Rho-Kinase Inhibition of Active Force and Passive Tension in Airway Smooth Muscle: A Strategy for Treating Airway Hyperresponsiveness in Asthma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Canonical Models of Signaling Pathways Regulating ASM Contraction and Cytoskeletal Stiffness
3. Two Compartments of ASM
4. “Passive” Tension in ASM
5. Maintenance of Active Force in ASM Regulated by ROCK in the Mechanically Dynamic Environment
6. Overactive ROCK Signaling in Asthma
7. Therapeutic Strategies for Asthma Based on Inhibition of ROCK and Its Downstream Enzymes in ASM
8. Combinational Therapy for Asthma Using ROCK Inhibitors and Other Interventions
9. Limitations and Future Research Direction
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACh | Acetylcholine |
Arp2/3 | Actin-related-protein-2/3 complex |
ASM | Airway smooth muscle |
DI | Deep inspiration |
FRC | Functional residual capacity |
GPCR | G-protein-coupled receptors |
LIMK | LIM kinase |
MLC20 | 20 kilo-Dalton regulatory myosin light chain |
MLCK | Myosin light chain kinase |
MLCP | Myosin light chain phosphatase |
N-WASP | Neuronal Wiskott—Aldrich syndrome protein. |
PAK | p21-activated kinase |
ROCK | Rho-kinase |
TLC | Total lung capacity |
References
- Reddel, H.K.; Bacharier, L.B.; Bateman, E.D.; Brightling, C.E.; Brusselle, G.G.; Buhl, R.; Cruz, A.A.; Duijts, L.; Drazen, J.M.; FitzGerald, J.M.; et al. Global Initiative for Asthma Strategy 2021: Executive Summary and Rationale for Key Changes. Am. J. Respir. Crit. Care Med. 2022, 205, 17–35. [Google Scholar] [CrossRef]
- An, S.S.; Bai, T.R.; Bates, J.H.; Black, J.L.; Brown, R.H.; Brusasco, V.; Chitano, P.; Deng, L.; Dowell, M.; Eidelman, D.H.; et al. Airway smooth muscle dynamics: A common pathway of airway obstruction in asthma. Eur. Respir. J. 2007, 29, 834–860. [Google Scholar] [CrossRef]
- Juniper, E.F.; Kline, P.A.; Vanzieleghem, M.A.; Ramsdale, E.H.; O’Byrne, P.M.; Hargreave, F.E. Effect of long-term treatment with an inhaled corticosteroid (budesonide) on airway hyperresponsiveness and clinical asthma in nonsteroid-dependent asthmatics. Am. Rev. Respir. Dis. 1990, 142, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Nadel, J.A.; Tierney, D.F. Effect of a previous deep inspiration on airway resistance in man. J. Appl. Physiol. 1961, 16, 717–719. [Google Scholar] [CrossRef] [PubMed]
- King, G.G.; Moore, B.J.; Seow, C.Y.; Paré, P.D. Time course of increased airway narrowing caused by inhibition of deep inspiration during methacholine challenge. Am. J. Respir. Crit. Care Med. 1999, 160, 454–457. [Google Scholar] [CrossRef] [PubMed]
- Fish, J.E.; Ankin, M.G.; Kelly, J.F.; Peterman, V.I. Regulation of bronchomotor tone by lung inflation in asthmatic and nonasthmatic subjects. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1981, 50, 1079–1086. [Google Scholar] [CrossRef]
- Scichilone, N.; Marchese, R.; Soresi, S.; Interrante, A.; Togias, A.; Bellia, V. Deep inspiration-induced changes in lung volume decrease with severity of asthma. Respir. Med. 2007, 101, 951–956. [Google Scholar] [CrossRef] [PubMed]
- Kapsali, T.; Permutt, S.; Laube, B.; Scichilone, N.; Togias, A. Potent bronchoprotective effect of deep inspiration and its absence in asthma. J. Appl. Physiol. 2000, 89, 711–720. [Google Scholar] [CrossRef] [PubMed]
