Immunohistochemical Characterization of Langerhans Cells in the Skin of Three Amphibian Species
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Protocol
2.2. Histology and Immunohistochemistry
2.3. Immunoperoxidase Method
2.4. Confocal Immunofluorescence
2.5. Quantitative Analysis
3. Results
3.1. Histological and Histochemical Description of the Skin
3.2. Immunohistochemistry and Confocal Scanning Laser Microscopy
3.3. Quantitative Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Larsen, E.H.; Ramløv, H. Role of Cutaneous Surface Fluid in Frog Osmoregulation. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2013, 165, 365–370. [Google Scholar] [CrossRef]
- Pessier, A.P. Amphibia. In Pathology of Wildlife and Zoo Animals; Elsevier: Amsterdam, The Netherlands, 2018; pp. 921–951. ISBN 978-0-12-805306-5. [Google Scholar]
- Huang, L.; Li, J.; Anboukaria, H.; Luo, Z.; Zhao, M.; Wu, H. Comparative Transcriptome Analyses of Seven Anurans Reveal Functions and Adaptations of Amphibian Skin. Sci. Rep. 2016, 6, 24069. [Google Scholar] [CrossRef]
- Chai, N. Amphibian Dermatology. Vet. Clin. N. Am. Exot. Anim. Pract. 2023, 26, 425–442. [Google Scholar] [CrossRef]
- Riera Romo, M.; Pérez-Martínez, D.; Castillo Ferrer, C. Innate Immunity in Vertebrates: An Overview. Immunology 2016, 148, 125–139. [Google Scholar] [CrossRef]
- Ruiz, V.L.; Robert, J. The Amphibian Immune System. Phil. Trans. R. Soc. B 2023, 378, 20220123. [Google Scholar] [CrossRef]
- Kindermann, C.; Hero, J.-M. Pigment Cell Distribution in a Rapid Colour Changing Amphibian (Litoria wilcoxii). Zoomorphology 2016, 135, 197–203. [Google Scholar] [CrossRef]
- Haslam, I.S.; Roubos, E.W.; Mangoni, M.L.; Yoshizato, K.; Vaudry, H.; Kloepper, J.E.; Pattwell, D.M.; Maderson, P.F.A.; Paus, R. From Frog Integument to Human Skin: Dermatological Perspectives from Frog Skin Biology. Biol. Rev. 2014, 89, 618–655. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, H.S.; Kumaş, M.; Akat, E.; Yenmiş, M.; Çiçek, K.; Ayaz, D. Histochemical Examinations on Integument of Four Anurans: Bufo Bufo, Bufotes variabilis (Bufonidae), Pelophylax bedriagae (Ranidae), Hyla savignyi (Hylidae) from Turkey. Biharean Biol. 2019, 13, 28–31. [Google Scholar]
- Grogan, L.F.; Robert, J.; Berger, L.; Skerratt, L.F.; Scheele, B.C.; Castley, J.G.; Newell, D.A.; McCallum, H.I. Review of the Amphibian Immune Response to Chytridiomycosis, and Future Directions. Front. Immunol. 2018, 9, 2536. [Google Scholar] [CrossRef] [PubMed]
- de Brito-Gitirana, L.; Azevedo, R.A. Morphology of Bufo Ictericus Integument (Amphibia, Bufonidae). Micron 2005, 36, 532–538. [Google Scholar] [CrossRef] [PubMed]
- Demori, I.; El Rashed, Z.; Corradino, V.; Catalano, A.; Rovegno, L.; Queirolo, L.; Salvidio, S.; Biggi, E.; Zanotti-Russo, M.; Canesi, L. Peptides for Skin Protection and Healing in Amphibians. Molecules 2019, 24, 347. [Google Scholar] [CrossRef] [PubMed]
- Mailho-Fontana, P.L.; Titon, B.; Antoniazzi, M.M.; Gomes, F.R.; Jared, C. Skin and Poison Glands in Toads (Rhinella) and Their Role in Defence and Water Balance. Acta Zool. 2022, 103, 112–128. [Google Scholar] [CrossRef]
- Akat Çömden, E.; Yenmiş, M.; Çakır, B. The Complex Bridge between Aquatic and Terrestrial Life: Skin Changes during Development of Amphibians. J. Dev. Biol. 2023, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Regueira, E.; Dávila, C.; Hermida, G.N. Morphological Changes in Skin Glands During Development in Rhinella Arenarum (Anura: Bufonidae). Anat. Rec. 2016, 299, 141–156. [Google Scholar] [CrossRef] [PubMed]
