The Isolation and Characterization of Perlucin in Pacific Abalone, Haliotis discus hannai: A Shell Morphogenic Protein with Potential Responses to Thermal Stress and Starvation
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Tissue Collection for Isolation of the Perlucin Gene
2.2. Samples of Early Development Stages
2.3. Tissue Sample Collection from Different Growth Types of Pacific Abalone
2.4. Collection of Tissues During Biomineralization of Damaged Shells
2.5. Collection of Tissue Sample from Pacific Abalone Under Starved Conditions
2.6. Collection of Tissue Samples from Pacific Abalone Exposed to Thermal Stress
2.7. Cloning of the Hdh-Perlucin cDNA Sequence from the Pacific Abalone
2.8. Analysis of Hdh-Perlucin Protein
2.9. Phylogenetic Analysis
2.10. Three-Dimensional Modeling of Hdh-Perlucin
2.11. Expression Analysis Using qRT-PCR
2.12. Statistical Analysis
3. Results
3.1. Pacific Abalone Perlucin Sequence
3.2. Main Features of the Hdh-Perlucin Amino Acid Sequence
3.3. Homology Analysis
3.4. Structure of Hdh-Perlucin Protein
3.5. Gene Ontology (GO) Analysis
3.6. Phylogenetic Relationship
3.7. Tissue-Specific Expression of Hdh-Perlucin in Pacific Abalone
3.8. Hdh-Perlucin mRNA Expression During Early Development Stages of Pacific Abalone
3.9. Hdh-Perlucin Expression in Pacific Abalone of Different Growth Types
3.10. Hdh-Perlucin mRNA Expression During Shell Regeneration in Pacific Abalone
3.11. Hdh-Perlucin mRNA Expression in Heat-Stressed Pacific Abalone
3.12. Hdh-Perlucin Expression During the Long Starvation Period
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Addadi, L.; Weiner, S. Biomineralization: Mineral formation by organisms. Phys. Scr. 2014, 89, 098003. [Google Scholar] [CrossRef]
- Clark, M.S. Molecular mechanisms of biomineralization in marine invertebrates. J. Exp. Biol. 2020, 223, jeb206961. [Google Scholar] [CrossRef] [PubMed]
- Marin, F.; Luquet, G. Molluscan shell proteins. C. R. Palevol 2004, 3, 469–492. [Google Scholar] [CrossRef]
- Checa, A.G. Physical and biological determinants of the fabrication of molluscan shell microstructures. Front. Mar. Sci. 2018, 5, 353. [Google Scholar] [CrossRef]
- Hanif, M.A.; Han, J.D.; Kim, S.C.; Hossen, S.; Kho, K.H. EF-Hand-Binding Secreted Protein Hdh-SMP5 Regulates Shell Biomineralization and Responses to Stress in Pacific Abalone, Haliotis discus hannai. Curr. Issues Mol. Biol. 2023, 45, 10079–10096. [Google Scholar] [CrossRef] [PubMed]
- De-Yoreo, J.J.; Gilbert, P.U.; Sommerdijk, N.A.; Penn, R.L.; Whitelam, S.; Joester, D.; Zhang, H.; Rimer, J.D.; Navrotsky, A.; Banfield, J.F.; et al. CRYSTAL GROWTH. Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science 2015, 349, aaa6760. [Google Scholar] [CrossRef]
- Strong, E.E.; Gargominy, O.; Ponder, W.F.; Bouchet, P. Global diversity of gastropods (Gastropoda; Mollusca) in freshwater. Hydrobiologia 2008, 595, 149–166. [Google Scholar] [CrossRef]
- Wilt, F.H.; Killian, C.E.; Livingston, B.T. Development of calcareous skeletal elements in invertebrates. Differentiation 2003, 71, 237–250. [Google Scholar] [CrossRef]
- Kocot, K.M.; Aguilera, F.; McDougall, C.; Jackson, D.J.; Degnan, B.M. Sea shell diversity and rapidly evolving secretomes: Insights into the evolution of biomineralization. Front. Zool. 2016, 13, 23. [Google Scholar] [CrossRef]
- Schönitzer, V.; Weiss, I.M. The structure of mollusc larval shells formed in the presence of the chitin synthase inhibitor Nikkomycin Z. BMC Struct. Biol. 2007, 7, 71. [Google Scholar] [CrossRef]
