Small Molecule Inhibitor of Protein Kinase C DeltaI (PKCδI) Decreases Inflammatory Pathways and Gene Expression and Improves Metabolic Function in Diet-Induced Obese Mouse Model
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Intraperitoneal Glucose Tolerance Test (IPGTT)
2.3. Western Blot Analysis
2.4. Hematoxylin and Eosin Staining
2.5. Quantitative Real-Time qPCR
2.6. RNAseq and Analysis
2.7. Statistical Analysis
3. Results
3.1. NP627 Administration Does Not Affect the Weight of DIO Mice
3.2. IPGTT Shows Increased Glucose Uptake with NP627 Treatment in DIO Mice
3.3. NP627 Inhibited the Cleavage of PKCδI Catalytic Fragment in DIO Mice
3.4. NP627 Treatment Is Not Toxic
3.5. RNAseq Analysis Identifies Pathway Changes in Response to NP627 Treatment
3.6. NP627 Reduced Inflammatory Genes TNFα, IL-6, and IL-1β
3.7. NP627 Treatment Affects Expression of lncRNAs
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Hildebrandt, X.; Ibrahim, M.; Peltzer, N. Cell death and inflammation during obesity: “Know my methods, WAT (son)”. Cell Death Differ. 2023, 30, 279–292. [Google Scholar] [CrossRef]
- Renovato-Martins, M.; Moreira-Nunes, C.; Atella, G.C.; Barja-Fidalgo, C.; Moraes, J.A. Obese Adipose Tissue Secretion Induces Inflammation in Preadipocytes: Role of Toll-like Receptor-4. Nutrients 2020, 12, 2828. [Google Scholar] [CrossRef] [PubMed]
- Malavez, Y.; Gonzalez-Mejia, M.E.; Doseff, A.I. PRKCD (protein kinase C, delta). Atlas Genet. Cytogenet. Oncol. Haematol. 2011, 13, 28–42. [Google Scholar] [CrossRef]
- Miao, L.N.; Pan, D.; Shi, J.; Du, J.P.; Chen, P.F.; Gao, J.; Yu, Y.; Shi, D.Z.; Guo, M. Role and Mechanism of PKC-delta for Cardiovascular Disease: Current Status and Perspective. Front. Cardiovasc. Med. 2022, 9, 816369. [Google Scholar] [CrossRef] [PubMed]
- Kikkawa, U.; Hidenori, M.; Toshiyoshi, Y. Protein Kinase Cd (PKCd): Activation Mechanisms and Functions. J. Biochem. 2002, 132, 831–839. [Google Scholar] [CrossRef] [PubMed]
- Kanthasamy, A.G.; Kitazawa, M.; Kanthasamy, A.; Anantharam, V. Role of proteolytic activation of protein kinase Cdelta in oxidative stress-induced apoptosis. Antioxid. Redox Signal 2003, 5, 609–620. [Google Scholar] [CrossRef]
- Denning, M.F.; Wang, Y.; Tibudan, S.; Alkan, S.; Nickoloff, B.J.; Qin, J.Z. Caspase activation and disruption of mitochondrial membrane potential during UV radiation-induced apoptosis of human keratinocytes requires activation of protein kinase C. Cell Death Differ. 2002, 9, 40–52. [Google Scholar] [CrossRef]
- LaGory, E.L.; Sitailo, L.A.; Denning, M.F. The protein kinase Cdelta catalytic fragment is critical for maintenance of the G2/M DNA damage checkpoint. J. Biol. Chem. 2010, 285, 1879–1887. [Google Scholar] [CrossRef]
- Montecucco, F.; Steffens, S.; Mach, F. Insulin resistance: A proinflammatory state mediated by lipid-induced signaling dysfunction and involved in atherosclerotic plaque instability. Mediators Inflamm. 2008, 2008, 767623. [Google Scholar] [CrossRef]
- Talior, I.; Tennenbaum, T.; Kuroki, T.; Eldar-Finkelman, H. PKC-delta-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: Role for NADPH oxidase. Am. J. Physiol. Endocrinol. Metab. 2005, 288, E405–E411. [Google Scholar] [CrossRef]
