Zebrafish Feed Intake: A Systematic Review for Standardizing Feeding Management in Laboratory Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Data Sources and Searches
3. Results
3.1. Database Search Process
3.2. Infographics on Zebrafish and Feeds Data Extrapolated in the Review
3.3. Feed Intake Data
3.4. Factors Affecting Zebrafish Feed Intake
4. Discussion
4.1. Zebrafish Feed Categories: What Do They Eat?
4.2. Zebrafish Feeding Methods and Behaviour: How Do They Eat?
4.3. Zebrafish Feed Intake: How Much Do They Eat?
4.4. Towards a Standard Feeding Strategy for Zebrafish Facilities
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Neff, E.P. Where the wild zebrafish are. Lab. Anim. 2020, 49, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Streisinger, G.; Walker, C.; Dower, N.; Knauber, D.; Singer, F. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 1981, 291, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Stevens, C.H.; Reed, B.T.; Hawkins, P. Enrichment for Laboratory Zebrafish—A Review of the Evidence and the Challenges. Animals 2021, 11, 698. [Google Scholar] [CrossRef] [PubMed]
- Watts, S.A.; D’Abramo, L.R. Standardized Reference Diets for Zebrafish: Addressing Nutritional Control in Experimental Methodology. Annu. Rev. Nutr. 2021, 41, 511–527. [Google Scholar] [CrossRef] [PubMed]
- Farias, M.; Certal, A.C. Different Feeds and Feeding Regimens have an Impact on Zebrafish Larval Rearing and Breeding Performance. Int. J. Marine Biol. Res. 2016, 1, 1–8. [Google Scholar] [CrossRef]
- Fronte, B.; Licitra, R.; Bibbiani, C.; Casini, L.; De Zoysa, M.; Miragliotta, V.; Sagona, S.; Coppola, F.; Brogi, L.; Abramo, F. Fishmeal Replacement with Hermetia illucens Meal in Aquafeeds: Effects on Zebrafish Growth Performances, Intestinal Morphometry, and Enzymology. Fishes 2021, 6, 28. [Google Scholar] [CrossRef]
- Del Vecchio, G.; Mazzei, A.; Schiavone, R.; Gomes, A.S.; Frangelli, G.; Sala, T.; Fantino, S.; Brocca, M.G.A.; Barca, A.; Rønnestad, I.; et al. Rearing Conditions and Automated Feed Distribution Systems for Zebrafish (Danio rerio). Appl. Sci. 2022, 12, 10961. [Google Scholar] [CrossRef]
- Singleman, C.; Holtzman, N.G. Growth and maturation in the zebrafish, Danio rerio: A staging tool for teaching and research. Zebrafish 2014, 11, 396–406. [Google Scholar] [CrossRef]
- Tonon, F.; Grassi, G. Zebrafish as an Experimental Model for Human Disease. Int. J. Mol. Sci. 2023, 24, 8771. [Google Scholar] [CrossRef]
- Gerhard, G.S.; Kauffman, E.J.; Wang, X.; Stewart, R.; Moore, J.L.; Kasales, C.J.; Demidenko, E.; Cheng, K.C. Life spans and senescent phenotypes in two strains of Zebrafish (Danio rerio). Exp. Gerontol. 2002, 37, 1055–1068. [Google Scholar] [CrossRef]
- Volkoff, H. Fish as models for understanding the vertebrate endocrine regulation of feeding and weight. Mol. Cell. Endocrinol. 2019, 497, 110437. [Google Scholar] [CrossRef]
- Patton, E.E.; Zon, L.I.; Langenau, D.M. Zebrafish disease models in drug discovery: From preclinical modelling to clinical trials. Nat. Rev. Drug Discov. 2021, 20, 611–628. [Google Scholar] [CrossRef]
- de Abreu, M.S.; Genario, R.; Giacomini, A.C.V.V.; Demin, K.A.; Lakstygal, A.M.; Amstislavskaya, T.G.; Dotto Fontana, B.; Parker, M.O.; Kalueff, A.V. Zebrafish as a Model of Neurodevelopmental Disorders. Neuroscience 2020, 445, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Costa, F.V.; Kolesnikova, T.O.; Galstyan, D.S.; Ilyin, N.P.; de Abreu, M.S.; Petersen, E.V.; Demin, K.A.; Yenkoyan, K.B.; Kalueff, A.V. Current State of Modeling Human Psychiatric Disorders Using Zebrafish. Int. J. Mol. Sci. 2023, 24, 3187. [Google Scholar] [CrossRef]
- ZFIN Person Search. Available online: https://zfin.org/action/profile/person/search (accessed on 17 April 2023).
- ZFIN Lab Search. Available online: https://zfin.org/action/profile/lab/search (accessed on 17 April 2023).
- Message, R.; Greenhough, B. “But It’s Just a Fish”: Understanding the Challenges of Applying the 3Rs in Laboratory Aquariums in the UK. Animals 2019, 9, 1075. [Google Scholar] [CrossRef] [PubMed]
- Fowler, L.A.; Williams, M.B.; D’Abramo, L.R.; Watts, S.A. Chapter 33: Zebrafish Nutrition–Moving Forward. In The Zebrafish in Biomedical Research, 1st ed.; Cartner, S.C., Eisen, J.S., Farmer, S.C., Guillemin, K.J., Kent, M.L., Sanders, G.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 379–401. [Google Scholar] [CrossRef]
- Siccardi III, A.J.; Garris, H.W.; Jones, W.T.; Moseley, D.B.; D’Abramo, L.R.; Watts, S.A. Growth and survival of zebrafish (Danio rerio) fed different commercial and laboratory diets. Zebrafish 2009, 6, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Penglase, S.; Moren, M.; Hamre, K. Standardize the diet for zebrafish model. Nature 2012, 491, 333. [Google Scholar] [CrossRef] [PubMed]
- Aleström, P.; D’Angelo, L.; Midtlyng, P.J.; Schorderet, D.F.; Schutte-Merker, S.; Sohm, F.; Warner, S. Zebrafish: Housing and husbandry recommendations. Lab. Anim. 2020, 54, 213–224. [Google Scholar] [CrossRef] [PubMed]
- Westerfield, M. The Zebrafish Book: A Guide for the Laboratory Use of Zebrafish (Danio Rerio), 4th ed.; University of Oregon Press: Eugene, OR, USA, 2000; Available online: https://zfin.org/zf_info/zfbook/zfbk.html (accessed on 17 April 2023).