- Gaume, B.; Denis, F.; Van Wormhoudt, A.; Huchette, S.; Jackson, D.J.; Avignon, S.; Auzoux-Bordenave, S. Characterisation and expression of the biomineralising gene Lustrin A during shell formation of the European abalone Haliotis tuberculata. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2014, 169, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Carriker, M.R.; Palmer, R.E. Ultrastructural morphogenesis of prodissoconch and early dissoconch valves of the oyster, Crassostrea virginica. Proc. Natl. Shellfish. Assoc. 1979, 69, 103–128. [Google Scholar]
- Wanninger, A.; Haszprunar, G. The expression of an engrailed protein during embryonic shell formation of the tusk-shell, Antalis entalis (Mollusca, Scaphopoda). Evol. Dev. 2001, 3, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Li, S.; Kong, J.; Liu, Y.; Wang, T.; Xie, L.; Zhang, R. In-depth proteomic analysis of shell matrix proteins of Pinctada fucata. Sci. Rep. 2015, 5, 17269. [Google Scholar] [CrossRef]
- Shimizu, K.; Takeuchi, T.; Negishi, L.; Kurumizaka, H.; Kuriyama, I.; Endo, K.; Suzuki, M. Evolution of epidermal growth factor (egf)-like and zona pellucida domains containing shell matrix proteins in mollusks. Mol. Biol. Evol. 2022, 39, msac148. [Google Scholar] [CrossRef]
- Feng, D.; Li, Q.; Yu, H.; Kong, L.; Du, S. Identification of conserved proteins from diverse shell matrix proteome in Crassostrea gigas: Characterization of genetic bases regulating shell formation. Sci. Rep. 2017, 7, 45754. [Google Scholar] [CrossRef]
- Jin, C.; Zhao, J.; Pu, J.; Liu, X.; Li, J. Hichin, a chitin binding protein is essential for the self-assembly of organic frameworks and calcium carbonate during shell formation. Int. J. Biol. Macromol. 2019, 135, 745–751. [Google Scholar] [CrossRef]
- Smith, V.J. Phylogeny of whey acidic protein (WAP) four-disulfide core proteins and their role in lower vertebrates and invertebrates. Biochem. Soc. Trans. 2011, 39, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- Hanif, M.A.; Hossen, S.; Choi, C.Y.; Kho, K.H. Cloning, characterization, and spatio-temporal expression patterns of HdhSPARC and its responses to multiple stressors. Sci. Rep. 2024, 14, 2224. [Google Scholar] [CrossRef]
- Sharker, M.R.; Kim, S.C.; Hossen, S.; Sumi, K.R.; Choi, S.K.; Choi, K.S.; Kho, K.H. Carbonic Anhydrase in Pacific Abalone Haliotis discus hannai: Characterization, Expression, and Role in Biomineralization. Front. Mol. Biosci. 2021, 8, 655115. [Google Scholar] [CrossRef]
- Sharker, M.R.; Sukhan, Z.P.; Sumi, K.R.; Choi, S.K.; Choi, K.S.; Kho, K.H. Molecular Characterization of Carbonic Anhydrase II (CA II) and Its Potential Involvement in Regulating Shell Formation in the Pacific Abalone, Haliotis discus hannai. Front. Mol. Biosci. 2021, 8, 669235. [Google Scholar] [CrossRef] [PubMed]
- Nam, B.H.; Kim, H.; Seol, D.; Kim, H.; Noh, E.S.; Kim, E.M.; Noh, J.K.; Kim, Y.O.; Park, J.Y.; Kwak, W. Genotyping-by-Sequencing of the regional Pacific abalone (Haliotis discus) genomes reveals population structures and patterns of gene flow. PLoS ONE 2021, 16, e0247815. [Google Scholar] [CrossRef] [PubMed]
