Can IMTA System Improve the Productivity and Quality Traits of Aquatic Organisms Produced at Different Trophic Levels? The Benefits of IMTA—Not Only for the Ecosystem
Simple Summary
Abstract
1. Introduction
2. State of the Art of Successful IMTA Practices on the Zootechnical Performance, Nutritional Traits, Animal Welfare, and Sensory Characteristics of Different Aquatic Species
2.1. Fed Species
2.2. Organic Extractive Species
2.3. Inorganic Extractive Species
3. IMTA as Potential System for the Production of Alternative Ingredients in the Feeds of Aquatic Species
4. Considerations and Future Prospects
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chopin, T. Integrated Multi-Trophic Aquaculture Ancient, Adaptable Concept Focuses on Ecological Integration. Glob. Aquac. Advocate 2013, 16, 16–19. [Google Scholar]
- Shpigel, M. Mariculture Systems, Integrated Land-Based. In Sustainable Food Production; Christou, P., Savin, R., Costa-Pierce, B.A., Misztal, I., Whitelaw, C.B.A., Eds.; Springer: New York, NY, USA, 2013; pp. 1111–1120. [Google Scholar] [CrossRef]
- Chopin, T.; Troell, M.; Reid, G.K.; Knowler, D.; Robinson, S.M.C.; Neori, A.; Buschmann, A.H.; Pang, S.J. Integrated Multi-Trophic Aquaculture. In Advancing the Aquaculture Agenda; OECD Publishing: Paris, France, 2010; pp. 195–217. [Google Scholar]
- Hughes, A.; Black, K. Going beyond the Search for Solutions: Understanding Trade-Offs in European Integrated Multi-Trophic Aquaculture Development. Aquac. Environ. Interact. 2016, 8, 191–199. [Google Scholar] [CrossRef]
- Nissar, S.; Bakhtiyar, Y.; Arafat, M.Y.; Andrabi, S.; Mir, Z.A.; Khan, N.A.; Langer, S. The Evolution of Integrated Multi-Trophic Aquaculture in Context of Its Design and Components Paving Way to Valorization via Optimization and Diversification. Aquaculture 2023, 565, 739074. [Google Scholar] [CrossRef]
- Barrington, K.; Ridler, N.; Chopin, T.; Robinson, S.; Robinson, B. Social Aspects of the Sustainability of Integrated Multi-Trophic Aquaculture. Aquac. Int. 2010, 18, 201–211. [Google Scholar] [CrossRef]
- Giangrande, A.; Gravina, M.F.; Rossi, S.; Longo, C.; Pierri, C. Aquaculture and Restoration: Perspectives from Mediterranean Sea Experiences. Water 2021, 13, 991. [Google Scholar] [CrossRef]
- Moffitt, C.M.; Cajas-Cano, L. Blue Growth: The 2014 FAO State of World Fisheries and Aquaculture. Fisheries 2014, 39, 552–553. [Google Scholar] [CrossRef]
- Granada, L.; Sousa, N.; Lopes, S.; Lemos, M.F.L. Is Integrated Multitrophic Aquaculture the Solution to the Sectors’ Major Challenges?—A Review. Rev. Aquac. 2015, 8, 283–300. [Google Scholar] [CrossRef]
- Kleitou, P.; Kletou, D.; David, J. Is Europe Ready for Integrated Multi-Trophic Aquaculture? A Survey on the Perspectives of European Farmers and Scientists with IMTA Experience. Aquaculture 2018, 490, 136–148. [Google Scholar] [CrossRef]
- Troell, M.; Halling, C.; Neori, A.; Chopin, T.; Buschmann, A.H.; Kautsky, N.; Yarish, C. Integrated Mariculture: Asking the Right Questions. Aquaculture 2003, 226, 69–90. [Google Scholar] [CrossRef]
- Troell, M.; Joyce, A.; Chopin, T.; Neori, A.; Buschmann, A.H.; Fang, J.-G. Ecological Engineering in Aquaculture—Potential for Integrated Multi-Trophic Aquaculture (IMTA) in Marine Offshore Systems. Aquaculture 2009, 297, 1–9. [Google Scholar] [CrossRef]
- Buck, B.H.; Troell, M.F.; Krause, G.; Angel, D.L.; Grote, B.; Chopin, T. State of the Art and Challenges for Offshore Integrated Multi-Trophic Aquaculture (IMTA). Front. Mar. Sci. 2018, 5, 165. [Google Scholar] [CrossRef]
- Fang, J.; Zhang, J.; Xiao, T.; Huang, D.; Liu, S. Integrated Multi-Trophic Aquaculture (IMTA) in Sanggou Bay, China. Aquac. Environ. Interact. 2016, 8, 201–205. [Google Scholar] [CrossRef]
- Ridler, N.; Wowchuk, M.; Robinson, B.; Barrington, K.; Chopin, T.; Robinson, S.; Page, F.; Reid, G.; Szemerda, M.; Sewuster, J.; et al. Integrated multi-trophic aquaculture (IMTA): A potential strategic choice for farmers. Aquac. Econ. Manag. 2007, 11, 99–110. [Google Scholar] [CrossRef]
- Carras, M.A.; Knowler, D.; Pearce, C.M.; Hamer, A.; Chopin, T.; Weaire, T. A Discounted Cash-Flow Analysis of Salmon Monoculture and Integrated Multi-Trophic Aquaculture in Eastern Canada. Aquac. Econ. Manag. 2019, 24, 43–63. [Google Scholar] [CrossRef]
- Khanjani, M.H.; Zahedi, S.; Mohammadi, A. Integrated Multitrophic Aquaculture (IMTA) as an Environmentally Friendly System for Sustainable Aquaculture: Functionality, Species, and Application of Biofloc Technology (BFT). Environ. Sci. Pollut. Res. 2022, 29, 67513–67531. [Google Scholar] [CrossRef]
- Hossain, A.; Senff, P.; Glaser, M. Lessons for Coastal Applications of IMTA as a Way towards Sustainable Development: A Review. Appl. Sci. 2022, 12, 11920. [Google Scholar] [CrossRef]
- Arduini, D.; Borghese, J.; Gravina, M.F.; Trani, R.; Longo, C.; Pierri, C.; Giangrande, A. Biofouling role in mariculture environment restoration: An example in the Mar Grande of Taranto (Mediterranean Sea). Front. Mar. Sci. 2022, 9, 842616. [Google Scholar] [CrossRef]