- Sparks, R.; Lui, A.; Bader, D.; Patel, R.; Murr, M.; Guida, W.; Fratti, R.; Patel, N.A. A specific small-molecule inhibitor of protein kinase CdeltaI activity improves metabolic dysfunction in human adipocytes from obese individuals. J. Biol. Chem. 2019, 294, 14896–14910. [Google Scholar] [CrossRef] [PubMed]
- Kagan, L.; Zhao, J.; Mager, D.E. Interspecies pharmacokinetic modeling of subcutaneous absorption of rituximab in mice and rats. Pharm. Res. 2014, 31, 3265–3273. [Google Scholar] [CrossRef] [PubMed]
- Richter, W.F.; Bhansali, S.G.; Morris, M.E. Mechanistic determinants of biotherapeutics absorption following SC administration. AAPS J. 2012, 14, 559–570. [Google Scholar] [CrossRef] [PubMed]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Physiol. 2019, 10, 1607. [Google Scholar] [CrossRef] [PubMed]
- Singla, P.; Bardoloi, A.; Parkash, A.A. Metabolic effects of obesity: A review. World J. Diabetes 2010, 1, 76–88. [Google Scholar] [CrossRef]
- Ranganathan, G.; Song, W.; Dean, N.; Monia, B.; Barger, S.W.; Kern, P.A. Regulation of lipoprotein lipase by protein kinase C alpha in 3T3-F442A adipocytes. J. Biol. Chem. 2002, 277, 38669–38675. [Google Scholar] [CrossRef]
- Kayali, A.G.; Austin, D.A.; Webster, N.J. Rottlerin inhibits insulin-stimulated glucose transport in 3T3-L1 adipocytes by uncoupling mitochondrial oxidative phosphorylation. Endocrinology 2002, 143, 3884–3896. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, H.K.; Kang, S.; Kim, H.; Go, G.W. Rottlerin suppresses lipid accumulation by inhibiting de novo lipogenesis and adipogenesis via LRP6/mTOR/SREBP1C in 3T3-L1 adipocytes. Food Sci. Biotechnol. 2023, 32, 1445–1452. [Google Scholar] [CrossRef]
- Atkinson, B.J.; Griesel, B.A.; King, C.D.; Josey, M.A.; Olson, A.L. Moderate GLUT4 overexpression improves insulin sensitivity and fasting triglyceridemia in high-fat diet-fed transgenic mice. Diabetes 2013, 62, 2249–2258. [Google Scholar] [CrossRef]
- Cawthorn, W.P.; Sethi, J.K. TNF-alpha and adipocyte biology. FEBS Lett. 2008, 582, 117–131. [Google Scholar] [CrossRef]
- Ahmed, B.; Sultana, R.; Greene, M.W. Adipose tissue and insulin resistance in obese. Biomed. Pharmacother. 2021, 137, 111315. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Balakrishnan, B.; Karki, S.; Slayton, M.; Jash, S.; Banerjee, S.; Grahn, T.H.M.; Jambunathan, S.; Disney, S.; Hussein, H.; et al. Human CIDEC transgene improves lipid metabolism and protects against high-fat diet-induced glucose intolerance in mice. J. Biol. Chem. 2022, 298, 102347. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.H.; Kumar, S. Caspases in metabolic disease and their therapeutic potential. Cell Death Differ. 2018, 25, 1010–1024. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, M.; Momen Maragheh, S.; Aghazadeh, A.; Mehrjuyan, S.R.; Hussen, B.M.; Abdoli Shadbad, M.; Dastmalchi, N.; Safaralizadeh, R. Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. Int. Immunopharmacol. 2021, 96, 107765. [Google Scholar] [CrossRef]
- Castoldi, A.; Naffah de Souza, C.; Camara, N.O.; Moraes-Vieira, P.M. The Macrophage Switch in Obesity Development. Front. Immunol. 2015, 6, 637. [Google Scholar] [CrossRef]