- Skloot, G.; Togias, A. Bronchodilation and bronchoprotection by deep inspiration and their relationship to bronchial hyperresponsiveness. Clin. Rev. Allergy Immunol. 2003, 24, 55–72. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.S.; Larcombe, A.N.; Fernandes, L.B.; Zosky, G.R.; Noble, P.B. The mechanism of deep inspiration-induced bronchoprotection: Evidence from a mouse model. Eur. Respir. J. 2012, 40, 982–989. [Google Scholar] [CrossRef]
- Crimi, E.; Pellegrino, R.; Milanese, M.; Brusasco, V. Deep breaths, methacholine, and airway narrowing in healthy and mild asthmatic subjects. J. Appl. Physiol. 2002, 93, 1384–1390. [Google Scholar] [CrossRef]
- Gosens, R.; Schaafsma, D.; Nelemans, S.A.; Halayko, A.J. Rho-kinase as a drug target for the treatment of airway hyperrespon-siveness in asthma. Mini Rev. Med. Chem. 2006, 6, 339–348. [Google Scholar] [CrossRef]
- Fernandes, L.B.; Henry, P.J.; Goldie, R.G. Rho kinase as a therapeutic target in the treatment of asthma and chronic obstructive pulmonary disease. Ther. Adv. Respir. Dis. 2007, 1, 25–33. [Google Scholar] [CrossRef]
- Kume, H. RhoA/Rho-kinase as a therapeutic target in asthma. Curr. Med. Chem. 2008, 15, 2876–2885. [Google Scholar] [CrossRef]
- Schaafsma, D.; Gosens, R.; Zaagsma, J.; Halayko, A.J.; Meurs, H. Rho kinase inhibitors: A novel therapeutical intervention in asthma? Eur. J. Pharmacol. 2008, 585, 398–406. [Google Scholar] [CrossRef]
- Chiba, Y.; Matsusue, K.; Misawa, M. RhoA, a possible target for treatment of airway hyperresponsiveness in bronchial asthma. J. Pharmacol. Sci. 2010, 114, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Liu, C.T.; Yang, Q.H.; Yu, Q.; Wang, T. New angle of view on the role of rho/rho kinase pathway in human diseases. Iran. J. Allergy Asthma Immunol. 2014, 13, 378–395. [Google Scholar] [PubMed]
- Zhang, Y.; Saradna, A.; Ratan, R.; Ke, X.; Tu, W.; Do, D.C.; Hu, C.; Gao, P. RhoA/Rho-kinases in asthma: From pathogenesis to therapeutic targets. Clin. Transl. Immunol. 2020, 9, e01134. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Shi, W. Rho/ROCK-MYOCD in regulating airway smooth muscle growth and remodeling. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 321, L1–L5. [Google Scholar] [CrossRef] [PubMed]
- Seow, C.Y. Passive stiffness of airway smooth muscle: The next target for improving airway distensibility and treatment for asthma? Pulm. Pharmacol. Ther. 2013, 26, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Sobieszek, A. Ca-linked phosphorylation of a light chain of vertebrate smooth-muscle myosin. Eur. J. Biochem. 1977, 73, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Ikebe, M.; Onishi, H.; Watanabe, S. Phosphorylation and dephosphorylation of a light chain of the chicken gizzard myosin molecule. J. Biochem. 1977, 82, 299–302. [Google Scholar] [CrossRef] [PubMed]