- Stabili, L.; Giangrande, A.; Arduini, D.; Borghese, J.; Petrocelli, A.; Alabiso, G.; Ricci, P.; Cavallo, R.A.; Acquaviva, M.I.; Narracci, M.; et al. Environmental quality improvement of a mariculture plant after its conversion into a multi-trophic system. Sci. Total Environ. 2023, 884, 163846. [Google Scholar] [CrossRef]
- Knowler, D.; Chopin, T.; Martínez-Espiñeira, R.; Neori, A.; Nobre, A.; Noce, A.; Reid, G. The Economics of Integrated Multi-Trophic Aquaculture: Where Are We Now and Where Do We Need to Go? Rev. Aquac. 2020, 12, 1579–1594. [Google Scholar] [CrossRef]
- Viji, C.S.; Chadha, N.K.; Kripa, V.; Prema, D.; Prakash, C.; Sharma, R.; Jenni, B.; Mohamed, K.S. Can Oysters Control Eutrophication in an Integrated Fish-Oyster Aquaculture System? J. Mar. Biol. Assoc. India 2014, 56, 67–73. [Google Scholar] [CrossRef]
- Viji, C.S. Studies on Integrated Multitrophic Aquaculture in a Tropical Estuarine System in Kerala, India. Ph.D. Thesis, Central Institute of Fisheries Education, Mumbai, India, 2015. [Google Scholar]
- Chopin, T. Marine Aquaculture in Canada: Well-Established Monocultures of Finfish and Shellfish and an Emerging Integrated Multi-Trophic Aquaculture (IMTA) Approach Including Seaweeds, Other Invertebrates, and Microbial Communities. Fisheries 2015, 40, 28–31. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Wu, W.; Zhong, Y.; Li, H.; Wang, X.; Yang, J.; Zhang, Y. Effects of Shellfish and Macro-Algae IMTA in North China on the Environment, Inorganic Carbon System, Organic Carbon System, and Sea–Air CO2 Fluxes. Front. Mar. Sci. 2022, 9, 864306. [Google Scholar] [CrossRef]
- Lane, A.; Hough, C.; Bostock, J. The Long-Term Economic and Ecologic Impact of Larger Sustainable Aquaculture. In Study for the European Parliament, Directorate General for Internal Policies, Policy Department B, Structural and Cohesion Policies—Fisheries; European Union: Brussels, Belgium, 2014; Available online: http://www.europarl.europa.eu/RegData/etudes/STUD/2014/529084/IPOL_STU(2014)529084_EN.pdf (accessed on 15 July 2024).
- Alexander, K.A.; Angel, D.; Freeman, S.; Israel, D.; Johansen, J.; Kletou, D.; Meland, M.; Pecorino, D.; Rebours, C.; Rousou, M.; et al. Improving Sustainability of Aquaculture in Europe: Stakeholder Dialogues on Integrated Multi-Trophic Aquaculture (IMTA). Environ. Sci. Policy 2016, 55, 96–106. [Google Scholar] [CrossRef]
- Chopin, T.; Cooper, J.A.; Reid, G.; Cross, S.; Moore, C. Open-water Integrated Multi-trophic Aquaculture: Environmental Biomitigation and Economic Diversification of Fed Aquaculture by Extractive Aquaculture. Rev. Aquac. 2012, 4, 209–220. [Google Scholar] [CrossRef]
- Van Osch, S.; Hynes, S.; O’Higgins, T.; Hanley, N.; Campbell, D.; Freeman, S. Estimating the Irish Public’s Willingness to Pay for More Sustainable Salmon Produced by Integrated Multi-Trophic Aquaculture. Mar. Policy 2017, 84, 220–227. [Google Scholar] [CrossRef]
- Piper, L.; de Cosmo, L.M.; Sestino, A.; Giangrande, A.; Stabili, L.; Longo, C.; Guido, G. Perceived social welfare as a driver of green products consumption: Evidences from an integrated multi-trophic aquaculture production. Curr. Res. Environ. Sustain. 2021, 3, 10008. [Google Scholar] [CrossRef]
- Pereira, R.; Valente, L.M.P.; Sousa-Pinto, I.; Rema, P. Apparent Nutrient Digestibility of Seaweeds by Rainbow Trout (Oncorhynchus mykiss) and Nile Tilapia (Oreochromis niloticus). Algal Res. 2012, 1, 77–82. [Google Scholar] [CrossRef]
- Marinho, G.; Nunes, C.; Sousa-Pinto, I.; Pereira, R.; Rema, P.; Valente, L.M.P. The IMTA-Cultivated Chlorophyta Ulva spp. as a Sustainable Ingredient in Nile Tilapia (Oreochromis niloticus) Diets. J. Appl. Phycol. 2013, 25, 1359–1367. [Google Scholar] [CrossRef]
- Al-Soufi, S.; García, J.; Muíños, A.; López-Alonso, M. Marine Macroalgae in Rabbit Nutrition—A Valuable Feed in Sustainable Farming. Animals 2022, 12, 2346. [Google Scholar] [CrossRef]
- Cotou, E.; Miliou, H.; Chatzoglou, E.; Schoina, E.; Politakis, N.; Kogiannou, D.; Fountoulaki, E.; Androni, A.; Konstantinopoulou, A.; Assimakopoulou, G.; et al. Growth Performance and Environmental Quality Indices and Biomarkers in a Co-Culture of the European Sea Bass with Filter and Deposit Feeders: A Case Study of an IMTA System. Fishes 2024, 9, 69. [Google Scholar] [CrossRef]
- Kong, S.; Chen, Z.; Zhao, F.; Liu, Q.; Li, J. Cultivation of Ulva lactuca Changes Bacterial Community Structure and Abundances of Nitrogen Cycling Functional Genes in an IMTA System. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Cunha, M.E.; Quental-Ferreira, H.; Parejo, A.; Gamito, S.; Ribeiro, L.; Moreira, M.; Monteiro, I.; Soares, F.; Pousão-Ferreira, P. Understanding the Individual Role of Fish, Oyster, Phytoplankton and Macroalgae in the Ecology of Integrated Production in Earthen Ponds. Aquaculture 2019, 512, 734297. [Google Scholar] [CrossRef]