- Weiss, I.M.; Kaufmann, S.; Mann, K.; Fritz, M. Purification and characterization of perlucin and perlustrin, two new proteins from the shell of the mollusc Haliotis laevigata. Biochem. Biophys. Res. Commun. 2000, 267, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Mann, K.; Weiss, I.M.; André, S.; Gabius, H.J.; Fritz, M. The amino-acid sequence of the abalone (Haliotis laevigata) nacre protein perlucin. Detection of a functional C-type lectin domain with galactose/mannose specificity. Eur. J. Biochem. 2000, 267, 5257–5264. [Google Scholar] [CrossRef]
- Blank, S.; Arnoldi, M.; Khoshnavaz, S.; Treccani, L.; Kuntz, M.; Mann, K.; Grathwohl, G.; Fritz, M. The nacre protein perlucin nucleates growth of calcium carbonate crystals. J. Microsc. 2003, 212, 280–291. [Google Scholar] [CrossRef]
- Hossen, S.; Hanif, M.A.; Kho, K.H. Glutathione reductase, a biomarker of pollutant and stress in Pacific abalone. Mar. Pollut. Bull. 2023, 192, 115139. [Google Scholar] [CrossRef]
- Marin, F.; Roy, N.L.; Marie, B. The formation and mineralization of mollusk shell. Front. Biosci. 2012, 4, 1099–1125. [Google Scholar] [CrossRef]
- Weber, E.; Guth, C.; Weiss, I.M. GFP facilitates native purification of recombinant perlucin derivatives and delays the precipitation of calcium carbonate. PLoS ONE 2012, 7, e46653. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.Y.; Ma, K.Y.; Bai, Z.Y.; Li, J.L. Molecular cloning and characterization of perlucin from the freshwater pearl mussel, Hyriopsis cumingii. Gene 2013, 526, 210–216. [Google Scholar] [CrossRef]
- Hanif, M.A.; Hossen, S.; Cho, Y.; Sukhan, Z.P.; Choi, C.Y.; Kho, K.H. Characterization and expression analysis of mollusk-like growth factor: A secreted protein involved in Pacific abalone embryonic and larval development. Biology 2022, 11, 1445. [Google Scholar] [CrossRef]
- Mann, K.; Siedler, F. The amino acid sequence of ovocleidin 17, a major protein of the avian eggshell calcified layer. Biochem. Mol. Biol. Int. 1999, 47, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, T.; Sato, R.; Naganuma, T.; Liu, K.; Sato, S.; Sakaue, S.; Osada, M.; Yoshimi, K.; Muramoto, K. Diversified Biomineralization Roles of Pteria penguin Pearl Shell Lectins as Matrix Proteins. Int. J. Mol. Sci. 2021, 22, 1081. [Google Scholar] [CrossRef] [PubMed]
- Levi-Kalisman, Y.; Falini, G.; Addadi, L.; Weiner, S. Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using cryo-TEM. J. Struct. Biol. 2001, 135, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Sakuda, S.; Nagasawa, H. Identification of chitin in the prismatic layer of the shell and a chitin synthase gene from the Japanese pearl oyster, Pinctada fucata. Biosci. Biotechnol. Biochem. 2007, 71, 1735–1744. [Google Scholar] [CrossRef]
- Iobst, S.T.; Drickamer, K. Binding of sugar ligands to Ca(2+)-dependent animal lectins. II. Generation of high-affinity galactose binding by site-directed mutagenesis. J. Biol. Chem. 1994, 269, 15512–15519. [Google Scholar] [CrossRef]
- Ogawa, T.; Watanabe, M.; Naganuma, T.; Muramoto, K. Diversified carbohydrate-binding lectins from marine resources. J. Amino. Acids 2011, 2011, 838914. [Google Scholar] [CrossRef]
- Dodenhof, T.; Dietz, F.; Franken, S.; Grunwald, I.; Kelm, S. Splice variants of perlucin from Haliotis laevigata modulate the crystallisation of CaCO3. PLoS ONE 2014, 9, e97126. [Google Scholar] [CrossRef]
- Parvizi, F.; Akbarzadeh, A.; Farhadi, A.; Arnaud-Haond, S.; Ranjbar, M.S. Expression pattern of genes involved in biomineralization in black and orange mantle tissues of pearl oyster, Pinctada persica. Front. Mar. Sci. 2023, 9, 1038692. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Chen, H.; Han, C.; Chen, Y.; Zhan, X.; Liu, Y. The shell formation mechanism of Turbo argyrostomus based on ultrastructure and transcriptome analysis. Gene 2024, 927, 148747. [Google Scholar] [CrossRef]