- Harper, C.; Lawrence, C. The Laboratory Zebrafish, 1st ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar] [CrossRef]
- Lawrence, C. The husbandry of zebrafish (Danio rerio): A review. Aquaculture 2007, 269, 1–20. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- Purushothaman, K.; Tan, J.K.H.; Lau, D.; Saju, J.M.; Thevasagayam, N.M.; Wee, C.L.; Vij, S. Feed Restriction Modulates Growth, Gut Morphology and Gene Expression in Zebrafish. Int. J. Mol. Sci. 2021, 22, 1814. [Google Scholar] [CrossRef]
- Rajeswari, J.J.; Blanco, A.M.; Unniappan, S. Phoenixin-20 suppresses food intake, modulates glucoregulatory enzymes, and enhances glycolysis in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 318, R917–R928. [Google Scholar] [CrossRef]
- Dalmolin, C.; Almeida, D.V.; Figueiredo, M.A.; Marins, L.F. Food intake and appetite control in a GH-transgenic zebrafish. Fish Physiol. Biochem. 2015, 41, 1131–1141. [Google Scholar] [CrossRef]
- Fowler, L.A.; Powers, A.D.; Williams, M.B.; Davis, J.L.; Barry, R.J.; D’Abramo, L.R.; Watts, S.A. The effects of dietary saturated fat source on weight gain and adiposity are influenced by both sex and total dietary lipid intake in zebrafish. PLoS ONE 2021, 16, e0257914. [Google Scholar] [CrossRef]
- Meirelles, M.G.; Nornberg, B.F.; da Silveira, T.L.R.; Kütter, M.T.; Castro, C.G.; Ramirez, J.R.B.; Pedrosa, V.; Romano, L.A.; Marins, L.F. Growth Hormone Overexpression Induces Hyperphagia and Intestinal Morphophysiological Adaptations to Improve Nutrient Uptake in Zebrafish. Front. Physiol. 2021, 12, 723853. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, C.; Rodrigues, P.; Serrão, P.; Figueira, L.; Guimarães, L.; Teles, L.O.; Peres, H.; Carvalho, A.P. Dietary tryptophan supplementation does not affect growth but increases brain serotonin level and modulates the expression of some liver genes in zebrafish (Danio rerio). Fish Physiol. Biochem. 2021, 47, 1541–1558. [Google Scholar] [CrossRef] [PubMed]
- Valentine, S.; Kwasek, K. Feeding Rate and Protein Quality Differentially Affect Growth and Feeding Efficiency Response Variables of Zebrafish (Danio rerio). Zebrafish 2022, 19, 94–103. [Google Scholar] [CrossRef]
- Vargas, R.; Vásquez, I.C. Effects of overfeeding and high-fat diet on cardiosomatic parameters and cardiac structures in young and adult zebrafish. Fish Physiol. Biochem. 2017, 43, 1761–1773. [Google Scholar] [CrossRef] [PubMed]
- Ding, Q.; Lu, C.; Hao, Q.; Zhang, Q.; Yang, Y.; Olsen, R.E.; Ringo, E.; Ran, C.; Zhang, Z.; Zhou, Z. Dietary Succinate Impacts the Nutritional Metabolism, Protein Succinylation and Gut Microbiota of Zebrafish. Front. Nutr. 2022, 9, 894278. [Google Scholar] [CrossRef] [PubMed]
- Sissener, N.H.; Johannessen, L.E.; Hevrøy, E.M.; Wiik-Nielsen, C.R.; Berdal, K.G.; Nordgreen, A.; Hemre, G.I. Zebrafish (Danio rerio) as a model for investigating the safety of GM feed ingredients (soya and maize); performance, stress response and uptake of dietary DNA sequences. Br. J. Nutr. 2010, 103, 3–15. [Google Scholar] [CrossRef]
- Pan, C.Y.; Huang, T.C.; Wang, Y.D.; Yeh, Y.C.; Hui, C.F.; Chen, J.Y. Oral administration of recombinant epinecidin-1 protected grouper (Epinephelus coioides) and zebrafish (Danio rerio) from Vibrio vulnificus infection and enhanced immune-related gene expressions. Fish Shellfish Immunol. 2012, 32, 947–957. [Google Scholar] [CrossRef]
- Yokobori, E.; Azuma, M.; Nishiguchi, R.; Kang, K.S.; Kamijo, M.; Uchiyama, M.; Matsuda, K. Neuropeptide Y stimulates food intake in the Zebrafish, Danio rerio. J. Neuroendocrinol. 2012, 24, 766–773. [Google Scholar] [CrossRef] [PubMed]
- von Krogh, K.; Sørensen, C.; Nilsson, G.E.; Øverli, Ø. Forebrain cell proliferation, behavior, and physiology of zebrafish, Danio rerio, kept in enriched or barren environments. Physiolo. Behav. 2010, 101, 32–39. [Google Scholar] [CrossRef]
- Huang, C.C.; Sun, J.; Ji, H.; Kaneko, G.; Xie, X.D.; Chang, Z.G.; Deng, W. Systemic effect of dietary lipid levels and α-lipoic acid supplementation on nutritional metabolism in zebrafish (Danio rerio): Focusing on the transcriptional level. Fish Physiol. Biochem. 2020, 46, 1631–1644. [Google Scholar] [CrossRef]
- Bourdineaud, J.P.; Rossignol, R.; Brèthes, D. Zebrafish: A model animal for analyzing the impact of environmental pollutants on muscle and brain mitochondrial bioenergetics. Int. J. Biochem. Cell Biol. 2013, 45, 16–22. [Google Scholar] [CrossRef]
- Fernandes, H.; Peres, H.; Carvalho, A.P. Dietary Protein Requirement During Juvenile Growth of Zebrafish (Danio rerio). Zebrafish 2016, 13, 548–555. [Google Scholar] [CrossRef] [PubMed]
- Haldén, A.N.; Nyholm, J.R.; Andersson, P.L.; Holbech, H.; Norrgren, L. Oral exposure of adult zebrafish (Danio rerio) to 2,4,6-tribromophenol affects reproduction. Aquat. Toxicol. 2010, 100, 30–37. [Google Scholar] [CrossRef]
- Piccinetti, C.C.; Migliarini, B.; Olivotto, I.; Simoniello, M.P.; Giorgini, E.; Carnevali, O. Melatonin and peripheral circuitries: Insights on appetite and metabolism in Danio rerio. Zebrafish 2013, 10, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Yokobori, E.; Kojima, K.; Azuma, M.; Kang, K.S.; Maejima, S.; Uchiyama, M.; Matsuda, K. Stimulatory effect of intracerebroventricular administration of orexin A on food intake in the zebrafish, Danio rerio. Peptides 2011, 32, 1357–1362. [Google Scholar] [CrossRef]