- Hannah, L.; Pearce, C.M.; Cross, S.F. Growth and Survival of California Sea Cucumbers (Parastichopus californicus) Cultivated with Sablefish (Anoplopoma fimbria) at an Integrated Multi-Trophic Aquaculture Site. Aquaculture 2013, 406–407, 34–42. [Google Scholar] [CrossRef]
- Cubillo, A.M.; Ferreira, J.G.; Robinson, S.M.C.; Pearce, C.M.; Corner, R.A.; Johansen, J. Role of Deposit Feeders in Integrated Multi-Trophic Aquaculture—A Model Analysis. Aquaculture 2016, 453, 54–66. [Google Scholar] [CrossRef]
- Tolon, M.T.; Emiroglu, D.; Gunay, D.; Ozgul, A. Sea Cucumber (Holothuria tubulosa gmelin, 1790) Culture under Marine Fish Net Cages for Potential Use in Integrated Multi-Trophic Aquaculture (IMTA). Indian J. Mar. Sci. 2017, 46, 749–756. [Google Scholar]
- Verdian, A.H.; Effendi, I.; Budidardi, T.; Diatin, I. Production Performance Improvement of White Shrimp (Litopenaeus vannamei) Culture with Integrated Multi Trophic Aquaculture System in Seribu Islands, Jakarta, Indonesia. Iran. J. Fish. Sci. 2020, 19, 1415–1427. [Google Scholar]
- Naskar, S.; Biswas, G.; Kumar, P.; De, D.; Sawant, P.B.; Das, S.; Roy, U. Effects of Estuarine Oyster, Crassostrea cuttackensis as the Extractive Species at Varied Densities on Productivity and Culture Environment in Brackishwater Integrated Multi-Trophic Aquaculture (BIMTA) System. Aquaculture 2022, 554, 738128. [Google Scholar] [CrossRef]
- Wale, C.; Nagabhatla, N.; Yeojin, K.; Cottier-Cook, E.J. Trends and Patterns of the Seaweed Industry and Its Links with SDGs. In Life Below Water; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Encyclopedia of the UN Sustainable Development Goals; Springer: Cham, Switzerland, 2022; pp. 1–17. [Google Scholar] [CrossRef]
- MacDonald, A.; Serpetti, N.; Franco, S.C. Optimising Seafood Nutritional Value and Environmental Sustainability in Aquaculture through a Novel Integrated Modelling Tool Applicable to IMTA and Monoculture. Aquaculture 2024, 590, 741046. [Google Scholar] [CrossRef]
- Welker, T.L.; Overturf, K.; Snyder, S.; Liu, K.; Abernathy, J.; Frost, J.; Barrows, F.T. Effects of Feed Processing Method (Extrusion and Expansion-Compression Pelleting) on Water Quality and Growth of Rainbow Trout in a Commercial Setting. J. Appl. Aquac. 2018, 30, 97–124. [Google Scholar] [CrossRef]
- Fiordelmondo, E.; Magi, G.E.; Mariotti, F.; Bakiu, R.; Roncarati, A. Improvement of the Water Quality in Rainbow Trout Farming by Means of the Feeding Type and Management over 10 Years (2009–2019). Animals 2020, 10, 1541. [Google Scholar] [CrossRef]
- Kumara, R.; Syamala, K.; Anand, P.S.S.; Chadha, N.K.; Sawant, P.B.; Prasad; Doddamani, P.L.; Muralidhar, A.P. Effect of Bivalves on Water Quality, Microbial Load and Growth Performance of P. vannamei and M. cephalus in Halophyte-Based Integrated Multi-Trophic Aquaculture Reared under Pond Conditions. Indian J. Anim. Res. 2023, 57, 988–994. [Google Scholar] [CrossRef]
- Naskar, S.; Biswas, G.; Kumar, P.; De, D.; Das, S.; Sawant, P.B.; Chadha, N.K.; Behera, P. The Green Seaweed, Enteromorpha Intestinalis: An Efficient Inorganic Extractive Species for Environmental Remediation and Improved Performances of Fed Species in Brackishwater Integrated Multi-Trophic Aquaculture (BIMTA) System. Aquaculture 2023, 569, 739359. [Google Scholar] [CrossRef]
- Biswas, G.; Kumar, P.; Kailasam, M.; Ghoshal, T.K.; Bera, A.; Vijayan, K.K. Application of Integrated Multi Trophic Aquaculture (IMTA) Concept in Brackishwater Ecosystem: The First Exploratory Trial in the Sundarban, India. J. Coast. Res. 2019, 86, 49. [Google Scholar] [CrossRef]
- Biswas, G.; Kumar, P.; Ghoshal, T.K.; Kailasam, M.; De, D.; Bera, A.; Mandal, B.; Sukumaran, K.; Vijayan, K.K. Integrated Multi-Trophic Aquaculture (IMTA) Outperforms Conventional Polyculture with Respect to Environmental Remediation, Productivity and Economic Return in Brackishwater Ponds. Aquaculture 2020, 516, 734626. [Google Scholar] [CrossRef]
- Nath, K.; Munilkumar, S.; Patel, A.B.; Kamilya, D.; Pandey, P.K.; Sawant, P.B. Lamellidens and Wolffia canopy Improves Growth, Feed Utilization and Welfare of Labeo rohita (Hamilton,1822) in Integrated Multi-Trophic Freshwater Aquaculture System. Aquaculture 2021, 534, 736207. [Google Scholar] [CrossRef]
- Omont, A.; Elizondo-González, R.; Quiroz-Guzmán, E.; Escobedo-Fregoso, C.; Hernández-Herrera, R.; Peña-Rodríguez, A. Digestive Microbiota of Shrimp Penaeus Vannamei and Oyster Crassostrea gigas Co-Cultured in Integrated Multi-Trophic Aquaculture System. Aquaculture 2020, 521, 735059. [Google Scholar] [CrossRef]
- Zhang, M.-Q.; Yang, J.-L.; Lai, X.-X.; Li, W.; Zhan, M.-J.; Zhang, C.-P.; Jiang, J.-Z.; Shu, H. Effects of Integrated Multi-Trophic Aquaculture on Microbial Communities, Antibiotic Resistance Genes, and Cultured Species: A Case Study of Four Mariculture Systems. Aquaculture 2022, 557, 738322. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Cornet, J.; Donnay-Moreno, C.; Gouygou, J.P.; Bergé, J.P.; Bacelar, M.; Escórcio, C.; Rocha, E.; Malhão, F.; Cardinal, M. Quality Differences of Gilthead Sea Bream from Distinct Production Systems in Southern Europe: Intensive, Integrated, Semi-Intensive or Extensive Systems. Food Control 2011, 22, 708–717. [Google Scholar] [CrossRef]