- Pfitzer, G. Invited review: Regulation of myosin phosphorylation in smooth muscle. J. Appl. Physiol. 2001, 91, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Maekawa, M.; Ishizaki, T.; Boku, S.; Watanabe, N.; Fujita, A.; Iwamatsu, A.; Obinata, T.; Ohashi, K.; Mizuno, K.; Narumiya, S. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 1999, 285, 895–898. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Bhetwal, B.P.; Gunst, S.J. Rho kinase collaborates with p21-activated kinase to regulate actin polymerization and contraction in airway smooth muscle. J. Physiol. 2018, 596, 3617–3635. [Google Scholar] [CrossRef] [PubMed]
- Puetz, S.; Lubomirov, L.T.; Pfitzer, G. Regulation of smooth muscle contraction by small GTPases. Physiology 2009, 24, 342–356. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Wang, L.; Paré, P.D.; Seow, C.Y.; Chitano, P. The Huxley crossbridge model as the basic mechanism for airway smooth muscle contraction. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 317, L235–L246. [Google Scholar] [CrossRef]
- Hai, C.M.; Murphy, R.A. Cross-bridge phosphorylation and regulation of latch state in smooth muscle. Am. J. Physiol. 1988, 254, C99–C106. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, Y.; Gunst, S.J. The small GTPase RhoA regulates the contraction of smooth muscle tissues by catalyzing the assembly of cytoskeletal signaling complexes at membrane adhesion sites. J. Biol. Chem. 2012, 287, 33996–34008. [Google Scholar] [CrossRef]
- Huang, Y.; Day, R.N.; Gunst, S.J. Vinculin phosphorylation at Tyr1065 regulates vinculin conformation and tension development in airway smooth muscle tissues. J. Biol. Chem. 2014, 289, 3677–3688. [Google Scholar] [CrossRef]
- Wu, Y.; Gunst, S.J. Vasodilator-stimulated phosphoprotein (VASP) regulates actin polymerization and contraction in airway smooth muscle by a vinculin-dependent mechanism. J. Biol. Chem. 2015, 290, 11403–11416. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Huang, Y.; Gunst, S.J. p21-Activated kinase (Pak) regulates airway smooth muscle contraction by regulating paxillin complexes that mediate actin polymerization. J. Physiol. 2016, 594, 4879–4900. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Gunst, S.J. Non-muscle (NM) myosin heavy chain phosphorylation regulates the formation of NM myosin filaments, adhesome assembly and smooth muscle contraction. J. Physiol. 2017, 595, 4279–4300. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, R.; Tang, D.D. Ste20-like Kinase-mediated Control of Actin Polymerization Is a New Mechanism for Thin Filament-associated Regulation of Airway Smooth Muscle Contraction. Am. J. Respir. Cell Mol. Biol. 2020, 62, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Seow, C.Y.; An, S.S. The Force Awakens in the Cytoskeleton: The Saga of a Shape-Shifter. Am. J. Respir. Cell Mol. Biol. 2020, 62, 550–551. [Google Scholar] [CrossRef] [PubMed]
- Guo, T.; He, C.; Venado, A.; Zhou, Y. Extracellular Matrix Stiffness in Lung Health and Disease. Compr. Physiol. 2022, 12, 3523–3558. [Google Scholar] [CrossRef] [PubMed]
- Raqeeb, A.; Jiao, Y.; Syyong, H.T.; Paré, P.D.; Seow, C.Y. Regulatable stiffness in relaxed airway smooth muscle: A target for asthma treatment? J. Appl. Physiol. 2012, 112, 337–346. [Google Scholar] [CrossRef]
- Lan, B.; Wang, L.; Zhang, J.; Pascoe, C.D.; Norris, B.A.; Liu, J.C.; Solomon, D.; Paré, P.D.; Deng, L.; Seow, C.Y. Rho-kinase mediated cytoskeletal stiffness in skinned smooth muscle. J. Appl. Physiol. 2013, 115, 1540–1552. [Google Scholar] [CrossRef]