- Piccinetti, C.C.; Migliarini, B.; Olivotto, I.; Coletti, G.; Amici, A.; Carnevali, O. Appetite regulation: The central role of melatonin in Danio rerio. Horm. Behav. 2010, 58, 780–785. [Google Scholar] [CrossRef]
- Yang, B.Y.; Zhai, G.; Gong, Y.L.; Su, J.Z.; Peng, X.Y.; Shang, G.H.; Han, D.; Jin, J.Y.; Liu, H.K.; Du, Z.Y.; et al. Different physiological roles of insulin receptors in mediating nutrient metabolism in zebrafish. Am. J. Physiol. Endocrinol. Metab. 2018, 315, E38–E51. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.S.; Wood, C.M.; Harter, T.S.; Dal Pont, G.; Val, A.L.; Matthews, P.G.D. Metabolic fuel use after feeding in the zebrafish (Danio rerio): A respirometric analysis. J. Exp. Biol. 2019, 222, jeb194217. [Google Scholar] [CrossRef] [PubMed]
- Mora-Zamorano, F.X.; Klingler, R.; Murphy, C.; Basu, N.; Head, J.H.; Carvan III, M.J. Parental whole life cycle exposure to dietary methylmercury in zebrafish (Danio rerio) affects the behavior of offspring. Environ. Sci. Technol. 2016, 50, 4808–4816. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Barrón, E.; Hernández, C.; Llera-Herrera, R.; García-Gasca, A.; Gómez-Gil, B. Overfeeding a High-Fat Diet Promotes Sex-Specific Alterations on the Gut Microbiota of the Zebrafish (Danio rerio). Zebrafish 2019, 16, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Barenys, M.; Molins, A.; Amorós-Galicia, L.; Flick, B.; Gómez-Catalán, J. Implementation of a functional endpoint to the zebrafish embryotoxicity test to evaluate craniofacial abnormalities. Toxicol Vitr. 2019, 61, 104638. [Google Scholar] [CrossRef]
- Gombeau, K.; de Oliveira, R.B.; Sarrazin, S.L.F.; Mourão, R.H.V.; Bourdineaud, J.P. Protective Effects of Plathymenia reticulata and Connarus favosus Aqueous Extracts against Cadmium- and Mercury-Induced Toxicities. Toxicol. Res. 2019, 35, 25–35. [Google Scholar] [CrossRef]
- Merrifield, D.L.; Shaw, B.J.; Harper, G.M.; Saoud, I.P.; Davies, S.J.; Handy, R.D.; Henry, T.B. Ingestion of metal-nanoparticle contaminated food disrupts endogenous microbiota in zebrafish (Danio rerio). Environ. Pollut. 2013, 174, 157–163. [Google Scholar] [CrossRef]
- Schiano, V.; Cutignano, A.; Maiello, D.; Carbone, M.; Ciavatta, M.L.; Polese, G.; Fioretto, F.; Attanasio, C.; Palladino, A.; Felline, S.; et al. An Alkaloid from a Highly Invasive Seaweed Increases the Voracity and Reproductive Output of a Model Fish Species. Mar. Drugs 2022, 20, 513. [Google Scholar] [CrossRef]
- Cambier, S.; Bénard, G.; Mesmer-Dudons, N.; Gonzalez, P.; Rossignol, R.; Brèthes, D.; Bourdineaud, J.P. At environmental doses, dietary methylmercury inhibits mitochondrial energy metabolism in skeletal muscles of the zebra fish (Danio rerio). Int. J. Biochem. Cell Biol. 2009, 41, 791–799. [Google Scholar] [CrossRef]
- Pannevis, M.C.; Earle, K.E. Maintenance energy requirement of five popular species of ornamental fish. J. Nutr. 1994, 124, 2616S–2618S. [Google Scholar] [CrossRef]
- He, S.; Li, L.; Lv, L.Y.; Cai, W.J.; Dou, Y.Q.; Li, J.; Tang, S.L.; Chen, X.; Zhang, Z.; Xu, J.; et al. Mandarin fish (Sinipercidae) genomes provide insights into innate predatory feeding. Commun. Biol. 2020, 3, 361. [Google Scholar] [CrossRef]
- Sundarrajan, L.; Unniappan, S. Small interfering RNA mediated knockdown of irisin suppresses food intake and modulates appetite regulatory peptides in zebrafish. Gen. Comp. Endocrinol. 2017, 252, 200–208. [Google Scholar] [CrossRef]
- Blanco, A.M.; Bertucci, J.I.; Hatef, A.; Unniappan, S. Feeding and food availability modulate brain-derived neurotrophic factor, an orexigen with metabolic roles in zebrafish. Sci. Rep. 2020, 10, 10727. [Google Scholar] [CrossRef]
- Mashhadi, Z.; Huff Towle, H.; Schneider, C.; Davies, S.S. A Simple and Rapid Method to Measure Food Intake in Fish Using Brine Shrimp. Zebrafish 2020, 17, 1–12. [Google Scholar] [CrossRef]
- Sundarrajan, L.; Jayakumar Rajeswari, J.; Weber, L.P.; Unniappan, S. Nesfatin-1-like peptide is a negative regulator of cardiovascular functions in zebrafish and goldfish. Gen. Comp. Endocrinol. 2021, 313, 113892. [Google Scholar] [CrossRef]
- Blanco, A.M.; Bertucci, J.I.; Unniappan, S. FGF21 Mimics a Fasting-Induced Metabolic State and Increases Appetite in Zebrafish. Sci. Rep. 2020, 10, 6993. [Google Scholar] [CrossRef]
- Nakamachi, T.; Tanigawa, A.; Konno, N.; Shioda, S.; Matsuda, K. Expression Patterns of PACAP and PAC1R Genes and Anorexigenic Action of PACAP1 and PACAP2 in Zebrafish. Front. Endocrinol. 2019, 10, 227. [Google Scholar] [CrossRef] [PubMed]
- Nishiguchi, R.; Azuma, M.; Yokobori, E.; Uchiyama, M.; Matsuda, K. Gonadotropin-releasing hormone 2 suppresses food intake in the zebrafish, Danio rerio. Front. Endocrinol. 2012, 3, 122. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.L.; Yuan, S.S.; Li, W.Y.; Wu, C.W. Positive and negative innate immune responses in zebrafish under light emitting diodes conditions. Fish Shellfish Immunol. 2016, 56, 382–387. [Google Scholar] [CrossRef] [PubMed]
- da Silva Santos, N.; Oliveira, R.; Lisboa, C.A.; Mona, E.; Pinto, J.; Sousa-Moura, D.; Camargo, N.S.; Perillo, V.; Oliveira, M.; Grisolia, C.K.; et al. Chronic effects of carbamazepine on zebrafish: Behavioral, reproductive and biochemical endpoints. Ecotoxicol. Environ. Saf. 2018, 164, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Marvel, M.; Levavi-Sivan, B.; Wong, T.T.; Zmora, N.; Zohar, Y. Gnrh2 maintains reproduction in fasting zebrafish through dynamic neuronal projection changes and regulation of gonadotropin synthesis, oogenesis, and reproductive behaviors. Sci. Rep. 2021, 11, 6657. [Google Scholar] [CrossRef] [PubMed]
