–259. [Google Scholar] [CrossRef]
- Dawid-Milner, M.S.; Lara, J.P.; Lopez de Miguel, M.P.; Lopez-Gonzalez, M.V.; Spyer, K.M.; Gonzalez-Baron, S. A5 region modulation of the cardiorespiratory responses evoked from parabrachial cell bodies in the anaesthetised rat. Brain Res. 2003, 982, 108–118. [Google Scholar] [CrossRef]
- Dutschmann, M.; Bautista, T.G.; Trevizan-Baú, P.; Dhingra, R.R.; Furuya, W.I. The pontine Kölliker-Fuse nucleus gates facial, hypoglossal, and vagal upper airway related motor activity. Respir. Physiol. Neurobiol. 2021, 284, 103563. [Google Scholar] [CrossRef]
- Dutschmann, M.; Dick, T.E. Pontine mechanisms of respiratory control. Compr. Physiol. 2012, 2, 2443–2469. [Google Scholar] [CrossRef]
- Moga, M.M.; Herbert, H.; Hurley, K.M.; Yasui, Y.; Gray, T.S.; Saper, C.B. Organization of cortical, basal forebrain, and hypothalamic afferents to the parabrachial nucleus in the rat. J. Comp. Neurol. 1990, 295, 624–661. [Google Scholar] [CrossRef]
- Díaz-Casares, A.; López-González, M.V.; Peinado-Aragonés, C.A.; Lara, J.P.; González-Barón, S.M.; Dawid-Milner, M.S. Role of the parabrachial complex in the cardiorespiratory response evoked from hypothalamic defense area stimulation in the anesthetized rat. Brain Res. 2009, 1279, 58–70. [Google Scholar] [CrossRef]
- Díaz-Casares, A.; López-González, M.V.; Peinado-Aragonés, C.A.; González-Barón, S.; Dawid-Milner, M.S. Parabrachial complex glutamate receptors modulate the cardiorespiratory response evoked from hypothalamic defense area. Auton. Neurosci. 2012, 169, 124–134. [Google Scholar] [CrossRef]
- Bruinstroop, E.; Cano, G.; Vanderhorst, V.G.; Cavalcante, J.C.; Wirth, J.; Sena-Esteves, M.; Saper, C.B. Spinal projections of the A5, A6 (locus coeruleus), and A7 noradrenergic cell groups in rats. J. Comp. Neurol. 2012, 520, 1985–2001. [Google Scholar] [CrossRef]
- López-González, M.V.; Díaz-Casares, A.; Peinado-Aragonés, C.A.; Lara, J.P.; Barbancho, M.A.; Dawid-Milner, M.S. Neurons of the A5 region are required for the tachycardia evoked by electrical stimulation of the hypothalamic defence area in anaesthetized rats. Exp. Physiol. 2013, 98, 1279–1294. [Google Scholar] [CrossRef]
- López-González, M.V.; Díaz-Casares, A.; González-García, M.; Peinado-Aragonés, C.A.; Barbancho, M.A.; Carrillo de Albornoz, M.; Dawid-Milner, M.S. Glutamate receptors of the A5 region modulate cardiovascular responses evoked from the dorsomedial hypothalamic nucleus and perifornical area. J. Physiol. Biochem. 2018, 74, 325–334. [Google Scholar] [CrossRef]
- Abbott, S.B.; Kanbar, R.; Bochorishvili, G.; Coates, M.B.; Stornetta, R.L.; Guyenet, P.G. C1 neurons excite locus coeruleus and A5 noradrenergic neurons along with sympathetic outflow in rats. J. Physiol. 2012, 590, 2897–2915. [Google Scholar] [CrossRef]
- Guyenet, P.G. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 2006, 7, 335–346. [Google Scholar] [CrossRef]
- Dampney, R.A.L.; Coleman, M.J.; Fontes, M.A.P.; Hirooka, Y.; Horiuchi, J.; Li, Y.W.; Polson, J.W.; Potts, P.D.; Tagawa, T. Central mechanisms underlying short-and longterm regulation of the cardiovascular system. Clin. Exp. Pharmacol. Physiol. 2002, 29, 261–268. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, Z.; Ma, W.X.; Kong, L.X.; Yuan, P.C.; Bu, L.F.; Han, J.; Huang, Z.L.; Wang, Y.Q. The contribution of periaqueductal gray in the regulation of physiological and pathological behaviors. Front. Neurosci. 2024, 18, 1380171. [Google Scholar] [CrossRef]
- Li, T.L.; Chen, J.Y.S.; Huang, S.C.; Dai, Y.W.E.; Hwang, L.L. Cardiovascular pressor effects of orexins in the dorsomedial hypothalamus. Eur. J. Pharmacol. 2018, 818, 343–350. [Google Scholar] [CrossRef]
- Huang, S.C.; Dai, Y.W.; Lee, Y.H.; Chiou, L.C.; Hwang, L.L. Orexins depolarize rostral ventrolateral medulla neurons and increase arterial pressure and heart rate in rats mainly via orexin 2 receptors. J. Pharmacol. Exp. Ther. 2010, 334, 522–529. [Google Scholar] [CrossRef]
- Samuels, B.C.; Zaretsky, D.V.; DiMicco, J.A. Tachycardia evoked by disinhibition of the dorsomedial hypothalamus in rats is mediated through medullary raphe. J. Physiol. 2002, 538, 941–946. [Google Scholar] [CrossRef]