- Dong, S.J.; Wang, L.; Chitano, P.; Coxson, H.O.; Paré, P.D.; Seow, C.Y. Airway diameter at different transpulmonary pressures in ex vivo sheep lungs: Implications for deep inspiration-induced bronchodilation and bronchoprotection. Am. J. Physiol. Lung Cell. Mol. Physiol. 2021, 321, L663–L674. [Google Scholar] [CrossRef]
- Lan, B.; Deng, L.; Donovan, G.M.; Chin, L.Y.; Syyong, H.T.; Wang, L.; Zhang, J.; Pascoe, C.D.; Norris, B.A.; Liu, J.C.; et al. Force maintenance and myosin filament assembly regulated by Rho-kinase in airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 308, L1–L10. [Google Scholar] [CrossRef]
- Wang, L.; Chitano, P.; Paré, P.D.; Seow, C.Y. Mechanopharmacology and Synergistic Relaxation of Airway Smooth Muscle. J. Eng. Sci. Med. Diagn. Ther. 2019, 2, 0110041–0110047. [Google Scholar] [CrossRef]
- Wang, L.; Chitano, P.; Seow, C.Y. Mechanopharmacology of Rho-kinase antagonism in airway smooth muscle and potential new therapy for asthma. Pharmacol. Res. 2020, 159, 104995. [Google Scholar] [CrossRef]
- Wei, B.; Shang, Y.X.; Li, M.; Jiang, J.; Zhang, H. Cytoskeleton changes of airway smooth muscle cells in juvenile rats with airway remodeling in asthma and the RhoA/ROCK signaling pathway mechanism. Genet. Mol. Res. 2014, 13, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Witzenrath, M.; Ahrens, B.; Schmeck, B.; Kube, S.M.; Hippenstiel, S.; Rosseau, S.; Hamelmann, E.; Suttorp, N.; Schütte, H. Rho-kinase and contractile apparatus proteins in murine airway hyperresponsiveness. Exp. Toxicol. Pathol. 2008, 60, 9–15. [Google Scholar] [CrossRef]
- Wu, F.Q.; Zhu, S.Y.; He, C.X.; Gu, M.X. Effects of fasudil on the expression of Rho kinase-1 and airway inflammation in a mouse model of asthma. Chin. J. Tuberc. Respir. Dis. 2009, 32, 847–849. [Google Scholar]
- Deng, X.; Zhu, H.; Wu, S. Measurement of Rho-kinase and CD4+CD25+ regulatory T cells in the peripheral blood in asthmatic patients. J. Cent. South Univ. Med. Sci. 2014, 39, 577–581. [Google Scholar] [CrossRef]
- Wang, L.; Chitano, P.; Paré, P.D.; Seow, C.Y. Upregulation of smooth muscle Rho-kinase protein expression in human asthma. Eur. Respir. J. 2020, 55, 1901785. [Google Scholar] [CrossRef]
- Hashimoto, K.; Peebles, R.S., Jr.; Sheller, J.R.; Jarzecka, K.; Furlong, J.; Mitchell, D.B.; Hartert, T.V.; Graham, B.S. Suppression of airway hyperresponsiveness induced by ovalbumin sensitisation and RSV infection with Y-27632, a Rho kinase inhibitor. Thorax 2002, 57, 524–527. [Google Scholar] [CrossRef] [PubMed]
- Possa, S.S.; Charafeddine, H.T.; Righetti, R.F.; da Silva, P.A.; Almeida-Reis, R.; Saraiva-Romanholo, B.M.; Perini, A.; Prado, C.M.; Leick-Maldonado, E.A.; Martins, M.A.; et al. Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2012, 303, L939–L952. [Google Scholar] [CrossRef]
- Schaafsma, D.; Bos, I.S.; Zuidhof, A.B.; Zaagsma, J.; Meurs, H. Inhalation of the Rho-kinase inhibitor Y-27632 reverses allergen-induced airway hyperresponsiveness after the early and late asthmatic reaction. Respir. Res. 2006, 7, 121. [Google Scholar] [CrossRef]