- Forner-Piquer, I.; Santangeli, S.; Maradonna, F.; Verde, R.; Piscitelli, F.; di Marzo, V.; Habibi, H.R.; Carnevali, O. Role of Bisphenol A on the Endocannabinoid System at central and peripheral levels: Effects on adult female zebrafish. Chemosphere 2018, 205, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Yan, S.; Meng, Z.; Huang, S.; Sun, W.; Jia, M.; Teng, M.; Zhou, Z.; Zhu, W. New insights into bisphenols induced obesity in zebrafish (Danio rerio): Activation of cannabinoid receptor CB1. J. Hazard. Mater. 2021, 418, 126100. [Google Scholar] [CrossRef]
- Kamel, S.M.; Broekman, S.; Tessadori, F.; van Wijk, E.; Bakkers, J. The zebrafish cohesin protein Sgo1 is required for cardiac function and eye development. Dev. Dyn. 2022, 251, 1357–1367. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Guillén, C.; Dias, J.; Rocha, F.; Castanheira, M.F.; Martins, C.I.M.; Laizé, V.; Gavaia, P.J.; Engrola, S. Does a ghrelin stimulus during zebrafish embryonic stage modulate its performance on the long-term? Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2019, 228, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Novak, C.M.; Jiang, X.; Wang, C.; Teske, J.A.; Kotz, C.M.; Levine, J.A. Caloric restriction and physical activity in zebrafish (Danio rerio). Neurosci. Lett. 2005, 383, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Du, Q.; Zhong, Z.; Xu, Y.; Peng, J. Protein-coated microplastics corona complex: An underestimated risk of microplastics. Sci. Total Environ. 2022, 851, 157948. [Google Scholar] [CrossRef]
- Li, S.; Wen, H.; Du, S. Defective sarcomere organization and reduced larval locomotion and fish survival in slow muscle heavy chain 1 (smyhc1) mutants. FASEB J. 2020, 34, 1378–1397. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiao, R.; Zhang, S.; Wang, G. Metabolomic profiling reveals the intestinal toxicity of different length of microplastic fibers on zebrafish (Danio rerio). J. Hazard. Mater. 2021, 403, 123663. [Google Scholar] [CrossRef]
- Wang, H.; Xia, X.; Liu, R.; Wang, Z.; Zhai, Y.; Lin, H.; Wen, W.; Li, Y.; Wang, D.; Yang, Z.; et al. Dietary Uptake Patterns Affect Bioaccumulation and Biomagnification of Hydrophobic Organic Compounds in Fish. Environ. Sci. Technol. 2019, 53, 4274–4284. [Google Scholar] [CrossRef]
- Stankiewicz, A.J.; McGowan, E.M.; Yu, L.; Zhdanova, I.V. Impaired Sleep, Circadian Rhythms and Neurogenesis in Diet-Induced Premature Aging. Int. J. Mol. Scie. 2017, 18, 2243. [Google Scholar] [CrossRef] [PubMed]
- Godino-Gimeno, A.; Sánchez, E.; Guillot, R.; Rocha, A.; Angotzi, A.R.; Leal, E.; Rotllant, J.; Cerdá-Reverter, J.M. Growth Performance After Agouti-Signaling Protein 1 (Asip1) Overexpression in Transgenic Zebrafish. Zebrafish 2020, 17, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Andersson, P.L.; Berg, A.H.; Bjerselius, R.; Norrgren, L.; Olsén, H.; Olsson, P.E.; Orn, S.; Tysklind, M. Bioaccumulation of selected PCBs in zebrafish, three-spined stickleback, and arctic char after three different routes of exposure. Arch. Environ. Contam. Toxicol. 2001, 40, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.L.; Ma, Q.; Wang, J.; Li, L.Y.; Han, S.L.; Limbu, S.M.; Li, D.L.; Chen, L.Q.; Zhang, M.L.; Du, Z.Y. Fasting enhances cold resistance in fish through stimulating lipid catabolism and autophagy. J. Physiol. 2019, 597, 1585–1603. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, J.; Liang, X.; Wang, Y.; Liu, R.; Zhang, R.; Zha, J.; Martyniuk, C.J. Environmental concentrations of 2, 4-DTBP cause immunotoxicity in zebrafish (Danio rerio) and may elicit ecological risk to wildlife. Chemosphere 2022, 308, 136465. [Google Scholar] [CrossRef]
- Oswald, M.; Robison, B.D. Strain-specific alteration of zebrafish feeding behavior in response to aversive stimuli. Can. J. Zool. 2008, 86, 1085–1094. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Li, J.; Ru, S. New insight on the mechanism of eating disorder in females based on metabolic differences of bisphenol S in female and male zebrafish. Environ. Pollut. 2022, 317, 120820. [Google Scholar] [CrossRef]
- De Marco, R.J.; Groneberg, A.H.; Yeh, C.M.; Treviño, M.; Ryu, S. The behavior of larval zebrafish reveals stressor-mediated anorexia during early vertebrate development. Front. Behav. Neurosci. 2014, 8, 367. [Google Scholar] [CrossRef]
- Gong, X.; Jiang, S.; Tian, H.; Xiang, D.; Zhang, J. Polyphenols in the Fermentation Liquid of Dendrobium candidum Relieve Intestinal Inflammation in Zebrafish Through the Intestinal Microbiome-Mediated Immune Response. Front. Immunol. 2020, 11, 1542. [Google Scholar] [CrossRef] [PubMed]
- Simonian, R.; Pannia, E.; Hammoud, R.; Noche, R.R.; Cui, X.; Kranenburg, E.; Kubant, R.; Ashcraft, P.; Wasek, B.; Bottiglieri, T.; et al. Methylenetetrahydrofolate reductase deficiency and high dose FA supplementation disrupt embryonic development of energy balance and metabolic homeostasis in zebrafish. Hum. Mol. Genet. 2023, 32, 1575–1588. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.T.; Benedict, S.; Whipps, C.M. Transmission of Mycobacterium chelonae and Mycobacterium marinum in laboratory zebrafish through live feeds. J. Fish Dis. 2019, 42, 1425–1431. [Google Scholar] [CrossRef]
