Anatomical Tool as Additional Approach for Identifying Pharmaceutically Important Ephedra Species (Ephedraceae) at Gender Identity Level in Egypt
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Study Area
2.2. Stem Anatomical Investigations
2.3. Epidermal Investigations
2.4. Statistical Analysis
3. Results and Discussion
3.1. Material Attributes
3.2. Anatomical Features of the Studied Stems
3.3. Stem Epidermal Characteristics
3.4. Key Distinguishing Species/Genders Based on Stem Anatomical and Epidermal Traits
I- | Tanniniferous idioblasts present | E. alata | |
i- | Terete outline, annual rings absent | Female | |
ii | Furrowed outline, annual rings present | Male | |
+ | Tanniniferous idioblasts absent | II | |
II- | A large number of tracheids and wide, with or without trichomes | III | |
III- | Terete and furrowed outline, with or without trichomes, epidermis tangentially elongated | E. aphylla | |
i- | Terete outline, non-glandular-unicellular, uniseriate trichomes with a swollen base (nearly cylindrical-shaped) present | Female | |
ii | Ridged and furrowed outline, pith cavity present | Male | |
+ | Terete outline, non-glandular-unicellular, uniseriate trichomes with a wide base (flask-shaped) present, epidermis radially elongated | E. ciliata | |
i- | Annual rings absent, presence of lignified and normal parenchyma in pith | Female | |
ii- | Annual rings present, only normal parenchyma in pith | Male | |
IV | Low number of tracheids and narrow, trichomes absent | V | |
V | Number of protoxylem arches 10–15, terete outline, and epidermis radially elongated | E. foemina | |
i- | Ridges patches up to 1/2 of the cortex, xylem vessels occupy more than 50% of the sector | Female | |
ii- | Ridges patches less than 20% of the cortex, xylem vessels occupy less than 25% of the sector | Male | |
+ | Number of protoxylem arches 10–12, terete or rigid and furrow outline, epidermis tangentially elongated | E. pachyclada | |
i- | Interfascicular cambium with restricted activity | Female | |
ii- | Interfascicular cambium with normal activity | Male |
3.5. Anatomical Diversity at Interspecific and Intra-Generic Levels as Indicated by Principal Component Analysis
3.6. Diversity in the Mean Number of Tracheid Arches (Bundle) at Interspecific
3.7. Diversity in Stomata Density at Interspecific and Intra-Generic Levels as Shown by the Box Plot
3.8. The Correlation Between the Anatomical Traits in the Studied Species/Genders
3.9. Diversity of Epidermal Characteristics at Interspecific and Intra-Generic Levels as Indicated by the Heat Map
3.10. Diversity of the Epidermal Cell Size at Interspecific and Intra-Generic Levels as Indicated by the Radar Plot
3.11. Diversity in Stomatal Index at Interspecific and Intra-Generic Levels
3.12. The Correlation Between the Epidermal Traits in the Studied Species/Genders
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ickert-Bond, S.M.; Wojciechowski, M.F. Phylogenetic relationships in Ephedra (Gnetales): Evidence from nuclear and chloroplast DNA sequence data. Syst. Bot. 2004, 29, 834–849. [Google Scholar] [CrossRef]
- Huang, J.; Price, R.A. Estimation of the age of extant Ephedra using chloroplast rbcL sequence data. Mol. Biol. Evol. 2003, 20, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Ickert-bond, S.m.; Rydin, C.; Renner, S.S. A fossil-calibrated relaxed clock for Ephedra indicates an Oligocene age for the divergence of Asian and New World clades and Miocene dispersal into South America. J. Syst. Evol. 2009, 47, 444–456. [Google Scholar] [CrossRef]
- Rydin, C.; Korall, P. Evolutionary relationships in Ephedra (Gnetales), with implications for seed plant phylogeny. Int. J. Plant Sci. 2009, 170, 1031–1043. [Google Scholar] [CrossRef]
- Khalaf, M.H.; Amer, W.M.; Shaye, N.A.A.; Hassan, M.O.; Gomaa, N.H. Taxonomic Revision of Genus Ephedra Tourn. ex L. in Egypt with Intra-Gender Diversity in Morphometric Traits and Fatty Acid Composition. Plants 2024, 13, 2442. [Google Scholar] [CrossRef]
- Price, R.A. Systematics of the Gnetales: A review of morphological and molecular evidence. Int. J. Plant Sci. 1996, 157, S40–S49. [Google Scholar] [CrossRef]