- Woodhams, D.C.; McCartney, J.; Walke, J.B.; Whetstone, R. The Adaptive Microbiome Hypothesis and Immune Interactions in Amphibian Mucus. Dev. Comp. Immunol. 2023, 145, 104690. [Google Scholar] [CrossRef] [PubMed]
- Jared, C.; Mailho-Fontana, P.L.; Marques-Porto, R.; Sciani, J.M.; Pimenta, D.C.; Brodie, E.D.; Antoniazzi, M.M. Skin Gland Concentrations Adapted to Different Evolutionary Pressures in the Head and Posterior Regions of the Caecilian Siphonops Annulatus. Sci. Rep. 2018, 8, 3576. [Google Scholar] [CrossRef]
- Calhoun, D.M.; Woodhams, D.; Howard, C.; LaFonte, B.E.; Gregory, J.R.; Johnson, P.T.J. Role of Antimicrobial Peptides in Amphibian Defense Against Trematode Infection. EcoHealth 2016, 13, 383–391. [Google Scholar] [CrossRef]
- Ibarra-Vega, R.; Galván-Hernández, A.R.; Salazar-Monge, H.; Zataraín-Palacios, R.; García-Villalvazo, P.E.; Zavalza-Galvez, D.I.; Valdez-Velazquez, L.L.; Jiménez-Vargas, J.M. Antimicrobial Compounds from Skin Secretions of Species That Belong to the Bufonidae Family. Toxins 2023, 15, 145. [Google Scholar] [CrossRef]
- Baccari, G.C.; Pinelli, C.; Santillo, A.; Minucci, S.; Rastogi, R.K. Mast Cells in Nonmammalian Vertebrates: An Overview. Int. Rev. Cell Mol. Biol. 2011, 290, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, C.; Santillo, A.; Baccari, G.C.; Monteforte, R.; Rastogi, R.K. Mast Cells in the Amphibian Brain during Development. J. Anat. 2010, 216, 397–406. [Google Scholar] [CrossRef] [PubMed]
- McMillan, K.A.; Coombs, M.R.P. Examining the Natural Role of Amphibian Antimicrobial Peptide Magainin. Molecules 2020, 25, 5436. [Google Scholar] [CrossRef]
- Varga, J.F.; Bui-Marinos, M.P.; Katzenback, B.A. Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens. Front. Immunol. 2019, 9, 3128. [Google Scholar] [CrossRef]
- Voss, M.; Kotrba, J.; Gaffal, E.; Katsoulis-Dimitriou, K.; Dudeck, A. Mast Cells in the Skin: Defenders of Integrity or Offenders in Inflammation? Int. J. Mol. Sci. 2021, 22, 4589. [Google Scholar] [CrossRef] [PubMed]
- Mayer, W.J.; Irschick, U.M.; Moser, P.; Wurm, M.; Huemer, H.P.; Romani, N.; Irschick, E.U. Characterization of Antigen-Presenting Cells in Fresh and Cultured Human Corneas Using Novel Dendritic Cell Markers. Investig. Ophthalmol. Vis. Sci. 2007, 48, 4459–4467. [Google Scholar] [CrossRef] [PubMed]
- Zanna, M.Y.; Yasmin, A.R.; Omar, A.R.; Arshad, S.S.; Mariatulqabtiah, A.R.; Nur-Fazila, S.H.; Mahiza, M.I.N. Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species. Int. J. Mol. Sci. 2021, 22, 8044. [Google Scholar] [CrossRef]
- Romani, N.; Brunner, P.M.; Stingl, G. Changing Views of the Role of Langerhans Cells. J. Investig. Dermatol. 2012, 132, 872–881. [Google Scholar] [CrossRef] [PubMed]
- West, H.C.; Bennett, C.L. Redefining the Role of Langerhans Cells as Immune Regulators within the Skin. Front. Immunol. 2018, 8, 1941. [Google Scholar] [CrossRef] [PubMed]
- Joffre, O.; Nolte, M.A.; Spörri, R.; Sousa, C.R.E. Inflammatory Signals in Dendritic Cell Activation and the Induction of Adaptive Immunity. Immunol. Rev. 2009, 227, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Farga, J.; Castell, A.; Perez, A.; Rondan, A. Langerhans-like Cells in Amphibian Epidermis. J. Anat. 1990, 172, 39. [Google Scholar]