- Nikapitiya, C.; Dananjaya, S.H.S.; Edirisinghe, S.L.; Chandrarathna, H.P.S.U.; Lee, J.; De Zoysa, M. Development of phage delivery by bioencapsulation of artemia nauplii with Edwardsiella tarda phage (ETP-1). Braz. J. Microbiol. 2020, 51, 2153–2162. [Google Scholar] [CrossRef]
- Hanslik, L.; Sommer, C.; Huppertsberg, S.; Dittmar, S.; Knepper, T.P.; Braunbeck, T. Microplastic-associated trophic transfer of benzo(k)fluoranthene in a limnic food web: Effects in two freshwater invertebrates (Daphnia magna, Chironomus riparius) and zebrafish (Danio rerio). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 237, 108849. [Google Scholar] [CrossRef]
- Huang, S.; Jiang, S.; Huo, D.; Allaband, C.; Estaki, M.; Cantu, V.; Belda-Ferre, P.; Vázquez-Baeza, Y.; Zhu, Q.; Ma, C.; et al. Candidate probiotic Lactiplantibacillus plantarum HNU082 rapidly and convergently evolves within human, mice, and zebrafish gut but differentially influences the resident microbiome. Microbiome 2021, 9, 151. [Google Scholar] [CrossRef]
- Simon, O.; Barjhoux, I.; Camilleri, V.; Gagnaire, B.; Cavalié, I.; Orjollet, D.; Darriau, F.; Pereira, S.; Beaugelin-Seillers, K.; Adam-Guillermin, C. Uptake, depuration, dose estimation and effects in zebrafish exposed to Am-241 via dietary route. J. Environ. Radioact. 2018, 193–194, 68–74. [Google Scholar] [CrossRef]
- Wang, H.; Xia, X.; Liu, R.; Wang, Z.; Lin, X.; Muir, D.C.G.; Wang, W.X. Multicompartmental Toxicokinetic Modeling of Discrete Dietary and Continuous Waterborne Uptake of Two Polycyclic Aromatic Hydrocarbons by Zebrafish Danio rerio. Environ. Sci. Technol. 2020, 54, 1054–1065. [Google Scholar] [CrossRef]
- Kaloyianni, M.; Bobori, D.C.; Xanthopoulou, D.; Malioufa, G.; Sampsonidis, I.; Kalogiannis, S.; Feidantsis, K.; Kastrinaki, G.; Dimitriadi, A.; Koumoundouros, G.; et al. Toxicity and Functional Tissue Responses of Two Freshwater Fish after Exposure to Polystyrene Microplastics. Toxics 2021, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Cormier, B.; Cachot, J.; Blanc, M.; Cabar, M.; Clérandeau, C.; Dubocq, F.; Le Bihanic, F.; Morin, B.; Zapata, S.; Bégout, M.L.; et al. Environmental microplastics disrupt swimming activity in acute exposure in Danio rerio larvae and reduce growth and reproduction success in chronic exposure in D. rerio and Oryzias melastigma. Environ. Pollut. 2022, 308, 119721. [Google Scholar] [CrossRef] [PubMed]
- Meguro, S.; Hasumura, T.; Hase, T. Body fat accumulation in zebrafish is induced by a diet rich in fat and reduced by supplementation with green tea extract. PLoS ONE 2015, 10, e0120142. [Google Scholar] [CrossRef]
- Molinari, G.S.; McCracken, V.J.; Wojno, M.; Rimoldi, S.; Terova, G.; Kwasek, K. Can intestinal absorption of dietary protein be improved through early exposure to plant-based diet? PLoS ONE 2020, 15, e0228758. [Google Scholar] [CrossRef] [PubMed]
- Imperatore, R.; Fronte, B.; Scicchitano, D.; Orso, G.; Marchese, M.; Mero, S.; Licitra, R.; Coccia, E.; Candela, M.; Paolucci, M. Dietary Supplementation with a Blend of Hydrolyzable and Condensed Tannins Ameliorates Diet-Induced Intestinal Inflammation in Zebrafish (Danio rerio). Animals 2023, 13, 167. [Google Scholar] [CrossRef] [PubMed]
- Barca, A.; Abramo, F.; Nazerian, S.; Coppola, F.; Sangiacomo, C.; Bibbiani, C.; Licitra, R.; Susini, F.; Verri, T.; Fronte, B. Hermetia illucens for replacing fishmeal in aquafeeds: Effects on fish growth performance, intestinal morphology, and gene expression in the Zebrafish (Danio rerio) model. Fishes 2023, 8, 127. [Google Scholar] [CrossRef]
- Markovich, M.L.; Rizzuto, N.V.; Brown, P.B. Diet affects spawning in zebrafish. Zebrafish 2007, 4, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Ulloa, P.E.; Iturra, P.; Neira, R.; Araneda, C. Zebrafish as a model organism for nutrition and growth: Towards comparative studies of nutritional genomics applied to aquacultured fishes. Rev. Fish Biol. Fish. 2011, 21, 649–666. [Google Scholar] [CrossRef]
- Carvalho, A.P.; Araújo, L.; Santos, M.M. Rearing zebrafish (Danio rerio) larvae without live food: Evaluation of a commercial, a practical and a purified starter diet on larval performance. Aquac. Res. 2006, 37, 1107–1111. [Google Scholar] [CrossRef]
- Lawrence, C.; Best, J.; Cockington, J.; Henry, E.C.; Hurley, S.; James, A.; Lapointe, C.; Maloney, K.; Sanders, E. The Complete and Updated “Rotifer Polyculture Method” for Rearing First Feeding Zebrafish. J. Vis. Exp. 2016, 107, e53629. [Google Scholar] [CrossRef]
- Lahnsteiner, F.; Lahnsteiner, E.; Duenser, A. Suitability of Different Live Feed for First Feeding of Freshwater Fish Larvae. Aquac. J. 2023, 3, 107–120. [Google Scholar] [CrossRef]
- Picturepest, Tetrahymena Pyriformis-400x-Oralapparat (10137945186).jpg. Creative Commons Attribution 2.0 License. Available online: https://commons.wikimedia.org/wiki/File:Tetrahymena_pyriformis_-_400x_-_Oralapparat_(10137945186).jpg (accessed on 1 June 2023).
- Bella, C.; Koehler, L.; Grosser, K.; Berendonk, T.U.; Petroni, G.; Schrallhammer, M. Paramecium Biaurelia.jpg. Creative Commons Attribution-Share Alike 4.0 International License. Available online: https://commons.wikimedia.org/wiki/File:Paramecium_biaurelia.jpg (accessed on 1 June 2023).
- Loarie, D. Brachionus Quadridentatus 102945854.jpg. Creative Commons Attribution 4.0 International License. Available online: https://commons.m.wikimedia.org/wiki/File:Brachionus_quadridentatus_102945854.jpg (accessed on 1 June 2023).