- Aguado-Giménez, F.; Hernández, M.D.; Cerezo-Valverde, J.; Piedecausa, M.A.; García-García, B. Does Flat Oyster (Ostrea edulis) Rearing Improve under Open-Sea Integrated Multi-Trophic Conditions? Aquac. Int. 2014, 22, 447–467. [Google Scholar] [CrossRef]
- Cutajar, K.; Falconer, L.; Massa-Gallucci, A.; Cox, R.E.; Schenke, L.; Bardócz, T.; Andolina, C.; Signa, G.; Vizzini, S.; Sprague, M.; et al. Stable Isotope and Fatty Acid Analysis Reveal the Ability of Sea Cucumbers to Use Fish Farm Waste in Integrated Multi-Trophic Aquaculture. J. Environ. Manag. 2022, 318, 115511. [Google Scholar] [CrossRef]
- Jerónimo, D.; Lillebø, A.I.; Maciel, E.; Domingues, M.R.M.; Cremades, J.; Calado, R. Unravelling the Fatty Acid Profiles of Different Polychaete Species Cultured under Integrated Multi-Trophic Aquaculture (IMTA). Sci. Rep. 2021, 11, 10812. [Google Scholar] [CrossRef] [PubMed]
- Mazón-Suástegui, J.M.; Arcos-Ortega, G.F.; Contreras-Mendoza, C.N.; Medina-Sánchez, J.R.; Chávez-Villalba, J.; Lodeiros, C.; Cruz-Flores, R.; López-Carvallo, J.A. Enhanced Growth of the Pleasure Oyster Crassostrea corteziensis Cultured under Integrated Multi-trophic Aquaculture (IMTA) Concept, Using Farm Effluents of Shrimp Penaeus Vannamei. Aquac. Res. 2022, 53, 5214–5226. [Google Scholar] [CrossRef]
- Lander, T.R.; Robinson, S.M.C.; MacDonald, B.A.; Martin, J.D. Enhanced Growth Rates and Condition Index of Blue Mussels (Mytilus edulis) Held at Integrated Multitrophic Aquaculture Sites in the Bay of Fundy. J. Shellfish Res. 2012, 31, 997–1007. [Google Scholar] [CrossRef]
- Gvozdenovic, S.; Mandic, M.; Peras, I. Morphometry and Condition Index in Mediterranean Mussels (Mytilus galloprovincialis Lamarck, 1819) from Boka Kotorska Bay (Montenegro, Southeast Adriatic Sea). Stud. Mar. 2020, 33, 15–26. [Google Scholar]
- Arduini, D.; Portacci, G.; Giangrande, A.; Acquaviva, M.I.; Borghese, J.; Calabrese, C.; Giandomenico, S.; Quarta, E.; Stabili, L. Growth Performance of Mytilus galloprovincialis Lamarck, 1819 under an Innovative Integrated Multi-Trophic Aquaculture System (IMTA) in the Mar Grande of Taranto (Mediterranean Sea, Italy). Water 2023, 15, 1922. [Google Scholar] [CrossRef]
- Chatzivasileiou, D.; Dimitriou, P.D.; Theodorou, J.; Kalantzi, I.; Magiopoulos, I.; Papageorgiou, N.; Pitta, P.; Tsapakis, M.; Karakassis, I. An IMTA in Greece: Co-Culture of Fish, Bivalves, and Holothurians. J. Mar. Sci. Eng. 2022, 10, 776. [Google Scholar] [CrossRef]
- Shpigel, M.; Shauli, L.; Odintsov, V.; Ben-Ezra, D.; Neori, A.; Guttman, L. The Sea Urchin, Paracentrotus lividus, in an Integrated Multi-Trophic Aquaculture (IMTA) System with Fish (Sparus aurata) and Seaweed (Ulva lactuca): Nitrogen Partitioning and Proportional Configurations. Aquaculture 2018, 490, 260–269. [Google Scholar] [CrossRef]
- Paltzat, D.L.; Pearce, C.M.; Barnes, P.A.; McKinley, R.S. Growth and Production of California Sea Cucumbers (Parastichopus californicus stimpson) Co-Cultured with Suspended Pacific Oysters (Crassostrea gigas Thunberg). Aquaculture 2008, 275, 124–137. [Google Scholar] [CrossRef]
- Yokoyama, H. Growth and Food Source of the Sea Cucumber Apostichopus japonicus Cultured below Fish Cages—Potential for Integrated Multi-Trophic Aquaculture. Aquaculture 2013, 372–375, 28–38. [Google Scholar] [CrossRef]
- Yu, Z.; Zhou, Y.; Yang, H.; Ma, Y.; Hu, C. Survival, Growth, Food Availability and Assimilation Efficiency of the Sea Cucumber Apostichopus japonicus Bottom-Cultured under a Fish Farm in Southern China. Aquaculture 2014, 426–427, 238–248. [Google Scholar] [CrossRef]
- Sonnenholzner-Varas, J.I.; Moreira, J.A.; Orrala, M.M.P. Growth Performance and Survival of Holothuria theeli (Holothurian) Fed with Feces of Tripneustes depressus (Echinoid): A Multi-Trophic Aquaculture Approach. Aquaculture 2019, 512, 734345. [Google Scholar] [CrossRef]
- Grosso, L.; Rakaj, A.; Fianchini, A.; Morroni, L.; Cataudella, S.; Scardi, M. Integrated Multi-Trophic Aquaculture (IMTA) System Combining the Sea Urchin Paracentrotus lividus, as Primary Species, and the Sea Cucumber Holothuria tubulosa as Extractive Species. Aquaculture 2021, 534, 736268. [Google Scholar] [CrossRef]
- Longo, C.; Cardone, F.; Corriero, G.; Licciano, M.; Pierri, C.; Stabili, L. The Co-Occurrence of the Demosponge Hymeniacidon perlevis and the Edible Mussel Mytilus galloprovincialis as a New Tool for Bacterial Load Mitigation in Aquaculture. Environ. Sci. Pollut. Res. 2016, 23, 3736–3746. [Google Scholar] [CrossRef] [PubMed]