- Tinahones, F.J.; Coin Araguez, L.; Murri, M.; Oliva Olivera, W.; Mayas Torres, M.D.; Barbarroja, N.; Gomez Huelgas, R.; Malagon, M.M.; El Bekay, R. Caspase induction and BCL2 inhibition in human adipose tissue: A potential relationship with insulin signaling alteration. Diabetes Care 2013, 36, 513–521. [Google Scholar] [CrossRef]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef]
- Corrales, P.; Vidal-Puig, A.; Medina-Gomez, G. PPARs and Metabolic Disorders Associated with Challenged Adipose Tissue Plasticity. Int. J. Mol. Sci. 2018, 19, 2124. [Google Scholar] [CrossRef]
- Juszczak, F.; Caron, N.; Mathew, A.V.; Decleves, A.E. Critical Role for AMPK in Metabolic Disease-Induced Chronic Kidney Disease. Int. J. Mol. Sci. 2020, 21, 7994. [Google Scholar] [CrossRef]
- Hu, E.; Liang, P.; Spiegelman, B.M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 1996, 271, 10697–10703. [Google Scholar] [CrossRef]
- National Library of Medicine. Rnase10 Ribonuclease, RNase A Family, 10 (Non-Active) [Mus musculus (House Mouse)]. Available online: https://www.ncbi.nlm.nih.gov/gene/75019 (accessed on 16 October 2024).
- Nieto-Vazquez, I.; Fernandez-Veledo, S.; Kramer, D.K.; Vila-Bedmar, R.; Garcia-Guerra, L.; Lorenzo, M. Insulin resistance associated to obesity: The link TNF-alpha. Arch. Physiol. Biochem. 2008, 114, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Lee, B.; Kim, J.; Kim, J.; Hong, S.H.; Kim, D.; Choi, S.; Cho, B.N.; Cho, C. Expressional and functional analyses of epididymal SPINKs in mice. Gene Expr. Patterns 2019, 31, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Pujar, M.K.; Vastrad, B.; Vastrad, C. Integrative Analyses of Genes Associated with Subcutaneous Insulin Resistance. Biomolecules 2019, 9, 37. [Google Scholar] [CrossRef]
- Welters, H.J.; Kulkarni, R.N. Wnt signaling: Relevance to beta-cell biology and diabetes. Trends Endocrinol. Metab. 2008, 19, 349–355. [Google Scholar] [CrossRef]
- Carter, G.; Miladinovic, B.; Patel, A.A.; Deland, L.; Mastorides, S.; Patel, N.A. Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus. BBA Clin. 2015, 4, 102–107. [Google Scholar] [CrossRef]
- Alharbi, K.S. GAS5: A pivotal lncRNA in diabetes mellitus pathogenesis and management. Pathol. Res. Pract. 2024, 253, 154955. [Google Scholar] [CrossRef]
- Yang, W.; Lyu, Y.; Xiang, R.; Yang, J. Long Noncoding RNAs in the Pathogenesis of Insulin Resistance. Int. J. Mol. Sci. 2022, 23, 16054. [Google Scholar] [CrossRef]
- Patel, N.A.; Lui, A.; Trujillo, A.N.; Motawe, Z.Y.; Bader, D.; Schuster, J.; Burgess, A.; Alves, N.G.; Jo, M.; Breslin, J.W. Female and male obese Zucker rats display differential inflammatory mediator and long non-coding RNA profiles. Life Sci. 2023, 335, 122285. [Google Scholar] [CrossRef]
- Piorkowska, K.; Zygmunt, K.; Hunter, W.; Wroblewska, K. MALAT1: A Long Non-Coding RNA with Multiple Functions and Its Role in Processes Associated with Fat Deposition. Genes 2024, 15, 479. [Google Scholar] [CrossRef]
- Gernapudi, R.; Wolfson, B.; Zhang, Y.; Yao, Y.; Yang, P.; Asahara, H.; Zhou, Q. MicroRNA 140 Promotes Expression of Long Noncoding RNA NEAT1 in Adipogenesis. Mol. Cell Biol. 2016, 36, 30–38. [Google Scholar] [CrossRef]