- Krassilov, V.; Dilcher, D.; Douglas, J. New ephedroid plant from the Lower Cretaceous Koonwarra fossil bed, Victoria, Australia. Alcheringa 1998, 22, 123–133. [Google Scholar] [CrossRef]
- Thompson, W.P. The anatomy and relationships of the Gnetales: I. the genus Ephedra. Ann. Bot. 1912, 26, 1077–1104. [Google Scholar]
- Feustel, H. Anatomie und Biologie der Gymnospermenblätter. Beih Bot Cent. 1921, 38, 177–253. [Google Scholar]
- Voth, P.D. A study of the vegetative phases of Ephedra. Bot. Gaz. 1934, 96, 298–313. [Google Scholar] [CrossRef]
- Cutler, H.C. Monograph of the North American species of the genus Ephedra. Ann. Mo. Bot. Gard. 1939, 26, 373–428. [Google Scholar] [CrossRef]
- Inamdar, J.; Bhatt, D. Epidermal structure and ontogeny of stomata in vegetative and reproductive organs of Ephedra and Gnetum. Ann. Bot. 1972, 36, 1041–1046. [Google Scholar] [CrossRef]
- Foster, A.S. Venation patterns in the leaves of Ephedra. J. Arnold Arbor. 1972, 53, 364–385. [Google Scholar] [CrossRef]
- Kerp, H. The study of fossil gymnosperms by means of cuticular analysis. Palaios 1990, 5, 548–569. [Google Scholar] [CrossRef]
- Freitag, H.; Maier-Stolte, M. The genus Ephedra in NE tropical Africa. Kew Bull. 2003, 58, 415–426. [Google Scholar] [CrossRef]
- Sharma, P.; Bhandari, P.K.; Dhyani, A.; Uniyal, P.L. Assessing the potential of anatomical characters for the circumscription of species of Ephedra in India. East Himal. Soc. Spermatophyte Taxon. 2020, 14, 83–96. [Google Scholar] [CrossRef]
- Sharma, P.; Uniyal, P.; Hammer, Ø. Two new species of Ephedra (Ephedraceae) from the western Himalayan Region. Syst. Bot. 2010, 35, 730–735. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, R. A new species of Ephedra (Ephedraceae, Ephedrales) from India. Phytotaxa 2015, 218, 189–192. [Google Scholar] [CrossRef]
- Evans, W.H. The stem of Ephedra. Bot. Gaz. 1888, 13, 265–268. [Google Scholar] [CrossRef]
- Thomas, H.H. On the Cuticles of Some Recent and Fossil Cycadean Fronds; Oxford Academic: Oxford, UK, 1913; Volume 8. [Google Scholar]
- Pant, D.D.; Nautiyal, D.D. Cuticle and Epidermis of Recent Cycadales: Leaves, Sporangia and Seeds; World Cat: Tarboro, NC, USA, 1963. [Google Scholar]
- Pant, D.; Verma, B. Taxonomy of the genus Ephedra. Significance of stem and leaf epidermis and cuticle. Bot. J. Linn. Soc. 1974, 69, 287–308. [Google Scholar] [CrossRef]
- Florin, R. Untersuchungen zur Stammesgeschichte der Coniferales und Cordaitales. I. Morphologie und Epidermisstruktur des Assimilationsorgane bei den regenten Koniferen. K. Sven. Vetensk. Acad. Handl. 1931, 10, 1–588. [Google Scholar]
- Harris, T.M. The Fossil Flora of Scoresby Sound, East Greenland: Part 2: Description of Seed Plants Incertae Sedis Together with a Discussion of Certain Cycadophyte Cuticles; Alexander Doweld: Moscow, Russia, 1932. [Google Scholar]
- Chen, L.Q.; Li, C.S.; Chaloner, W.G.; Beerling, D.J.; Sun, Q.G.; Collinson, M.E.; Mitchell, P.L. Assessing the potential for the stomatal characters of extant and fossil Ginkgo leaves to signal atmospheric CO2 change. Am. J. Bot. 2001, 88, 1309–1315. [Google Scholar] [CrossRef] [PubMed]
- Royer, D. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Rev. Palaeobot. Palynol. 2001, 114, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Kouwenberg, L.L.; McElwain, J.C.; Kürschner, W.M.; Wagner, F.; Beerling, D.J.; Mayle, F.E.; Visscher, H. Stomatal frequency adjustment of four conifer species to historical changes in atmospheric CO2. Am. J. Bot. 2003, 90, 610–619. [Google Scholar] [CrossRef]
- Pant, D.D.; Mehra, B. Epidermal structure and development of stomata in Ephedra foliata boiss. New Phytol. 1964, 63, 91–95. [Google Scholar] [CrossRef]
- Pillai, S.; Chacko, B. Nodal Diaphragm in Ephedra foliata. Phytomorphology 1979, 29, 13–15. [Google Scholar]
- Pearson, H.H.W. Gnetales; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Carlquist, S.J. Ecological Strategies of Xylem Evolution; University of California Press: Berkeley, CA, USA, 1975. [Google Scholar]
- Carlquist, S. Wood, bark, and pith anatomy of Old World species of Ephedra and summary for the genus. Aliso A J. Syst. Florist. Bot. 1992, 13, 255–295. [Google Scholar] [CrossRef]
- Cresson, R.A.; Evert, R.F. Structure of the primary shoot of Ephedra viridis Cov. Int. J. Plant Sci. 1993, 154, 264–279. [Google Scholar] [CrossRef]