- Abreu, M.H.; Varela, D.A.; Henríquez, L.; Villarroel, A.; Yarish, C.; Sousa-Pinto, I.; Buschmann, A.H. Traditional vs. Integrated Multi-Trophic Aquaculture of Gracilaria chilensis C. J. Bird, J. McLachlan & E. C. Oliveira: Productivity and Physiological Performance. Aquaculture 2009, 293, 211–220. [Google Scholar] [CrossRef]
- Abreu, M.H.; Pereira, R.; Yarish, C.; Buschmann, A.H.; Sousa-Pinto, I. IMTA with Gracilaria vermiculophylla: Productivity and Nutrient Removal Performance of the Seaweed in a Land-Based Pilot Scale System. Aquaculture 2011, 312, 77–87. [Google Scholar] [CrossRef]
- Matos, J.; Costa, S.; Rodrigues, A.; Pereira, R.; Pinto, I.S. Experimental Integrated Aquaculture of Fish and Red Seaweeds in Northern Portugal. Aquaculture 2006, 252, 31–42. [Google Scholar] [CrossRef]
- Neori, A.; Shpigel, M.; Ben-Ezra, D. A Sustainable Integrated System for Culture of Fish, Seaweed and Abalone. Aquaculture 2000, 186, 279–291. [Google Scholar] [CrossRef]
- Schuenhoff, A.; Shpigel, M.; Lupatsch, I.; Ashkenazi, A.; Msuya, F.E.; Neori, A. A Semi-Recirculating, Integrated System for the Culture of Fish and Seaweed. Aquaculture 2003, 221, 167–181. [Google Scholar] [CrossRef]
- Giangrande, A.; Pierri, C.; Arduini, D.; Borghese, J.; Licciano, M.; Trani, R.; Corriero, G.; Basile, G.; Cecere, E.; Petrocelli, A.; et al. An Innovative IMTA System: Polychaetes, Sponges and Macroalgae Co-Cultured in a Southern Italian In-Shore Mariculture Plant (Ionian Sea). J. Mar. Sci. Eng. 2020, 8, 733. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, S.; Kitazawa, D.; Zhou, J.; Park, S.; Gao, S.; Shen, Y. Bio Mitigation Based on Integrated Multi Trophic Aquaculture in Temperate Coastal Waters: Practice, Assessment, and Challenges. Lat. Am. J. Aquat. Res. 2019, 47, 212–223. [Google Scholar] [CrossRef]
- Rosa, J.; Lemos, M.F.L.; Crespo, D.; Nunes, M.; Freitas, A.; Ramos, F.; Pardal, M.Â.; Leston, S. Integrated Multitrophic Aquaculture Systems—Potential Risks for Food Safety. Trends Food Sci. Technol. 2020, 96, 79–90. [Google Scholar] [CrossRef]
- Sasikumar, G.; Viji, C.S. Integrated Multitrophic Aquaculture Systems (IMTA); Winter School on Technological Advances in Mariculture for Production Enhancement and Sustainability; ICAR: Kochi, India, 2015; pp. 47–55. [Google Scholar]
- Petersen, J.K.; Holmer, M.; Termansen, M.; Hasle, B. Goods and Services of Marine Bivalves; Smaal, A.C., Ferreira, J.G., Grant, J., Petersen, J.K., Strand, Ø., Eds.; Springer Open: Cham, Switzerland, 2019; Chapter 10; pp. 179–208. [Google Scholar]
- Bischoff, A.A.; Fink, P.; Waller, U. The Fatty Acid Composition of Nereis Diversicolor Cultured in an Integrated Recirculated System: Possible Implications for Aquaculture. Aquaculture 2009, 296, 271–276. [Google Scholar] [CrossRef]
- Marques, B.; Lillebø, A.; Ricardo, F.; Nunes, C.; Coimbra, M.; Calado, R. Adding Value to Ragworms (Hediste diversicolor) through the Bioremediation of a Super-Intensive Marine Fish Farm. Aquac. Environ. Interact. 2018, 10, 79–88. [Google Scholar] [CrossRef]
- Lander, T.; Barrington, K.; Robinson, S.; MacDonald, B.; Martin, J. Dynamics of the Blue Mussel as an Extractive Organism in an Integrated Multi-Trophic Aquaculture System. Bull. Aquac. Assoc. Can. 2004, 104, 19–28. [Google Scholar]
- Gvozdenović, S.; Ikica, Z.; Pešić, A.; Nikolić, M.; Pešić, V.; Mandić, M. Comparison between IMTA and Monoculture Farming of Mussels (Mytilus galloprovincialis L.) in the Boka Kotorska Bay. Acta Adriat. 2017, 58, 271–284. [Google Scholar] [CrossRef]
- Sarà, G.; Zenone, A.; Tomasello, A. Growth of Mytilus Galloprovincialis (Mollusca, Bivalvia) Close to Fish Farms: A Case of Integrated Multi-Trophic Aquaculture within the Tyrrhenian Sea. Hydrobiologia 2009, 636, 129–136. [Google Scholar] [CrossRef]
- Kerrigan, D.; Suckling, C.C. A Meta-analysis of Integrated Multitrophic Aquaculture: Extractive Species Growth Is Most Successful within Close Proximity to Open-water Fish Farms. Rev. Aquac. 2016, 10, 560–572. [Google Scholar] [CrossRef]
- Zamora, L.N.; Jeffs, A.G. Feeding, Selection, Digestion and Absorption of the Organic Matter from Mussel Waste by Juveniles of the Deposit-Feeding Sea Cucumber, Australostichopus mollis. Aquaculture 2011, 317, 223–228. [Google Scholar] [CrossRef]
- Zamora, L.N.; Yuan, X.; Carton, A.G.; Slater, M.J. Role of Deposit-feeding Sea Cucumbers in Integrated Multitrophic Aquaculture: Progress, Problems, Potential and Future Challenges. Rev. Aquac. 2016, 10, 57–74. [Google Scholar] [CrossRef]
- De Goeij, J.M.; Lesser, M.P.; Pawlik, J.R. Nutrient Fluxes and Ecological Functions of Coral Reef Sponges in a Changing Ocean. In Climate Change, Ocean Acidification and Sponges; Carballo, J.L., Bell, J.J., Eds.; Springer International: Cham, Switzerland, 2017; pp. 373–410. [Google Scholar]
- Wang, X.; Andresen, K.; Handå, A.; Jensen, B.; Reitan, K.; Olsen, Y. Chemical Composition and Release Rate of Waste Discharge from an Atlantic Salmon Farm with an Evaluation of IMTA Feasibility. Aquac. Environ. Int. 2013, 4, 147–162. [Google Scholar] [CrossRef]