- Schieber, J.; Wilson, R.D. Burrows without a trace-How meioturbation affects rock fabrics and leaves a record of meiobenthos activity in shales and mudstones. PalZ 2021, 95, 767–791. [Google Scholar] [CrossRef]
- Lopalco, P.; Lobasso, S.; Lopes-Dos-Santos, R.M.A.; Van Stappen, G.; Corcelli, A. Lipid Profile Changes During the Development of Artemia franciscana, From Cysts to the First Two Naupliar Stages. Front. Physiol. 2019, 9, 1872. [Google Scholar] [CrossRef]
- Sepahvand, V.; Shahabi, S. First molecular evidence for two new associate copepods of genus Clausidium Kossmann, 1874 (Copepoda: Cyclopoida: Clausidiidae) from the Persian Gulf and Gulf of Oman. Nauplius 2021, 29, e2021019. [Google Scholar] [CrossRef]
- Licitra, R.; Damiani, D.; Naef, V.; Fronte, B.; Della Vecchia, S.; Sangiacomo, C.; Marchese, M.; Santorelli, F.M. Cannabidiol Mitigates Valproic Acid-Induced Developmental Toxicity and Locomotor Behavioral Impairment in Zebrafish. J. Biol. Regul. Homeost. Agents 2023, 37, 4935–4946. [Google Scholar] [CrossRef]
- Wang, X.; He, H.; Tang, W.; Zhang, X.A.; Hua, X.; Yan, J. Two Origins of Blastemal Progenitors Define Blastemal Regeneration of Zebrafish Lower Jaw. PLoS ONE 2012, 7, e45380. [Google Scholar] [CrossRef]
- Høj, L.; Bourne, D.G.; Hall, M.R. Localization, abundance and community structure of bacteria associated with Artemia: Effects of nauplii enrichment and antimicrobial treatment. Aquaculture 2009, 293, 278–285. [Google Scholar] [CrossRef]
- Maley, D.; Campbell, N.; Wilson, C. A comparison of dry, live and combination diet on the efficacy of raising zebrafish fry. Anim. Technol. Welf. 2008, 7, 51–53. Available online: https://eurekamag.com/research/029/623/029623676.php (accessed on 23 March 2023).
- Bryant, P.L.; Matty, A.J. Optimisation of Artemia feeding rate for carp larvae (Cyprinus carpio L.). Aquaculture 1980, 21, 203–212. [Google Scholar] [CrossRef]
- Gonzales, J.M. Preliminary Evaluation on the Effects of Feeds on the Growth and Early Reproductive Performance of Zebrafish (Danio rerio). J. Am. Assoc. Lab Anim. Sci. 2012, 51, 412–417. Available online: https://pubmed.ncbi.nlm.nih.gov/23043806/ (accessed on 23 March 2023).
- Önal, L. Characterization of two microparticle types for delivery of food to altricial fish larvae. Aquac. Nutr. 2000, 6, 159–170. [Google Scholar] [CrossRef]
- Newell, B.; Brocca, M. Chapter 2: Housing and maintenance of zebrafish, new technologies in laboratory aquatic systems and considerations for facility design. In Laboratory Fish in Biomedical Research; D’Angelo, L., de Girolamo, P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 23–62. [Google Scholar] [CrossRef]
- Adatto, I.; Lawrence, C.; Krug, L.; Zon, L.I. The effects of intensive feeding on reproductive performance in laboratory zebrafish (Danio rerio). PLoS ONE 2022, 17, e0278302. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, S.; Georga, I.; Koumoundouros, G. Growth and body composition of zebrafish (Danio rerio) larvae fed a compound feed from first feeding onward: Toward implications on nutrient requirements. Zebrafish 2011, 8, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Rabbane, M.G.; Rahman, M.R. Effects of natural and commercial diets on growth, reproductive performances and embryogenesis of zebrafish Danio rerio. Dhaka Univ. J. Biol. Sci. 2017, 26, 159–166. [Google Scholar] [CrossRef]
- Goolish, E.M.; Okutake, K.; Lesure, S. Growth and Survivorship of Larval Zebrafish Danio rerio on Processed Diets. N. Am. J. Aquac. 1999, 61, 189–198. [Google Scholar] [CrossRef]
- Volkoff, H.; Unniappan, S.; Kelly, S. Chapter 9: The Endocrine Regulation of Food Intake. In Fish Physiology; Bernier, N.J., Van Der Kraak, G., Farrell, A.P., Brauner, C.J., Eds.; Academic Press: Cambridge, MA, USA, 2009; Volume 28, pp. 421–465. [Google Scholar] [CrossRef]
- Atienza, M.T.; Chatzifotis, S.; Divanach, P. Macronutrient selection by sharp snout seabream (Diplodus puntazzo). Aquaculture 2004, 232, 481–491. [Google Scholar] [CrossRef]
- Almaida-Pagán, P.F.; Rubio, V.C.; Mendiola, P.; De Costa, J.; Madrid, J.A. Macronutrient selection through post-ingestive signals in sharpsnout seabream fed gelatine capsules and challenged with protein dilution. Physiol. Behav. 2006, 88, 550–558. [Google Scholar] [CrossRef]
- Vivas, M.; Rubio, V.C.; Sanchez-Vazquez, F.J.; Mena, C.; Garcıa Garcıa, B.; Madrid, J.A. Dietary self-selection in sharpsnout seabream (Diplodus puntazzo) fed paired macronutrient feeds and challenged with protein dilution. Aquaculture 2006, 251, 430–437. [Google Scholar] [CrossRef]
- Bureau, D.P.; Kaushik, S.J.; Cho, C.Y. Bioenergetics. In Fish Nutrition, 3rd ed.; Halver, J.E., Hardy, R.W., Eds.; Academic Press: San Diego, CA, USA, 2002; pp. 1–59. [Google Scholar]
- Teles, A.O.; Lupatsch, I.; Nengas, I. Nutrition and Feeding of Sparidae. In Sparidae; Pavlidis, M.A., Mylonas, C.C., Eds.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Cho, C.Y.; Kaushik, S.J. Effect of protein intake on metabolizable and net energy values of fish diets. In Nutrition and Feeding in Fish; Cowey, C.B., Mackie, A.M., Bell, J.G., Eds.; Academic Press: London, UK, 1985; pp. 95–117. [Google Scholar]
- Jobling, M. Bioenergetics: FI and energy partitioning. In Fish Ecophysiology; Rankin, J.C., Jensen, F.B., Eds.; Springer: Dordrecht, The Netherlands, 1993; pp. 1–44. [Google Scholar] [CrossRef]
- Saravanan, S.; Schrama, J.W.; Figueiredo-Silva, A.C.; Kaushik, S.J.; Verreth, J.A.J.; Geurden, I. Constraints on Energy Intake in Fish: The Link between Diet Composition, Energy Metabolism, and Energy Intake in Rainbow Trout. PLoS ONE 2012, 7, e34743. [Google Scholar] [CrossRef] [PubMed]
- Peres, H.; Oliva-Teles, A. Influence of temperature on protein utilization in juvenile European seabass (Dicentrarchus labrax). Aquaculture 1999, 170, 337–348. [Google Scholar] [CrossRef]