- Nogueira, M.I.; de Rezende, B.D.; do Vale, L.E.; Bittencourt, J.C. Afferent connections of the caudal raphe pallidus nucleus in rats: A study using the fluorescent retrograde tracers fluorogold and true-blue. Anat. Anz. 2000, 182, 35–45. [Google Scholar] [CrossRef]
- Krohn, F.; Novello, M.; van der Giessen, R.S.; De Zeeuw, C.I.; Pel, J.J.M.; Bosman, L.W.J. The integrated brain network that controls respiration. eLife 2023, 12, e83654. [Google Scholar] [CrossRef]
- Kanbar, R.; Orea, V.; Chapuis, B.; Barres, C.; Julien, C. A transfer function method for the continuous assessment of baroreflex control of renal sympathetic nerve activity in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 293, R1938–R1946. [Google Scholar] [CrossRef]
- Marina, N.; Turovsky, E.; Christie, I.N.; Hosford, P.S.; Hadjihambi, A.; Korsak, A.; Ang, R.; Mastitskaya, S.; Sheikhbahaei, S.; Theparambil, S.M.; et al. Brain metabolic sensing and metabolic signaling at the level of an astrocyte. Glia 2018, 66, 1185–1199. [Google Scholar] [CrossRef]
- Amorim, M.R.; Wang, X.; Aung, O.; Bevans-Fonti, S.; Anokye-Danso, F.; Ribeiro, C.; Escobar, J.; Freire, C.; Pho, H.; Dergacheva, O.; et al. Leptin signaling in the dorsomedial hypothalamus couples breathing and metabolism in obesity. Cell Rep. 2023, 42, 113512. [Google Scholar] [CrossRef]
- Dampney, R.A.; Furlong, T.M.; Horiuchi, J.; Iigaya, K. Role of dorsolateral periaqueductal grey in the coordinated regulation of cardiovascular and respiratory function. Auton. Neurosci. 2013, 175, 17–25. [Google Scholar] [CrossRef]
- Fontes, M.A.P.; Marins, F.R.; Patel, T.A.; de Paula, C.A.; Dos Santos Machado, L.R.; de Sousa Lima, É.B.; Ventris-Godoy, A.C.; Viana, A.C.R.; Linhares, I.C.S.; Xavier, C.H.; et al. Neurogenic Background for Emotional Stress-Associated Hypertension. Curr. Hypertens. Rep. 2023, 25, 107–116. [Google Scholar] [CrossRef]
- Esler, M. Mental stress and human cardiovascular disease. Neurosci. Biobehav. Rev. 2017, 74, 269–276. [Google Scholar] [CrossRef]
- Johnson, H.M. Anxiety and Hypertension: Is There a Link? A Literature Review of the Comorbidity Relationship Between Anxiety and Hypertension. Curr. Hypertens. Rep. 2019, 21, 66. [Google Scholar] [CrossRef]
- de Silva, T.; Cosentino, G.; Ganji, S.; Riera-Gonzalez, A.; Hsia, D.S. Endocrine Causes of Hypertension. Curr. Hypertens. Rep. 2020, 22, 97. [Google Scholar] [CrossRef] [PubMed]
- Altemus, M.; Redwine, L.S.; Leong, Y.M.; Frye, C.A.; Porges, S.W.; Carter, C.S. Responses to laboratory psychosocial stress in postpartum women. Psychosom. Med. 2001, 63, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Korner, P.I. Psychosocial Stress and Hypertension. In Essential Hypertension and Its Causes: Neural and Non-Neural Mechanisms; Korner, P.I., Ed.; Oxford University Press: New York, NY, USA, 2007; pp. 317–358. [Google Scholar] [CrossRef]
- Sévoz-Couche, C.; Brouillard, C.; Camus, F.; Laude, D.; De Boer, S.F.; Becker, C.; Benoliel, J.J. Involvement of the dorsomedial hypothalamus and the nucleus tractus solitarii in chronic cardiovascular changes associated with anxiety in rats. J. Physiol. 2013, 591, 1871–1887. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo-Franco, L.; González-García, M.; Morales-Luque, C.; Dawid-Milner, M.S.; López-González, M.V. Hypothalamic Regulation of Cardiorespiratory Functions: Insights into the Dorsomedial and Perifornical Pathways. Biology 2024, 13, 933. https://doi.org/10.3390/biology13110933
Carrillo-Franco L, González-García M, Morales-Luque C, Dawid-Milner MS, López-González MV. Hypothalamic Regulation of Cardiorespiratory Functions: Insights into the Dorsomedial and Perifornical Pathways. Biology. 2024; 13(11):933. https://doi.org/10.3390/biology13110933
Chicago/Turabian StyleCarrillo-Franco, Laura, Marta González-García, Carmen Morales-Luque, Marc Stefan Dawid-Milner, and Manuel Víctor López-González. 2024. "Hypothalamic Regulation of Cardiorespiratory Functions: Insights into the Dorsomedial and Perifornical Pathways" Biology 13, no. 11: 933. https://doi.org/10.3390/biology13110933
APA StyleCarrillo-Franco, L., González-García, M., Morales-Luque, C., Dawid-Milner, M. S., & López-González, M. V. (2024). Hypothalamic Regulation of Cardiorespiratory Functions: Insights into the Dorsomedial and Perifornical Pathways. Biology, 13(11), 933. https://doi.org/10.3390/biology13110933