- Khailov, K.M.; Burlakova, Z.P. Release of dissolved organic matter by marine seaweeds and distribution of their total organic production to inshore communities. Limnol. Oceanogr. 1969, 14, 521–527. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, W.; Xue, L.; Zhang, B.; Jin, M.; Fu, W. Bioremediation of Bacteria Pollution Using the Marine Sponge Hymeniacidon perlevis in the Intensive Mariculture Water System of Turbot Scophthalmus Maximus. Biotechnol. Bioeng. 2010, 105, 59–68. [Google Scholar] [CrossRef] [PubMed]
- De Goeij, J.M.; Van Oevelen, D.; Vermeij, M.J.A.; Osinga, R.; Middelburg, J.J.; De Goeij, A.F.P.M.; Admiraal, W. Surviving in a Marine Desert: The Sponge Loop Retains Resources Within Coral Reefs. Science 2013, 342, 108–110. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, K.H.; Gardner, J.P.A.; Heath, P.L. The Effect of Diet on the Energy Budget of the Brown Sea Cucumber, Stichopus mollis (Hutton). J. World Aquac. Soc. 2009, 40, 157–170. [Google Scholar] [CrossRef]
- Bolton, J.J.; Robertson-Andersson, D.V.; Shuuluka, D.; Kandjengo, L. Growing Ulva (Chlorophyta) in Integrated Systems as a Commercial Crop for Abalone Feed in South Africa: A SWOT Analysis. J. Appl. Phycol. 2009, 21, 575–583. [Google Scholar] [CrossRef]
- Hodar, A.R.; Vasava, R.J.; Mahavadiya, D.R.; Joshi, N.H. Fish Meal and Fish Oil Replacement for Aqua Feed Formulation by Using Alternative Sources: A Review. J. Exp. Zool. India 2020, 23, 13–21. [Google Scholar]
- Grigorakis, K.; Rigos, G. Aquaculture Effects on Environmental and Public Welfare—The Case of Mediterranean Mariculture. Chemosphere 2011, 85, 899–919. [Google Scholar] [CrossRef]
- FAO. FAO Report: Global Fisheries and Aquaculture Production Reaches a New Record High; The State of World Fisheries and Aquaculture (SOFIA): Rome, Italy, 2024. [Google Scholar]
- Araújo, M.; Rema, P.; Sousa-Pinto, I.; Cunha, L.M.; Peixoto, M.J.; Pires, M.A.; Seixas, F.; Brotas, V.; Beltrán, C.; Valente, L.M.P. Dietary Inclusion of IMTA-Cultivated Gracilaria vermiculophylla in Rainbow Trout (Oncorhynchus mykiss) Diets: Effects on Growth, Intestinal Morphology, Tissue Pigmentation, and Immunological Response. J. Appl. Phycol. 2016, 28, 679–689. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Araújo, M.; Batista, S.; Peixoto, M.J.; Sousa-Pinto, I.; Brotas, V.; Cunha, L.M.; Rema, P. Carotenoid Deposition, Flesh Quality and Immunological Response of Nile Tilapia Fed Increasing Levels of IMTA-Cultivated Ulva spp. J. Appl. Phycol. 2016, 28, 691–701. [Google Scholar] [CrossRef]
- Laramore, S.; Baptiste, R.; Wills, P.S.; Hanisak, M.D. Utilization of IMTA-Produced Ulva lactuca to Supplement or Partially Replace Pelleted Diets in Shrimp (Litopenaeus vannamei) Reared in a Clear Water Production System. J. Appl. Phycol. 2018, 30, 3603–3610. [Google Scholar] [CrossRef]
- Machado, M.; Machado, S.; Pimentel, F.B.; Freitas, V.; Alves, R.C.; Oliveira, M.B.P.P. Amino Acid Profile and Protein Quality Assessment of Macroalgae Produced in an Integrated Multi-Trophic Aquaculture System. Foods 2020, 9, 1382. [Google Scholar] [CrossRef] [PubMed]
- Stabili, L.; Schirosi, R.; Licciano, M.; Mola, E.; Giangrande, A. Bioremediation of Bacteria in Aquaculture Waste Using the Polychaete Sabella spallanzanii. New Biotechnol. 2010, 27, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Giangrande, A.; Cavallo, A.; Licciano, M.; Mola, E.; Pierri, C.; Trianni, L. Utilization of the Filter Feeder Polychaete Sabella spallanzanii Gmelin (Sabellidae) as Bioremediator in Aquaculture. Aquac. Int. 2005, 13, 129–136. [Google Scholar] [CrossRef]
- Stabili, L.; Cecere, E.; Licciano, M.; Petrocelli, A.; Sicuro, B.; Giangrande, A. Integrated Multitrophic Aquaculture By-Products with Added Value: The Polychaete Sabella spallanzanii and the Seaweed Chaetomorpha linum as Potential Dietary Ingredients. Mar. Drugs 2019, 17, 677. [Google Scholar] [CrossRef] [PubMed]
- Sachs, J.D.; Agarwal, U.; Espinosa, G.; Mardirossian, N.; Marrero, A.; O’Dwyer, E.; Plekenpol, R.; Rincón, R.; Marcela, D.; Sachs, L.; et al. Fixing the Business of Food: Aligning Food Company Practices with the SDGs. SSRN Electron. J. 2021. [Google Scholar] [CrossRef]
- Silva, D.M.; Valente, L.M.P.; Sousa-Pinto, I.; Pereira, R.; Pires, M.A.; Seixas, F.; Rema, P. Evaluation of IMTA-Produced Seaweeds (Gracilaria, Porphyra, and Ulva) as Dietary Ingredients in Nile Tilapia, Oreochromis niloticus L., Juveniles. Effects on Growth Performance and Gut Histology. J. Appl. Phycol. 2015, 27, 1671–1680. [Google Scholar] [CrossRef]
- Legarda, E.C.; Viana, M.T.; Del Rio Zaragoza, O.B.; Skrzynska, A.K.; Braga, A.; De Lorenzo, M.A.; Vieira, F.D.N. Effects on Fatty Acids Profile of Seriola dorsalis Muscle Tissue Fed Diets Supplemented with Different Levels of Ulva fasciata from an Integration Multi-Trophic Aquaculture System. Aquaculture 2021, 535, 736414. [Google Scholar] [CrossRef]