- Guerreiro, I.; Peres, H.; Castro-Cunha, M.; Oliva-Teles, A. Effect of temperature and dietary protein/lipid ratio on growth performance and nutrient utilization of juvenile Senegalese sole (Solea senegalensis). Aquac. Nutr. 2012, 18, 98–106. [Google Scholar] [CrossRef]
- D’Angelo, L.; Lossi, L.; Merighi, A.; de Girolamo, P. Anatomical features for the adequate choice of experimental animal models in biomedicine: I. Fishes. Ann. Anat. 2016, 205, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Albertson, R.C.; Kocher, T.D. Genetic and developmental basis of cichlid trophic diversity. Heredity 2006, 97, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Mayden, R.L.; Tang, K.L.; Conway, K.W.; Freyhof, J.; Chamberlain, S.; Haskins, M.; Schneider, L.; Sudkamp, M.; Wood, R.M.; Agnew, M.; et al. Phylogenetic relationships of Danio within the order Cypriniformes: A framework for comparative and evolutionary studies of a model species. J. Exp. Zool. B Mol. Dev. Evol. 2007, 308, 642–654. [Google Scholar] [CrossRef] [PubMed]
- Spence, R.; Gerlach, G.; Lawrence, C.; Smith, C. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev. Camb. Philos. Soc. 2008, 83, 13–34. [Google Scholar] [CrossRef]
- Pekkan, K.; Chang, B.; Uslu, F.; Mani, K.; Chen, C.Y.; Holzman, R. Characterization of zebrafish larvae suction feeding flow using μPIV and optical coherence tomography. Exp. Fluids 2016, 57, 112. [Google Scholar] [CrossRef]
- Watts, S.A.; Powell, M.; D’Abramo, L.R. Fundamental approaches to the study of zebrafish nutrition. ILAR J. 2012, 53, 144–160. [Google Scholar] [CrossRef]
- Lawrence, C.; Best, J.; James, A.; Maloney, K. The effects of feeding frequency on growth and reproduction in zebrafish (Danio rerio). Aquaculture 2012, 368, 103–108. [Google Scholar] [CrossRef]
- Clark, J.M.A. The 3Rs in research: A contemporary approach to replacement, reduction and refinement. Br. J. Nutr. 2018, 120, S1–S7. [Google Scholar] [CrossRef] [PubMed]
- Julien, D.P.; Chan, A.W.; Barrios, J.; Mathiaparanam, J.; Douglass, A.; Wolman, M.A.; Sagasti, A. Zebrafish expression reporters and mutants reveal that the IgSF cell adhesion molecule Dscamb is required for feeding and survival. J. Neurogenet. 2018, 32, 336–352. [Google Scholar] [CrossRef]
- Licitra, R.; Naef, V.; Marchese, M.; Damiani, D.; Ogi, A.; Doccini, S.; Fronte, B.; Yan, J.; Santorelli, F.M. Short-Term Effects of Human versus Bovine Sialylated Milk Oligosaccharide Microinjection on Zebrafish Larvae Survival, Locomotor Behavior and Gene Expression. Int. J. Mol. Sci. 2023, 24, 5456. [Google Scholar] [CrossRef] [PubMed]
- Wallace, K.N.; Akther, S.; Smith, E.M.; Lorent, K.; Pack, M. Intestinal growth and differentiation in zebrafish. Mech. Dev. 2005, 122, 157–173. [Google Scholar] [CrossRef] [PubMed]
- Avella, M.A.; Place, A.; Du, S.J.; Williams, E.; Silvi, S.; Zohar, Y.; Carnevali, O. Lactobacillus rhamnosus Accelerates Zebrafish Backbone Calcification and Gonadal Differentiation through Effects on the GnRH and IGF Systems. PLoS ONE 2012, 7, e45572. [Google Scholar] [CrossRef] [PubMed]
- Cahu, C.; Infante, J.Z. Substitution of live food by formulated diets in marine fish larvae. Aquaculture 2001, 200, 161–180. [Google Scholar] [CrossRef]
- McEdward, L. Ecology of Marine Invertebrate Larvae, 1st ed.; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar] [CrossRef]
- Anger, K.; Harzsch, S.; Thiel, M. Developmental Biology and Larval Ecology: The Natural History of the Crustacea; Oxford Academic: Oxford, UK, 2000. [Google Scholar] [CrossRef]
- Fronte, B.; Kim, C.H.; Bagliacca, M.; Casini, L.; De Zoysa, M. 1,3-1-6 ß-glucans enhance tissue regeneration in zebrafish (Danio rerio): Potential advantages for aquaculture applications. Aquac. Res. 2019, 50, 3163–3170. [Google Scholar] [CrossRef]
- Gomez-Requeni, P.; Conceição, L.E.C.; Jordal, A.E.O.; Rønnestad, I. A reference growth curve for nutritional experiments in zebrafish (Danio rerio) and changes in whole body proteome during development. Fish Physiol. Biochem. 2010, 36, 1199–1215. [Google Scholar] [CrossRef] [PubMed]
- Augustine, S.; Gagnaire, B.; Floriani, M.; Adam-Guillermin, C.; Kooijman, S.A. Developmental energetics of zebrafish, Danio rerio. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2011, 159, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C. Aspects of larval rearing. ILAR J. 2012, 53, 169–178. [Google Scholar] [CrossRef]
Reference | Zebrafish Line/Strain | Studied Factor | Effect on Feed Intake |
---|---|---|---|
drug/toxicant administrations | |||
[27] | n.a. | phoenixin (neuropeptide regulating reproduction, heart, feeding, memory, and anxiety) administration | Reduced with a single intraperitoneal injection of 1 µg/g body weight |
[43] | wild-type, AB strain | melatonin exposure | Reduced with melatonin water exposure equal to 100 nM and 1 μM |
[45] | n.a. | melatonin exposure | Reduced with melatonin water exposure equal to 100 nM and 1 μM |
[48] | wild-type, EK strain | parental whole life cycle dietary methylmercury supplementation | Increased in zebrafish offspring born from parents fed with methylmercury (1, 3 and 10 ppm) |
[50] | wild-type | ketoconazole (a fungicidal agent) and tricaine exposure | Reduced with ketoconazole water exposure equal to 10 μM and totally suppressed with tricaine water exposure equal to 380 μM |
[53] | n.a. | dietary caulerpin (a bisindole alkaloid extracted from the macroalga Caulerpa cylindracea) supplementation | Increased in zebrafish fed caulerpin (0.1%) |
[62] | n.a. | pituitary adenylate cyclase-activating polypeptide 1 and 2 (PACAP1 and 2) (neuropeptides activating cAMP production in pituitary cells) administration | Reduced with a single intracerebroventricular injection of zebrafishPACAP1 (2 pmol/g body weight), zebrafish PACAP2 (2 or 20 pmol/g body weight), or mammalian PACAP (2 or 20 pmol/g) |