- Mescher, A.L.; Neff, A.W. Limb Regeneration in Amphibians: Immunological Considerations. Sci. World J. 2006, 6, 1–11. [Google Scholar] [CrossRef]
- Castell-Rodríguez, A.E.; Hernández-Peñaloza, A.; Sampedro-Carrillo, E.A.; Herrera-Enriquez, M.A.; Alvarez-Pérez, S.J.; Rondán-Zarate, A. ATPase and MHC Class II Molecules Co-Expression in Rana Pipiens Dendritic Cells. Dev. Comp. Immunol. 1999, 23, 473–485. [Google Scholar] [CrossRef]
- Figdor, C.G.; Van Kooyk, Y.; Adema, G.J. C-Type Lectin Receptors on Dendritic Cells and Langerhans Cells. Nat. Rev. Immunol. 2002, 2, 77–84. [Google Scholar] [CrossRef]
- Maarifi, G.; Czubala, M.A.; Lagisquet, J.; Ivory, M.O.; Fuchs, K.; Papin, L.; Birchall, J.C.; Nisole, S.; Piguet, V.; Blanchet, F.P. Langerin (CD207) Represents a Novel Interferon-Stimulated Gene in Langerhans Cells. Cell. Mol. Immunol. 2020, 17, 547–549. [Google Scholar] [CrossRef] [PubMed]
- Alesci, A.; Lauriano, E.R.; Aragona, M.; Capillo, G.; Pergolizzi, S. Marking Vertebrates Langerhans Cells, from Fish to Mammals. Acta Histochem. 2020, 122, 151622. [Google Scholar] [CrossRef] [PubMed]
- Pergolizzi, S.; Rizzo, G.; Favaloro, A.; Alesci, A.; Pallio, S.; Melita, G.; Cutroneo, G.; Lauriano, E.R. Expression of VAChT and 5-HT in Ulcerative Colitis Dendritic Cells. Acta Histochem. 2021, 123, 151715. [Google Scholar] [CrossRef] [PubMed]
- Lauriano, E.R.; Pergolizzi, S.; Cascio, P.L.; Kuciel, M.; Zizzo, N.; Guerrera, M.C.; Aragona, M.; Capillo, G. Expression of Langerin/CD207 in Airways, Lung and Associated Lymph Nodes of a Stranded Striped Dolphin (Stenella coeruleoalba). Acta Histochem. 2020, 122, 151471. [Google Scholar] [CrossRef] [PubMed]
- Lauriano, E.R.; Pergolizzi, S.; Aragona, M.; Montalbano, G.; Guerrera, M.C.; Crupi, R.; Faggio, C.; Capillo, G. Intestinal Immunity of Dogfish Scyliorhinus Canicula Spiral Valve: A Histochemical, Immunohistochemical and Confocal Study. Fish Shellfish Immunol. 2019, 87, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Alesci, A.; Capillo, G.; Fumia, A.; Messina, E.; Albano, M.; Aragona, M.; Lo Cascio, P.; Spanò, N.; Pergolizzi, S.; Lauriano, E.R. Confocal Characterization of Intestinal Dendritic Cells from Myxines to Teleosts. Biology 2022, 11, 1045. [Google Scholar] [CrossRef]
- Pergolizzi, S.; Fumia, A.; D’Angelo, R.; Mangano, A.; Lombardo, G.P.; Giliberti, A.; Messina, E.; Alesci, A.; Lauriano, E.R. Expression and Function of Toll-like Receptor 2 in Vertebrate. Acta Histochem. 2023, 125, 152028. [Google Scholar] [CrossRef]
- Bagheri, M.; Zahmatkesh, A. Evolution and Species-Specific Conservation of Toll-like Receptors in Terrestrial Vertebrates. Int. Rev. Immunol. 2018, 37, 217–228. [Google Scholar] [CrossRef]
- Lauriano, E.R.; Faggio, C.; Capillo, G.; Spanò, N.; Kuciel, M.; Aragona, M.; Pergolizzi, S. Immunohistochemical Characterization of Epidermal Dendritic-like Cells in Giant Mudskipper, Periophthalmodon Schlosseri. Fish Shellfish Immunol. 2018, 74, 380–385. [Google Scholar] [CrossRef]
- Mantegazza, A.R.; Guttentag, S.H.; El-Benna, J.; Sasai, M.; Iwasaki, A.; Shen, H.; Laufer, T.M.; Marks, M.S. Adaptor Protein-3 in Dendritic Cells Facilitates Phagosomal Toll-like Receptor Signaling and Antigen Presentation to CD4+ T Cells. Immunity 2012, 36, 782–794. [Google Scholar] [CrossRef]