- Patel, R.S.; Carter, G.; El Bassit, G.; Patel, A.A.; Cooper, D.R.; Murr, M.; Patel, N.A. Adipose-derived stem cells from lean and obese humans show depot specific differences in their stem cell markers, exosome contents and senescence: Role of protein kinase C delta (PKCdelta) in adipose stem cell niche. Stem Cell Investig. 2016, 3, 2. [Google Scholar] [PubMed]
- Cooper, D.R.; Carter, G.; Li, P.; Patel, R.; Watson, J.E.; Patel, N.A. Long Non-Coding RNA NEAT1 Associates with SRp40 to Temporally Regulate PPARgamma2 Splicing during Adipogenesis in 3T3-L1 Cells. Genes 2014, 5, 1050–1063. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zheng, Y.; Jin, C.; Li, X.; Jia, L.; Li, W. Long Non-coding RNA H19 Inhibits Adipocyte Differentiation of Bone Marrow Mesenchymal Stem Cells through Epigenetic Modulation of Histone Deacetylases. Sci. Rep. 2016, 6, 28897. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Fang, S.; Zhang, H.; Li, X.; Du, Y.; Zhang, Y.; Lin, X.; Wang, L.; Ma, X.; Xue, Y.; et al. Long noncoding RNA XIST regulates brown preadipocytes differentiation and combats high-fat diet induced obesity by targeting C/EBPalpha. Mol. Med. 2022, 28, 6. [Google Scholar] [CrossRef]
- You, L.H.; Zhu, L.J.; Yang, L.; Shi, C.M.; Pang, L.X.; Zhang, J.; Cui, X.W.; Ji, C.B.; Guo, X.R. Transcriptome analysis reveals the potential contribution of long noncoding RNAs to brown adipocyte differentiation. Mol. Genet. Genom. 2015, 290, 1659–1671. [Google Scholar] [CrossRef]
- Tang, W.; Wu, S.; Tang, Y.; Ma, J.; Ao, Y.; Liu, L.; Wei, K. Microarray analysis identifies lncFirre as a potential regulator of obesity-related acute lung injury. Life Sci. 2024, 340, 122459. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osborne, B.; Patel, R.S.; Krause-Hauch, M.; Lui, A.; Vidyarthi, G.; Patel, N.A. Small Molecule Inhibitor of Protein Kinase C DeltaI (PKCδI) Decreases Inflammatory Pathways and Gene Expression and Improves Metabolic Function in Diet-Induced Obese Mouse Model. Biology 2024, 13, 943. https://doi.org/10.3390/biology13110943
Osborne B, Patel RS, Krause-Hauch M, Lui A, Vidyarthi G, Patel NA. Small Molecule Inhibitor of Protein Kinase C DeltaI (PKCδI) Decreases Inflammatory Pathways and Gene Expression and Improves Metabolic Function in Diet-Induced Obese Mouse Model. Biology. 2024; 13(11):943. https://doi.org/10.3390/biology13110943
Chicago/Turabian StyleOsborne, Brenna, Rekha S. Patel, Meredith Krause-Hauch, Ashley Lui, Gitanjali Vidyarthi, and Niketa A. Patel. 2024. "Small Molecule Inhibitor of Protein Kinase C DeltaI (PKCδI) Decreases Inflammatory Pathways and Gene Expression and Improves Metabolic Function in Diet-Induced Obese Mouse Model" Biology 13, no. 11: 943. https://doi.org/10.3390/biology13110943
APA StyleOsborne, B., Patel, R. S., Krause-Hauch, M., Lui, A., Vidyarthi, G., & Patel, N. A. (2024). Small Molecule Inhibitor of Protein Kinase C DeltaI (PKCδI) Decreases Inflammatory Pathways and Gene Expression and Improves Metabolic Function in Diet-Induced Obese Mouse Model. Biology, 13(11), 943. https://doi.org/10.3390/biology13110943