- Rousseau, M.; Plouguerné, E.; Wan, G.; Wan, R.; Lopez, E.; Fouchereau-Peron, M. Biomineralisation markers during a phase of active growth in Pinctada margaritifera. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2003, 135, 271–278. [Google Scholar] [CrossRef]
- Song, N.; Li, J.; Li, B.; Pan, E.; Ma, Y. Transcriptome analysis of the bivalve Placuna placenta mantle reveals potential biomineralization-related genes. Sci. Rep. 2022, 12, 4743. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zarate, D.; Avila-Magaña, V.; Li, J. Comparative transcriptomics revealed parallel evolution and innovation of photosymbiosis molecular mechanisms in a marine bivalve. Proc. Biol. Sci. 2024, 291, 20232408. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, H.; Miyashita, T.; Okushima, M.; Nakano, S.; Morita, T.; Matsushiro, A. A carbonic anhydrase from the nacreous layer in oyster pearls. Proc. Natl. Acad. Sci. USA 1996, 93, 9657–9660. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Liu, Z.; Wang, L.; Song, L. Recent advances of shell matrix proteins and cellular orchestration in marine molluscan shell biomineralization. Front. Mar. Sci. 2019, 6, 41. [Google Scholar] [CrossRef]
- Mount, A.S.; Wheeler, A.P.; Paradkar, R.P.; Snider, D. Hemocyte-mediated shell mineralization in the eastern oyster. Science 2004, 304, 297–300. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, R. Biomineral proteomics: A tool for multiple disciplinary studies. J. Proteomics 2021, 238, 104171. [Google Scholar] [CrossRef]
- Cariolou, M.A.; Morse, D.E. Purification and characterization of calcium-binding conchiolin shell peptides from the mollusc, Haliotis rufescens, as a function of development. J. Comp. Physiol. B 1988, 157, 717–729. [Google Scholar] [CrossRef]
- Ramesh, K.; Yarra, T.; Clark, M.S.; John, U.; Melzner, F. Expression of calcification-related ion transporters during blue mussel larval development. Ecol. Evol. 2019, 9, 7157–7172. [Google Scholar] [CrossRef]
- Schwaner, C.; Pales Espinosa, E.; Allam, B. RNAi silencing of the biomineralization gene perlucin impairs oyster ability to cope with ocean acidification. Int. J. Mol. Sci. 2023, 24, 3661. [Google Scholar] [CrossRef]
- Zheng, X.; Lei, S.; Zhao, S.; Ye, G.; Ma, R.; Liu, L.; Xie, Y.; Shi, X.; Chen, J. Temperature elevation and acidification damage microstructure of abalone via expression change of crystal induction genes. Mar. Environ. Res. 2020, 162, 105114. [Google Scholar] [CrossRef]
- Lee, Y.; Roh, H.; Kim, A.; Park, J.; Lee, J.Y.; Kim, Y.J.; Kang, Y.R.; Kang, H.; Kim, S.; Kim, H.S.; et al. Molecular mechanisms underlying the vulnerability of Pacific abalone (Haliotis discus hannai) to Vibrio harveyi infection at higher water temperature. Fish. Shellfish. Immunol. 2023, 138, 108844. [Google Scholar] [CrossRef] [PubMed]
- Linard, C.; Gueguen, Y.; Moriceau, J.; Soyez, C.; Hui, B.; Raoux, A.; Cuif, J.P.; Cochard, J.-C.; Le Pennec, M.; Le Moullac, G. Calcein staining of calcified structures in pearl oyster Pinctada margaritifera and the effect of food resource level on shell growth. Aquaculture 2011, 313, 149–155. [Google Scholar] [CrossRef]
- Joubert, C.; Linard, C.; Le Moullac, G.; Soyez, C.; Saulnier, D.; Teaniniuraitemoana, V.; Ky, C.L.; Gueguen, Y. Temperature and food influence shell growth and mantle gene expression of shell matrix proteins in the pearl oyster Pinctada margaritifera. PLoS ONE 2014, 9, e103944. [Google Scholar] [CrossRef]