- Zaccone, D.; Lauriano, E.R.; Capillo, G.; Żuwała, K.; Budzik, K.A.; Kuciel, M.; Zaccone, G. Confocal Imaging of Autonomic Preganglionic Neurons in the Spinal Cord of the Caecilian Typhlonectes Natans (Amphibia: Gymnophiona). Acta Histochem. 2014, 116, 1399–1406. [Google Scholar] [CrossRef]
- Barbeau, T.R.; Lillywhite, H.B. Body Wiping Behaviors Associated with Cutaneous Lipids in Hylid Tree Frogs of Florida. J. Exp. Biol. 2005, 208, 2147–2156. [Google Scholar] [CrossRef]
- Conceição-Silva, F.; Morgado, F.N.; Pinheiro, R.O.; Tacchini-Cottier, F. The Skin Immune Response to Infectious Agents. Front. Immunol. 2022, 12, 810059. [Google Scholar] [CrossRef]
- Rollins-Smith, L.A. The Importance of Antimicrobial Peptides (AMPs) in Amphibian Skin Defense. Dev. Comp. Immunol. 2023, 142, 104657. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Lee, W.; Yang, X.; Zhang, Y. Novel Peptides from Skins of Amphibians Showed Broad-Spectrum Antimicrobial Activities. Chem. Biol. Drug Des. 2016, 87, 419–424. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lai, R. The Chemistry and Biological Activities of Peptides from Amphibian Skin Secretions. Chem. Rev. 2015, 115, 1760–1846. [Google Scholar] [CrossRef] [PubMed]
- Patocka, J.; Nepovimova, E.; Klimova, B.; Wu, Q.; Kuca, K. Antimicrobial Peptides: Amphibian Host Defense Peptides. Curr. Med. Chem. 2019, 26, 5924–5946. [Google Scholar] [CrossRef] [PubMed]
- Moravej, H.; Moravej, Z.; Yazdanparast, M.; Heiat, M.; Mirhosseini, A.; Moosazadeh Moghaddam, M.; Mirnejad, R. Antimicrobial Peptides: Features, Action, and Their Resistance Mechanisms in Bacteria. Microb. Drug Resist. 2018, 24, 747–767. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.T.Y.; Gellatly, S.L.; Hancock, R.E.W. Multifunctional Cationic Host Defence Peptides and Their Clinical Applications. Cell. Mol. Life Sci. 2011, 68, 2161–2176. [Google Scholar] [CrossRef] [PubMed]
- DeBenedictis, C.; Joubeh, S.; Zhang, G.; Barria, M.; Ghohestani, R.F. Immune Functions of the Skin. Clin. Dermatol. 2001, 19, 573–585. [Google Scholar] [CrossRef] [PubMed]
- Hauser, K.A.; Hossainey, M.R.; Gentry, L.K.; Garvey, C.N.; Ranganathan, N.; Kalia, N.; Yaparla, A.; Zelle, M.; Jones, E.J.; Duttargi, A.N. Amphibian Mast Cells: Barriers to Deadly Chytrid Fungus Infections. bioRxiv 2023, 12, RP92168. [Google Scholar]
- Pessier, A.P. Amphibians. In Veterinary Cytology; Sharkey, L.C., Radin, M.J., Seelig, D., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 869–875. ISBN 978-1-119-12570-9. [Google Scholar]
- Hansen, J.D.; Zapata, A.G. Lymphocyte Development in Fish and Amphibians. Immunol. Rev. 1998, 166, 199–220. [Google Scholar] [CrossRef] [PubMed]
- Crivellato, E.; Travan, L.; Ribatti, D. The Phylogenetic Profile of Mast Cells. In Mast Cells: Methods and Protocols; Springer: Berlin/Heidelberg, Germany, 2015; pp. 11–27. [Google Scholar] [CrossRef]
- Marshall, J.S. Mast-Cell Responses to Pathogens. Nat. Rev. Immunol. 2004, 4, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Metz, M.; Siebenhaar, F.; Maurer, M. Mast Cell Functions in the Innate Skin Immune System. Immunobiology 2008, 213, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Stuart, S.N.; Chanson, J.S.; Cox, N.A.; Young, B.E.; Rodrigues, A.S.L.; Fischman, D.L.; Waller, R.W. Status and Trends of Amphibian Declines and Extinctions Worldwide. Science 2004, 306, 1783–1786. [Google Scholar] [CrossRef] [PubMed]