- Shpigel, M.; Guttman, L.; Shauli, L.; Odintsov, V.; Ben-Ezra, D.; Harpaz, S. Ulva lactuca from an Integrated Multi-Trophic Aquaculture (IMTA) Biofilter System as a Protein Supplement in Gilthead Seabream (Sparus aurata) Diet. Aquaculture 2017, 481, 112–118. [Google Scholar] [CrossRef]
- Conte, F.S. Stress and welfare of cultured fish. Appl. Anim. Behav. Sci. 2004, 86, 205–223. [Google Scholar] [CrossRef]
- Daskalova, A. Farmed fish welfare: Stress, post-mortem muscle metabolism, and stress-related meat quality changes. Int. Aquat. Res. 2019, 11, 113–124. [Google Scholar] [CrossRef]
- De Magalhães, C.S.F.R.; Cerqueira, M.A.C.; Schrama, D.; Moreira, M.J.V.; Boonanuntanasarn, S.; Rodrigues, P.M.L. A Proteomics and Other Omics Approach in the Context of Farmed Fish Welfare and Biomarker Discovery. Rev. Aquac. 2018, 12, 122–144. [Google Scholar] [CrossRef]
- CEC. COM 511—Communication from the Commission to the Council and the European Parliament: A Strategy for the Sustainable Development of European Aquaculture; Commission of the European Communities (CEC): Brussels, Belgium, 2002; Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2002:0511:FIN:EN:PDF (accessed on 11 September 2024).
- Huo, Y.; Stuart, K.; Rotman, F.; Ernst, D.; Drawbridge, M. The culture of fish, mussels, sea cucumbers and macroalgae in a modular integrated multi-tropic recirculating aquaculture system (IMTRAS): Performance and waste removal efficiencies. Aquaculture 2024, 585, 740720. [Google Scholar] [CrossRef]
- O’Donncha, F.; Grant, J. Precision Aquaculture. IEEE Internet Things Mag. 2019, 2, 26–30. [Google Scholar] [CrossRef]
- European Union. Nature Restoration Law. 17 June 2024. Available online: https://environment.ec.europa.eu/topics/nature-and-biodiversity/nature-restoration-law_en (accessed on 30 September 2024).
Fed Species | Organic Extractive Species | Inorganic Extractive Species | IMTA System Placement | Benefits Drawn from IMTA | References |
---|---|---|---|---|---|
M. cephalus (mullet) P. vannamei (shrimp) | M. casta (backwater hard clam) | A. officinalis B. gymnorhiza (halophyte) | Pond culture | ↑ Growth performance (final weight, specific growth rate, feed conversion ratio), survival rate, protein efficiency ratio, total production ↑ Water quality in IMTA = ↑ growth performances | [46] |
C. chanos (milkfish) P. vannamei (shrimp) | C. cuttackensis (oyster) | - | Tank culture | ↑ Growth performance (apparent feed conversion ratio), protein, fat and ash contents of whole body composition | [41] |
C. chanos (milkfish) P. vannamei (shrimp) | - | E. intestinalis (seaweed) | Tank culture | ↑ Growth and survival rate ↑ Physiological status (blood and haemolymph parameters) ↓ Stress parameters (catalase, superoxide dismutase, and cortisol) | [47] |
M. cephalus (mullet) P. parsia (mullet) P. monodon (shrimp) | C. cuttackensis (oyster) | Enteromorpha (seaweed) | Pond culture | ↑ Growth performance (final average body weight, apparent feed conversion ratio), total production | [48] |
M. cephalus (mullet) P. tade (mullet) P. monodon (shrimp) | C. cuttackensis (oyster) | I. aquatic (water spinach) | Pond culture | ↑ Growth performance (final average body weight, apparent feed conversion ratio), total production ↑ Whole body composition | [49] |
L. rohita (Rohu fish) | L. marginalis (mussel) | W. globosa (duckweed) | Tank culture | ↑ Growth performance, feed utilization ↑ Welfare parameters ↓ Oxidative stress ↑ Water quality in IMTA = ↑ immunity and survival, ↓ oxidative stress | [50] |
A. regius (Meagre) D. sargus (sea bream) M. cephalus (mullet) | C. gigas (oyster) | Ulva spp. (seaweed) | Earthen pond culture | ↑ Growth performance (fish density, food conversion rate), total final harvested biomass | [36] |
P. vannamei (shrimp) S. doliatus (rabbit fish) | - | E. cottonii (seaweed) | Sea culture | ↑ Growth performance (final weight, specific growth rate, feed conversion ratio), survival rate, total production | [40] |
P. vannamei (shrimp) | C. gigas (oyster) | - | Tank culture | ↑ Growth performance (final weight) Variations in digestive bacterial communities ↓ Relative abundance of Vibrionaceae | [51] |
E. fuscoguttatus E. lanceolatus (groupers) | P. vannamei (shrimp) | G. bailinae (seaweed) | Pond culture | ↑ Growth performance (final body weight, weight gain, percent weight gain, specific growth rate) ↑ Non-specific immunity ↑ Liver glycolipid metabolism ↑ Beneficial bacterial communities | [52] |
S. aurata (sea bream) | Shellfish | Algae | Earthen pond culture | ↑ Growth performance (final weight), lipid content (PUFAs ω3), sensory quality | [53] |
S. aurata (seabream) D. labrax (seabass) | O. edulis (oyster) | - | Open-sea culture | ↑ Condition index, lipid content | [54] |
S. aurata (seabream) D. labrax (seabass) | H. roweothuria poli (sea cucumber) | - | Sea culture | ↑ Lipid content (PUFAs ω3) | [55] |