- Franova, S.; Molitorisova, M.; Kalmanova, L.; Palencarova, J.; Joskova, M.; Smiesko, L.; Mazerik, J.; Sutovska, M. The anti-asthmatic potential of Rho-kinase inhibitor hydroxyfasudil in the model of experimentally induced allergic airway inflammation. Eur. J. Pharmacol. 2023, 938, 175450. [Google Scholar] [CrossRef]
- Kudo, M.; Melton, A.C.; Chen, C.; Engler, M.B.; Huang, K.E.; Ren, X.; Wang, Y.; Bernstein, X.; Li, J.T.; Atabai, K.; et al. IL-17A produced by αβ T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat. Med. 2012, 18, 547–554. [Google Scholar] [CrossRef]
- Henry, P.J.; Mann, T.S.; Goldie, R.G. A rho kinase inhibitor, Y-27632 inhibits pulmonary eosinophilia, bronchoconstriction and airways hyperresponsiveness in allergic mice. Pulm. Pharmacol. Ther. 2005, 18, 67–74. [Google Scholar] [CrossRef]
- Taki, F.; Kume, H.; Kobayashi, T.; Ohta, H.; Aratake, H.; Shimokata, K. Effects of Rho-kinase inactivation on eosinophilia and hyper-reactivity in murine airways by allergen challenges. Clin. Exp. Allergy 2007, 37, 599–607. [Google Scholar] [CrossRef] [PubMed]
- Xie, T.; Luo, G.; Zhang, Y.; Wang, X.; Wang, X.; Wu, M.; Li, G. Rho-kinase inhibitor fasudil reduces allergic airway inflammation and mucus hypersecretion by regulating STAT6 and NFκB. Clin. Exp. Allergy 2015, 45, 1812–1822. [Google Scholar] [CrossRef] [PubMed]
- Schaafsma, D.; Bos, I.S.; Zuidhof, A.B.; Zaagsma, J.; Meurs, H. The inhaled Rho kinase inhibitor Y-27632 protects against allergen-induced acute bronchoconstriction, airway hyperresponsiveness, and inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 295, L214–L219. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, T.M.; Righetti, R.F.; Camargo, L.D.N.; Saraiva-Romanholo, B.M.; Aristoteles, L.; de Souza, F.C.R.; Fukuzaki, S.; Alonso-Vale, M.I.C.; Cruz, M.M.; Prado, C.M.; et al. Effect of Anti-IL17 Antibody Treatment Alone and in Combination With Rho-Kinase Inhibitor in a Murine Model of Asthma. Front. Physiol. 2018, 9, 1183. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Sun, Y.; Liu, N.; Zhang, Z.; Wang, X.; Lu, D.; Zhou, L.; Zhang, C. IL-27 attenuates airway inflammation and epithelial-mesenchymal transition in allergic asthmatic mice possibly via the RhoA/ROCK signalling pathway. Eur. Cytokine Netw. 2022, 33, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Aihara, M.; Dobashi, K.; Iizuka, K.; Nakazawa, T.; Mori, M. Effect of Y-27632 on release of cytokines from peripheral T cells in asthmatic patients and normal subjects. Int. Immunopharmacol. 2004, 4, 557–561. [Google Scholar] [CrossRef]
- Chiba, Y.; Nakazawa, S.; Todoroki, M.; Shinozaki, K.; Sakai, H.; Misawa, M. Interleukin-13 augments bronchial smooth muscle contractility with an up-regulation of RhoA protein. Am. J. Respir. Cell Mol. Biol. 2009, 40, 159–167. [Google Scholar] [CrossRef]
- Kuperman, D.A.; Huang, X.; Koth, L.L.; Chang, G.H.; Dolganov, G.M.; Zhu, Z.; Elias, J.A.; Sheppard, D.; Erle, D.J. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat. Med. 2002, 8, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, X.; Zhang, Y. Rho-kinase inhibitor attenuates airway mucus hypersecretion and inflammation partly by downregulation of IL-13 and the JNK1/2-AP1 signaling pathway. Biochem. Biophys. Res. Commun. 2019, 516, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Kasahara, D.I.; Ninin, F.M.; Wurmbrand, A.P.; Liao, J.K.; Shore, S.A. Abrogation of airway hyperresponsiveness but not inflammation by rho kinase insufficiency. Clin. Exp. Allergy 2015, 45, 457–470. [Google Scholar] [CrossRef] [PubMed]