- Albentosa, M.; Pérez-Camacho, A.; Fernández-Reiriz, M.J.; Labarta, U. Wheatgerm flour in diets for Manila clam, Ruditapes philippinarum, spat. Aquaculture 2002, 212, 335–345. [Google Scholar] [CrossRef]
- Zheng, H.; Ke, C.; Zhou, S.; Li, F. Effects of starvation on larval growth, survival and metamorphosis of Ivory shell Babylonia formosae habei Altena et al., 1981 (Neogastropoda: Buccinidae). Aquaculture 2005, 243, 357–366. [Google Scholar] [CrossRef]
Primer Name | Nucleotide Sequences | Purpose |
---|---|---|
Oligo dT | GGC CAC GCG TCG ACT AGT ACT TTT TTT TTT TTT TTT T | cDNA synthesis |
OdT adapter | GGC CAC GCG TCG ACT AGT AC | |
Perlucin-Fw | GAT CAT CAT CCT GAC AGC AG | RT-PCR |
Perlucin-Rv | GAT CCA GAC AGC ATC AGT AC | |
Perlucin-5R | GAT TAC GCC AAG CTT GTC AGT TCG CTT GCT CCC TTC ACG TG | RACE PCR |
Perlucin-3R | GAT TAC GCC AAG CTT CAT CGC TCT ACC CTG CAA ACC ATC GG | |
Hdh-Perlucin-qF | GAC ATA CCT GGT ACA GAA CG | qRT-PCR |
Hdh-Perlucin-qR | GTA GAT CCG AGC TCC AAT TC | |
Hdh-β-Actin-Fw | GAT AGT GCG AGA CAT CAA GG | |
Hdh-β-Actin-Rv | GAG CTC GAA ACC TCT CAT TG |
Protein Name | Species | Accession No. | Protein Identity (%) | |
---|---|---|---|---|
Scientific Name | Common Name | |||
Hdh-Perlucin | Haliotis discus hannai | Pacific abalone | ABO26591.1 | 100 |
Hd-Perlucin | Haliotis diversicolor | Variously colored abalone | ADD16957.1 | 82.82 |
Mg-Perlucin | Magallana gigas | Pacific oyster | XP_011455487.3 | 45.39 |
Cv-Perlucin | Crassostrea virginica | Eastern oyster | XP_022330928.1 | 45.39 |
Mt-Perlucin | Mytilus trossulus | Pacific blue mussel | XP_063425845.1 | 45.39 |
Hdd-Perlucin | Haliotis discus discus | Disk abalone | ABO26590.1 | 39.26 |
Pf-Perlucin | Pinctada fucata | Akoya pearl oyster | JAS04076.1 | 37.5 |
Hc-Perlucin | Hyriopsis cumingii | Triangle shell mussel | AGI61062.1 | 36.02 |
Bl-Perlucin | Bactrocera latifrons | Solanum fruit fly | JAI49557.1 | 27.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cho, Y.; Hanif, M.A.; Hossen, S.; Kim, S.C.; Han, J.D.; Cho, D.H.; Kho, K.H. The Isolation and Characterization of Perlucin in Pacific Abalone, Haliotis discus hannai: A Shell Morphogenic Protein with Potential Responses to Thermal Stress and Starvation. Biology 2024, 13, 944. https://doi.org/10.3390/biology13110944
Cho Y, Hanif MA, Hossen S, Kim SC, Han JD, Cho DH, Kho KH. The Isolation and Characterization of Perlucin in Pacific Abalone, Haliotis discus hannai: A Shell Morphogenic Protein with Potential Responses to Thermal Stress and Starvation. Biology. 2024; 13(11):944. https://doi.org/10.3390/biology13110944
Chicago/Turabian StyleCho, Yusin, Md Abu Hanif, Shaharior Hossen, Soo Cheol Kim, Ji Do Han, Doo Hyun Cho, and Kang Hee Kho. 2024. "The Isolation and Characterization of Perlucin in Pacific Abalone, Haliotis discus hannai: A Shell Morphogenic Protein with Potential Responses to Thermal Stress and Starvation" Biology 13, no. 11: 944. https://doi.org/10.3390/biology13110944
APA StyleCho, Y., Hanif, M. A., Hossen, S., Kim, S. C., Han, J. D., Cho, D. H., & Kho, K. H. (2024). The Isolation and Characterization of Perlucin in Pacific Abalone, Haliotis discus hannai: A Shell Morphogenic Protein with Potential Responses to Thermal Stress and Starvation. Biology, 13(11), 944. https://doi.org/10.3390/biology13110944