- Fugh-Berman, A. Herb-drug interactions. Lancet 2000, 355, 134–138. [Google Scholar] [CrossRef]
- Morton, S.C. Ephedra. Stat. Sci. 2005, 20, 242–248. [Google Scholar] [CrossRef]
- Dousari, A.S.; Satarzadeh, N.; Amirheidari, B.; Forootanfar, H. Medicinal and therapeutic properties of Ephedra. Rev. Bras. De Farmacogn. 2022, 32, 883–899. [Google Scholar] [CrossRef]
- Grippo, A.A.; Hamilton, B.; Hannigan, R.; Gurley, B.J. Metal content of Ephedra-containing dietary supplements and select botanicals. Am. J. Health-Syst. Pharm. 2006, 63, 635–644. [Google Scholar] [CrossRef] [PubMed]
- Täckholm, V. Students’ Flora of Egypt, 2nd ed.; Cairo University: Cairo, Egypt, 1974; Volume 888. [Google Scholar]
- Boulos, L. Flora of Egypt, (Azollaceae-Oxalidaceae); Al Hadara Publishing: Cairo, Egypt, 1999; Volume 1, pp. 35–141. [Google Scholar]
- Boulos, L. Flora of Egypt Checklist; Al-Hadara Publishing: Cairo, Egypt, 2009; pp. 198–201. [Google Scholar]
- Faried, A.; El-Banhawy, A.; Elqahtani, M. Taxonomic, DNA barcoding and phylogenetic reassessment of the Egyptian Ephedra L. (Ephedraceae). Catrina Int. J. Environ. Sci. 2018, 17, 1–13. [Google Scholar] [CrossRef]
- Eames, A.J. The role of flower anatomy in the determination of angiosperm phylogeny. Proc. IV Int. Congr. Plant Sci. 1929, 1, 423–427. [Google Scholar]
- Johansen, D. Plant Microtechnique, 1st ed.; McGraw-Hill: New York, NY, USA, 1940. [Google Scholar]
- Kassambara, A.; Mundt, F. Package “Factoextra” for R: Extract and Visualize the Results of Multivariate Data Analyses. Available online: https://rpkgs.datanovia.com/factoextra/index.html (accessed on 15 April 2020).
- R Core Team. RA Language and Environment for Statistical Computing, R Foundation for Statistical. 2020. Available online: https://www.R-project.org/ (accessed on 23 April 2021).
- Wickham, H.; Wickham, H. Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Soetewey, A. Correlation Coefficient and Correlation Test in R. 2020. Available online: https://www.statsandr.com/blog/correlation-coefficient-and-correlation-test-in-r/ (accessed on 20 February 2021).
- Welkie, G.; Caldwell, M. Leaf anatomy of species in some dicotyledon families as related to the C3 and C4 pathways of carbon fixation. Can. J. Bot. 1970, 48, 2135–2146. [Google Scholar] [CrossRef]
- Radford, A. Vascular Plant Systematics; Harper & Row: New York, NY, USA, 1974. [Google Scholar]
- Osmond, C.; Björkman, O.; Anderson, D.; Osmond, C.; Björkman, O.; Anderson, D. Productivity and environment. In Physiological Processes in Plant Ecology: Toward a Synthesis with Atriplex; Springer: Berlin/Heidelberg, Germany, 1980; pp. 378–425. [Google Scholar]
- Marsden, M.P.; Steeves, T.A. On the primary vascular system and the nodal anatomy of Ephedra. J. Arnold Arbor. 1955, 36, 241–258. [Google Scholar] [CrossRef]
- Thoday, M.G.; Berridge, E.M. The anatomy and morphology of the inflorescences and flowers of Ephedra. Ann. Bot. 1912, 26, 953–985. [Google Scholar] [CrossRef]
- Dörken, V.M. Leaf-morphology and leaf-anatomy in Ephedra altissima Desf. (Ephedraceae, Gnetales) and their evolutionary relevance. Feddes Repert. 2012, 123, 243–255. [Google Scholar] [CrossRef]
- Ivanov, L.; Ivanova, L.; Ronzhina, D.; Chechulin, M.; Tserenkhand, G.; Gunin, P.; P’yankov, V. Structural and functional grounds for Ephedra sinica expansion in Mongolian steppe ecosystems. Russ. J. Plant Physiol. 2004, 51, 469–475. [Google Scholar] [CrossRef]
- Behnke, H.-D.; Paliwal, G. Ultrastructure of phloem and its development in Gnetum gnemon, with some observations on Ephedra campylopoda. Protoplasma 1973, 78, 305–319. [Google Scholar] [CrossRef]
- Carlquist, S. Wood and bark anatomy of the New World species of Ephedra. Aliso A J. Syst. Florist. Bot. 1990, 12, 441–483. [Google Scholar] [CrossRef]
- Motomura, H.; Noshiro, S.; Mikage, M. Variable wood formation and adaptation to the alpine environment of Ephedra pachyclada (Gnetales: Ephedraceae) in the Mustang District, western Nepal. Ann. Bot. 2007, 100, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Hunziker, J.H. Sinopsis de las Especies Argentinas del Género" Ephedra"; Ministerio de Agricultura y Ganaderia de la Nación, Dirección Genera: Buenos Aires, Argentina, 1949.