- Ijpma, G.; Kachmar, L.; Panariti, A.; Matusovsky, O.S.; Torgerson, D.; Benedetti, A.; Lauzon, A.M. Intrapulmonary airway smooth muscle is hyperreactive with a distinct proteome in asthma. Eur. Respir. J. 2020, 56, 1902178. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Long, J.; Chen, J.; Jiang, X.; Zhu, J.; Jin, Y.; Lin, F.; Zhong, J.; Xu, R.; Mao, L.; et al. Overexpression of soluble ADAM33 promotes a hypercontractile phenotype of the airway smooth muscle cell in rat. Exp. Cell Res. 2016, 349, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Chin, L.Y.; Bossé, Y.; Pascoe, C.; Hackett, T.L.; Seow, C.Y.; Paré, P.D. Mechanical properties of asthmatic airway smooth muscle. Eur. Respir. J. 2012, 40, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Shimokawa, H.; Rashid, M. Development of Rho-kinase inhibitors for cardiovascular medicine. Trends Pharmacol. Sci. 2007, 28, 296–302. [Google Scholar] [CrossRef]
- Feng, Y.; LoGrasso, P.V.; Defert, O.; Li, R. Rho Kinase (ROCK) Inhibitors and Their Therapeutic Potential. J. Med. Chem. 2016, 59, 2269–2300. [Google Scholar] [CrossRef]
- Defert, O.; Boland, S. Rho kinase inhibitors: A patent review (2014–2016). Expert Opin. Ther. Pat. 2017, 27, 507–515. [Google Scholar] [CrossRef]
- Löhn, M.; Plettenburg, O.; Kannt, A.; Kohlmann, M.; Hofmeister, A.; Kadereit, D.; Monecke, P.; Schiffer, A.; Schulte, A.; Ruetten, H.; et al. End-organ protection in hypertension by the novel and selective Rho-kinase inhibitor, SAR407899. World J. Cardiol. 2015, 7, 31–42. [Google Scholar] [CrossRef]
- Al-Humimat, G.; Marashdeh, I.; Daradkeh, D.; Kooner, K. Investigational Rho Kinase Inhibitors for the Treatment of Glaucoma. J. Exp. Pharmacol. 2021, 13, 197–212. [Google Scholar] [CrossRef]
- Jo-Avila, M.; Al-Jumaily, A.M.; Lu, J. Relaxant effect of superimposed length oscillation on sensitized airway smooth muscle. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 308, L479–L484. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.D.; Novack, G.D.; van Haarlem, T.; Kopczynski, C. Ocular hypotensive effect of the Rho kinase inhibitor AR-12286 in patients with glaucoma and ocular hypertension. Am. J. Ophthalmol. 2011, 152, 834–841. [Google Scholar] [CrossRef] [PubMed]
- Sit, A.J.; Gupta, D.; Kazemi, A.; McKee, H.; Challa, P.; Liu, K.C.; Lopez, J.; Kopczynski, C.; Heah, T. Netarsudil Improves Trabecular Outflow Facility in Patients with Primary Open Angle Glaucoma or Ocular Hypertension: A Phase 2 Study. Am. J. Ophthalmol. 2021, 226, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Walters, T.R.; Ahmed, I.I.K.; Lewis, R.A.; Usner, D.W.; Lopez, J.; Kopczynski, C.C.; Heah, T. Once-Daily Netarsudil/Latanoprost Fixed-Dose Combination for Elevated Intraocular Pressure in the Randomized Phase 3 MERCURY-2 Study. Ophthalmol. Glaucoma 2019, 2, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Stalmans, I.; Lim, K.S.; Oddone, F.; Fichtl, M.; Belda, J.I.; Hommer, A.; Laganovska, G.; Schweitzer, C.; Voykov, B.; Zarnowski, T.; et al. MERCURY-3: A randomized comparison of netarsudil/latanoprost and bimatoprost/timolol in open-angle glaucoma and ocular hypertension. Graefe’s Arch. Clin. Exp. Ophthalmol. 