S. aurata (seabream) | H. diversicolor D. neapolitana S. cf. pavonina T. lapidaria (polychaetes) | - | Sand filters, earthen ponds culture | ↑ Lipid content (PUFAs ω3) | [56] |
P. vannamei (shrimp) | C. corteziensis (oyster) | - | Pond culture, channel | ↑ Growth performance (wet weight and shell length) exceeded the typical commercial size | [57] |
S. salar (atlantic salmon) | M. edulis (mussel) | - | Sea culture | ↑ Growth performance (final wet meat weight, shell length, condition index) | [58] |
S. aurata (seabream) D. labrax (seabass) | M. galloprovincialis (mussel) | - | Sea culture | ↑ Condition index | [59] |
S. aurata (seabream) D. labrax (seabass) | M. galloprovincialis (mussel) S. spallanzanii (polychaete) S. spinosulus A. aerophoba H. perlevis (sponges) | C. linum G. bursa pastoris (seaweeds) | Sea culture | ↑ Growth performance (shell length, shell dry weight, flesh dry weight, condition index) | [60] |
S. aurata (seabream) D. labrax (seabass) | M. galloprovincialis (mussel) P. radiate (pearl oyster) H. pollii (sea cucumber) | - | Sea culture | ↑ Growth performance, survival rate, condition index, meat yield (mussel and oyster) ↑ Survival, ↓ final weight (sea cucumber) | [61] |
D. labrax(seabass) | M. galloprovincialis (mussel) O. edulis C. gigas (oysters) H. sanctori (sea cucumber) | - | Sea culture | ↑ Survival rate, total weight, shell lengths (mussel and oysters) ↑ Survival rate, total weight (sea cucumber) ↑ Feed conversion ratio, feed efficiency (fish) | [34] |
S. aurata(seabream) | P. lividus (sea urchin) | U. lactuca(seaweed) | Tank, pond culture | ↑ Gonad somatic growth rate, gonad somatic index, protein level in the gonad, bright orange gonads (sea urchin) ↑ Growth rate, protein and lipid levels (seaweed) ↑ Growth rate, food conversion ratio (fish) | [62] |
- | A. californicus (sea cucumbers) C. gigas (oyster) | - | Sea culture | ↑ Growth rate, survival rate | [63] |
A. fimbria (sablefish) | A. californicus (sea cucumbers) | - | Sea culture | ↑ Growth rate, survival rate | [37] |
P. major (red seabream) | A. japonicas (sea cucumber) | - | Sea culture | ↑ Growth rate, survival rate | [64] |
L. erythopterus (crimson snapper) E. fario (blue-spotted grouper) R. canadum (cobia) | A. japonicas (sea cucumber) | - | Sea culture | ↑ Growth rate, survival rate | [65] |
- | H. theeli (sea cucumber) T. depressus (sea urchin) | - | Tank culture | ↑ Growth rates (length, weight), survival rate | [66] |
- | H. tubulosa (sea cucumber) P. lividus (sea urchin) | - | Land-based cuture | ↑ Growth rates (somatic growth rate, feed conversion ratio), survival rate | [67] |
- | M. galloprovincialis (mussel) H. perlevis (sponge) | - | Sea culture | ↓ Bacterial load in the co-cultured M. galloprovincialis | [68] |
Salmon | - | G. chilensis (seaweed) | Sea culture | ↑ Biomass production | [69] |
S. senegalensis (sole) S. rhombus (turbot) | - | G. vermiculophylla (seaweed) | Tank, land-based culture | ↑ Biomass production ↑ Quality (protein content) | [70] |
S. rhombus (turbot) D. labrax (seabass) | - | C. crispus G. bursa pastoris P. palmata (seaweeds) | Tank culture | ↑ Biomass yield | [71] |
S. aurata (seabream) | H. discus hannai (abalone) | U. lactuca G. conferta (seaweeds) | Tank, land-based culture | Biomass yield ↑ U. lactuca, ↓ G. conferta | [72] |
S. aurata (seabream) | H. discus hannai (abalone) P. lividus (sea urchin) | U. lactuca (seaweed) | Tank, pond culture | ↑ Biomass production ↑ Quality (protein content) | [73] |
- | S. spallanzanii (polychaete) S. spinosulus (sponge) | C. linum G. bursa pastoris (seaweed) | Sea culture | ↑ Biomass production, survival rates | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusco, G.; Roncarati, A.; Di Iorio, M.; Cariglia, M.; Longo, C.; Iaffaldano, N. Can IMTA System Improve the Productivity and Quality Traits of Aquatic Organisms Produced at Different Trophic Levels? The Benefits of IMTA—Not Only for the Ecosystem. Biology 2024, 13, 946. https://doi.org/10.3390/biology13110946
Rusco G, Roncarati A, Di Iorio M, Cariglia M, Longo C, Iaffaldano N. Can IMTA System Improve the Productivity and Quality Traits of Aquatic Organisms Produced at Different Trophic Levels? The Benefits of IMTA—Not Only for the Ecosystem. Biology. 2024; 13(11):946. https://doi.org/10.3390/biology13110946
Chicago/Turabian StyleRusco, Giusy, Alessandra Roncarati, Michele Di Iorio, Michela Cariglia, Caterina Longo, and Nicolaia Iaffaldano. 2024. "Can IMTA System Improve the Productivity and Quality Traits of Aquatic Organisms Produced at Different Trophic Levels? The Benefits of IMTA—Not Only for the Ecosystem" Biology 13, no. 11: 946. https://doi.org/10.3390/biology13110946
APA StyleRusco, G., Roncarati, A., Di Iorio, M., Cariglia, M., Longo, C., & Iaffaldano, N. (2024). Can IMTA System Improve the Productivity and Quality Traits of Aquatic Organisms Produced at Different Trophic Levels? The Benefits of IMTA—Not Only for the Ecosystem. Biology, 13(11), 946. https://doi.org/10.3390/biology13110946