- Freitag, H.; Maier-Stolte, M. The Ephedra-species of P. Forsskål: Identity and typification. Taxon 1989, 38, 545–556. [Google Scholar] [CrossRef]
- Stapf, O. Die Arten der Gattung Ephedra. Denkschr. Kaiserl. Akad. Wiss. Wien Math.-Naturwiss. Kl. 1889, 56, 1–112. [Google Scholar]
- Riedl, R.J. Gnathostomulida from America: This is the first record of the new phylum from North America. Science 1969, 163, 445–452. [Google Scholar] [CrossRef]
- Bauch, J.; Liese, W.; Schultze, R. The morphological variability of the bordered pit membranes in gymnosperms. Wood Sci. Technol. 1972, 6, 165–184. [Google Scholar] [CrossRef]
- Dute, R.R.; Bowen, L.A.; Schier, S.; Vevon, A.G.; Best, T.L.; Auad, M.; Elder, T.; Bouche, P.; Jansen, S. Pit membranes of Ephedra resemble gymnosperms more than angiosperms. IAWA J. 2014, 35, 217–235. [Google Scholar] [CrossRef]
Species | Locality | GPS Coordinates | Gender | Date of Collection | |
---|---|---|---|---|---|
N | E | ||||
E. alata | Abo Zeinema, Sinai | 29°02′31″ | 33°06′30″ | Male | 14 June 2023 |
Wadi Feiran, Sinai | 28°43′06″ | 33°37′06″ | Female | 15 May 2024 | |
E. aphylla | Wadi Al-Arbaeen Saint Catherine, Sinai | 28°55′88″ | 33°94′98″ | Female and Male | 17 August 2023 |
E. ciliata | Wadi Lethi, Saint Catherine, Sinai | 28°33′07″ | 33°58′24″ | Male | 15 July 2023 |
The garden of. St, Catherine’s Monastery, Sinai | 28°33′25″ | 33°58′23″ | Female | 25 August 2023 | |
E. foemina | Gabal Mousa, Sinai | 28°54′13″ | 33°97′55″ | Female and Male | 16 July 2023 |
E. pachyclada | Abu Walia, Saint Catherine, Sinai at 1905 altitude | 28°53′55″ | 33°91′39″ | Female | 16 August 2023 |
Abu Walia, Saint Catherine, Sinai at 1891 altitude | 28°53′60″ | 33°90′92″ | Male | 16 August 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalaf, M.H.; Amer, W.M.; Shaye, N.A.A.; Hassan, M.O.; Gomaa, N.H. Anatomical Tool as Additional Approach for Identifying Pharmaceutically Important Ephedra Species (Ephedraceae) at Gender Identity Level in Egypt. Biology 2024, 13, 947. https://doi.org/10.3390/biology13110947
Khalaf MH, Amer WM, Shaye NAA, Hassan MO, Gomaa NH. Anatomical Tool as Additional Approach for Identifying Pharmaceutically Important Ephedra Species (Ephedraceae) at Gender Identity Level in Egypt. Biology. 2024; 13(11):947. https://doi.org/10.3390/biology13110947
Chicago/Turabian StyleKhalaf, Maha H., Wafaa M. Amer, Najla A. Al Shaye, Mahmoud O. Hassan, and Nasr H. Gomaa. 2024. "Anatomical Tool as Additional Approach for Identifying Pharmaceutically Important Ephedra Species (Ephedraceae) at Gender Identity Level in Egypt" Biology 13, no. 11: 947. https://doi.org/10.3390/biology13110947
APA StyleKhalaf, M. H., Amer, W. M., Shaye, N. A. A., Hassan, M. O., & Gomaa, N. H. (2024). Anatomical Tool as Additional Approach for Identifying Pharmaceutically Important Ephedra Species (Ephedraceae) at Gender Identity Level in Egypt. Biology, 13(11), 947. https://doi.org/10.3390/biology13110947