2024, 262, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Tanihara, H.; Yamamoto, T.; Aihara, M.; Koizumi, N.; Minami, H.; Kojima, S.; Isobe, T.; Kanazawa, M.; Suganami, H. Crossover Randomized Study of Pharmacologic Effects of Ripasudil-Brimonidine Fixed-Dose Combination Versus Ripasudil or Brimonidine. Adv. Ther. 2023, 40, 3559–3573. [Google Scholar] [CrossRef] [PubMed]
- Lindstrom, R.L.; Lewis, A.E.; Holland, E.J.; Sheppard, J.D.; Hovanesian, J.A.; Senchyna, M.; Hollander, D.A. Phase 2, Randomized, Open-Label Parallel-Group Study of Two Dosing Regimens of Netarsudil for the Treatment of Corneal Edema Due to Fuchs Corneal Dystrophy. J. Ocul. Pharmacol. Ther. 2022, 38, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Fava, A.; Wung, P.K.; Wigley, F.M.; Hummers, L.K.; Daya, N.R.; Ghazarian, S.R.; Boin, F. Efficacy of Rho kinase inhibitor fasudil in secondary Raynaud’s phenomenon. Arthritis Care Res. 2012, 64, 925–929. [Google Scholar] [CrossRef]
- Fukumoto, Y.; Yamada, N.; Matsubara, H.; Mizoguchi, M.; Uchino, K.; Yao, A.; Kihara, Y.; Kawano, M.; Watanabe, H.; Takeda, Y.; et al. Double-blind, placebo-controlled clinical trial with a rho-kinase inhibitor in pulmonary arterial hypertension. Circ. J. 2013, 77, 2619–2625. [Google Scholar] [CrossRef]
- Fujita, H.; Fukumoto, Y.; Saji, K.; Sugimura, K.; Demachi, J.; Nawata, J.; Shimokawa, H. Acute vasodilator effects of inhaled fasudil, a specific Rho-kinase inhibitor, in patients with pulmonary arterial hypertension. Heart Vessels 2010, 25, 144–149. [Google Scholar] [CrossRef]
- Cutler, C.; Lee, S.J.; Arai, S.; Rotta, M.; Zoghi, B.; Lazaryan, A.; Ramakrishnan, A.; DeFilipp, Z.; Salhotra, A.; Chai-Ho, W.; et al. Belumosudil for chronic graft-versus-host disease after 2 or more prior lines of therapy: The ROCKstar Study. Blood 2021, 138, 2278–2289. [Google Scholar] [CrossRef]
- Ahmadieh, H.; Nourinia, R.; Hafezi-Moghadam, A.; Sabbaghi, H.; Nakao, S.; Zandi, S.; Yaseri, M.; Tofighi, Z.; Akbarian, S. Intravitreal injection of a Rho-kinase inhibitor (fasudil) combined with bevacizumab versus bevacizumab monotherapy for diabetic macular oedema: A pilot randomised clinical trial. Br. J. Ophthalmol. 2019, 103, 922–927. [Google Scholar] [CrossRef]
- Kishi, T.; Hirooka, Y.; Masumoto, A.; Ito, K.; Kimura, Y.; Inokuchi, K.; Tagawa, T.; Shimokawa, H.; Takeshita, A.; Sunagawa, K. Rho-kinase inhibitor improves increased vascular resistance and impaired vasodilation of the forearm in patients with heart failure. Circulation 2005, 111, 2741–2747. [Google Scholar] [CrossRef] [PubMed]