[63] | n.a. | gonadotropin-releasing hormone 2 (decaneuropeptide regulating reproduction and energy balance) administration | Reduced with a single intracerebroventricular injection of 1 pmol/g body weight |
[65] | n.a. | carbamazepine (an anticonvulsant) exposure | Reduced with water exposure equal to 10 μg and 10 mg/L |
[67] | wild-type | bisphenol A (a plastic additive) exposure | No effect with water exposure equal to 5, 10 and 20 μg/L |
[68] | wild-type | bisphenol A and tetrabromobisphenol A (plastic additives) exposure | Increased with water exposures equal to 20, 100, and 500 μg/L |
[70] | wild-type | acylated ghrelin (an orexigenic gut hormone) administration | No effect with a single microinjection of 1.1 pmol per egg |
[72] | wild-type, AB strain | polystyrene microplastics (alone and coated with bovine serum albumin) exposure | Reduced with water exposure equal to 10 mg/L |
[74] | wild-type, AB strain | short and long microplastic fibers exposure | Reduced with water exposure equal to 20 mg/L |
[80] | wild-type, AB strain | synthetic phenolic antioxidants (plastics, food packaging materials, petrochemicals, and personal care products additives) exposure | Reduced with water exposure equal to 0.01, 0.1 or 1 μM |
[82] | wild-type, AB strain | bisphenol S (a plastic additive) exposure | Increased in female but not in male with water exposures equal to 1, 10 and 100 μg/L |
rearing conditions | |||
[47] | n.a. | sociality | Reduced when zebrafish are reared alone or in pairs |
[64] | wild-type, AB strain | light conditions | Increased using LEDs blue and Reduced using LEDs red, compared to a white fluorescent bulb (control group) |
[79] | n.a. | water temperature | Reduced at 22 and 16 °C and stopped at 13 °C compared to controls reared at 28 °C |
[83] | wild-type, AB x Tüpfel long fin strain | salt and mechanosensory stress exposures | Reduced with NaCl water exposure equal to 50 and 100 mM and with mechanosensory stress |
dietary interventions | |||
[6] | wild-type, AB strain | 100% replacement of fishmeal with Hermetia illucens meal in the diet | No effect with dietary inclusion equal to 5, 10 and 20% |
[31] | n.a. | dietary tryptophan supplementation | No effect with dietary inclusion equal to 0.2, 0.6, 1.4 and 3% |
[32] | n.a. | 100% replacement of fishmeal with soybean meal in the diet | Reduced in zebrafish fed soybean meal-based diet compared to those fed fishmeal-based diet |
[34] | wild-type, Tübingen strain | dietary succinate (an acidulant, flavoring additive, and antimicrobial agent) supplementation | Increased in zebrafish fed succinate (0.05, 0.1 and 0.15%) |
[35] | wild-type, Tübingen x AB strain | genetically modified feed ingredients inclusion (soya and maize) | Reduced in the groups fed genetically modified soya compared with non-genetically modified soya |
[41] | wild-type | dietary protein level | Reduced as the dietary protein level increased up to 35%, remaining stable from this level onward |
[97] | wild-type, AB strain | 100% replacement of fishmeal with Hermetia illucens meal in the diet | No effect with dietary inclusion equal to 17, 33 and 50% |
genetic manipulations | |||
[28] | wild-type and gh-transgenic zebrafish from the F0104 lineage | growth hormone overexpression | Increased in gh-transgenic zebrafish line |
[30] | wild-type and gh-transgenic zebrafish from the F0104 lineage | growth hormone overexpression | Increased in gh-transgenic zebrafish line |
[46] | insra−/− and insrb−/− (knockout of insulin receptor a and b), and control (line/strain n.a.) | double knockout of insulin receptor a (insra) and b (insrb) | Increased in insra−/− and insrb−/− zebrafish lines |
[56] | wild-type AB strain and homozygous edar mutants | knockout of ectodysplasin-A receptor (edar) | Reduced in homozygous mutants when fed with brine shrimps and Increased in homozygous mutants when fed with dead zebrafish larvae |
[57] | irisin and control (line/strain n.a.) | irisin (a myokine) administration and knockdown of irisin by siRNA | No effect with a single intraperitoneal injection (0.1, 1, 10 and 100 ng/g body weight) Reduced in irisin zebrafish line |
[69] | homozygous sgo1 mutant | shugoshin 1 (sgo1) | Reduced in homozygous mutants |
[73] | heterozygous smyhc1mb17/+, homozygous smyhc1mb1 and wild-type controls (strain n.a.) | knockdown of slow myosin heavy chain 1 (smyhc1) | Reduced in homozygous mutants |
[81] | wild-type, Gaighatta—Nadia—Scientific Hatcheries—TM1 strains | 4 wild-type strains | Increased in Scientific Hatcheries strain compared to Gaighatta and Nadia strains |
[85] | homozygous mthfr mutants and control (line/strain n.a.) | knockdown of methylenetetrahydrofolate reductase (mthfr) and folic acid exposure | Reduced in homozygous mutants at 5 dpf but not at 8 dpf |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Licitra, R.; Fronte, B.; Verri, T.; Marchese, M.; Sangiacomo, C.; Santorelli, F.M. Zebrafish Feed Intake: A Systematic Review for Standardizing Feeding Management in Laboratory Conditions. Biology 2024, 13, 209. https://doi.org/10.3390/biology13040209
Licitra R, Fronte B, Verri T, Marchese M, Sangiacomo C, Santorelli FM. Zebrafish Feed Intake: A Systematic Review for Standardizing Feeding Management in Laboratory Conditions. Biology. 2024; 13(4):209. https://doi.org/10.3390/biology13040209
Chicago/Turabian StyleLicitra, Rosario, Baldassare Fronte, Tiziano Verri, Maria Marchese, Chiara Sangiacomo, and Filippo Maria Santorelli. 2024. "Zebrafish Feed Intake: A Systematic Review for Standardizing Feeding Management in Laboratory Conditions" Biology 13, no. 4: 209. https://doi.org/10.3390/biology13040209
APA StyleLicitra, R., Fronte, B., Verri, T., Marchese, M., Sangiacomo, C., & Santorelli, F. M. (2024). Zebrafish Feed Intake: A Systematic Review for Standardizing Feeding Management in Laboratory Conditions. Biology, 13(4), 209. https://doi.org/10.3390/biology13040209