- Nohria, A.; Grunert, M.E.; Rikitake, Y.; Noma, K.; Prsic, A.; Ganz, P.; Liao, J.K.; Creager, M.A. Rho kinase inhibition improves endothelial function in human subjects with coronary artery disease. Circ. Res. 2006, 99, 1426–1432. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, T.; Ibuki, C.; Suzuki, T.; Ishii, K.; Yoshida, H.; Kodani, E.; Kusama, Y.; Atarashi, H.; Kishida, H.; Takano, T.; et al. Administration of the Rho-kinase inhibitor, fasudil, following nitroglycerin additionally dilates the site of coronary spasm in patients with vasospastic angina. Coron. Artery Dis. 2008, 19, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Segain, J.P.; Raingeard de la Blétière, D.; Sauzeau, V.; Bourreille, A.; Hilaret, G.; Cario-Toumaniantz, C.; Pacaud, P.; Galmiche, J.P.; Loirand, G. Rho kinase blockade prevents inflammation via nuclear factor kappa B inhibition: Evidence in Crohn’s disease and experimental colitis. Gastroenterology 2003, 124, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Fehlings, M.G.; Kim, K.D.; Aarabi, B.; Rizzo, M.; Bond, L.M.; McKerracher, L.; Vaccaro, A.R.; Okonkwo, D.O. Rho Inhibitor VX-210 in Acute Traumatic Subaxial Cervical Spinal Cord Injury: Design of the SPinal Cord Injury Rho INhibition InvestiGation (SPRING) Clinical Trial. J. Neurotrauma 2018, 35, 1049–1056. [Google Scholar] [CrossRef] [PubMed]
- Zanin-Zhorov, A.; Weiss, J.M.; Trzeciak, A.; Chen, W.; Zhang, J.; Nyuydzefe, M.S.; Arencibia, C.; Polimera, S.; Schueller, O.; Fuentes-Duculan, J.; et al. Cutting Edge: Selective Oral ROCK2 Inhibitor Reduces Clinical Scores in Patients with Psoriasis Vulgaris and Normalizes Skin Pathology via Concurrent Regulation of IL-17 and IL-10. J. Immunol. 2017, 198, 3809–3814. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, M.; Hirai, S.; Seto, M.; Satoh, S.; Ohtomo, E. Effects of fasudil in acute ischemic stroke: Results of a prospective placebo-controlled double-blind trial. J. Neurol. Sci. 2005, 238, 31–39. [Google Scholar] [CrossRef] [PubMed]
Clinical Trials—Relevant Diseases | References |
---|---|
Glaucoma and ocular hypertension | [73,74,75,76,77,78] |
Raynaud’s disease | [79] |
Pulmonary arterial hypertension | [80,81] |
Chronic graft-versus-host disease | [82] |
Diabetic macular oedema | [83] |
Coronary artery disease and heart failure | [84,85,86] |
Crohn’s disease | [87] |
Spinal cord injury | [88] |
Psoriasis vulgaris | [89] |
Acute ischemic stroke | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasuda, Y.; Wang, L.; Chitano, P.; Seow, C.Y. Rho-Kinase Inhibition of Active Force and Passive Tension in Airway Smooth Muscle: A Strategy for Treating Airway Hyperresponsiveness in Asthma. Biology 2024, 13, 115. https://doi.org/10.3390/biology13020115
Yasuda Y, Wang L, Chitano P, Seow CY. Rho-Kinase Inhibition of Active Force and Passive Tension in Airway Smooth Muscle: A Strategy for Treating Airway Hyperresponsiveness in Asthma. Biology. 2024; 13(2):115. https://doi.org/10.3390/biology13020115
Chicago/Turabian StyleYasuda, Yuto, Lu Wang, Pasquale Chitano, and Chun Y. Seow. 2024. "Rho-Kinase Inhibition of Active Force and Passive Tension in Airway Smooth Muscle: A Strategy for Treating Airway Hyperresponsiveness in Asthma" Biology 13, no. 2: 115. https://doi.org/10.3390/biology13020115
APA StyleYasuda, Y., Wang, L., Chitano, P., & Seow, C. Y. (2024). Rho-Kinase Inhibition of Active Force and Passive Tension in Airway Smooth Muscle: A Strategy for Treating Airway Hyperresponsiveness in Asthma. Biology, 13(2), 115. https://doi.org/10.3390/biology13020115