- Igyarto, B.Z.; Kaplan, D.H. The Evolving Function of Langerhans Cells in Adaptive Skin Immunity. Immunol. Cell Biol. 2010, 88, 361–365. [Google Scholar] [CrossRef]
- Doan, T.A.; Forward, T.; Tamburini, B.A.J. Trafficking and Retention of Protein Antigens across Systems and Immune Cell Types. Cell. Mol. Life Sci. 2022, 79, 275. [Google Scholar] [CrossRef]
- Mescher, A.L.; Wolf, W.L.; Moseman, E.A.; Hartman, B.; Harrison, C.; Nguyen, E.; Neff, A.W. Cells of Cutaneous Immunity in Xenopus: Studies during Larval Development and Limb Regeneration. Dev. Comp. Immunol. 2007, 31, 383–393. [Google Scholar] [CrossRef]
- Bacci, G.; Binaglia, F.; Facheris, L.; Finocchiaro, D.V.; Giannetti, F.; Moretti, M.; Ortolani, A.; Petrolino, A.; Reggiannini, R.; Vaccaro, A. The Nefocast Project: A Nowcasting Weather Platform Based on Dual-Frequency Interactive Satellite Terminals. In Proceedings of the 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, QC, Canada, 19–26 August 2017; IEEE: New York, NY, USA; pp. 1–4. [Google Scholar]
- Burggren, W.W.; Warburton, S. Amphibians as Animal Models for Laboratory Research in Physiology. ILAR J. 2007, 48, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Densmore, C.L.; Green, D.E. Diseases of Amphibians. ILAR J. 2007, 48, 235–254. [Google Scholar] [CrossRef]
- Gentz, E.J. Medicine and Surgery of Amphibians. ILAR J. 2007, 48, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A. Compendium of Drugs and Compounds Used in Amphibians. ILAR J. 2007, 48, 297–300. [Google Scholar] [CrossRef]
- Valladeau, J.; Clair-Moninot, V.; Dezutter-Dambuyant, C.; Pin, J.-J.; Kissenpfennig, A.; Mattéi, M.-G.; Ait-Yahia, S.; Bates, E.E.; Malissen, B.; Koch, F. Identification of Mouse Langerin/CD207 in Langerhans Cells and Some Dendritic Cells of Lymphoid Tissues. J. Immunol. 2002, 168, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Lovy, J.; Savidant, G.P.; Speare, D.J.; Wright, G.M. Langerin/CD207 Positive Dendritic-like Cells in the Haemopoietic Tissues of Salmonids. Fish Shellfish Immunol. 2009, 27, 365–368. [Google Scholar] [CrossRef]
- Lauriano, E.R.; Silvestri, G.; Kuciel, M.; Żuwała, K.; Zaccone, D.; Palombieri, D.; Alesci, A.; Pergolizzi, S. Immunohistochemical Localization of Toll-like Receptor 2 in Skin Langerhans’ Cells of Striped Dolphin (Stenella coeruleoalba). Tissue Cell 2014, 46, 113–121. [Google Scholar] [CrossRef]
- Roche, P.A.; Furuta, K. The Ins and Outs of MHC Class II-Mediated Antigen Processing and Presentation. Nat. Rev. Immunol. 2015, 15, 203–216. [Google Scholar] [CrossRef]
- Blackburn, A.T.; Miller, R.K. Modeling Congenital Kidney Diseases in Xenopus Laevis. Dis. Models Mech. 2019, 12, dmm038604. [Google Scholar] [CrossRef]
- Santana, C.J.C.; Magalhães, A.C.M.; dos Santos Júnior, A.C.M.; Ricart, C.A.O.; Lima, B.D.; Álvares, A.d.C.M.; Freitas, S.M.d.; Pires, O.R., Jr.; Fontes, W.; Castro, M.S. Figainin 1, a Novel Amphibian Skin Peptide with Antimicrobial and Antiproliferative Properties. Antibiotics 2020, 9, 625. [Google Scholar] [CrossRef]
- Mangoni, M.L.; Casciaro, B. Development of Antimicrobial Peptides from Amphibians. Antibiotics 2020, 9, 772. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, J.; Hao, X.; Lai, R.; Zhang, Z.-Y. Antimicrobial Peptides: New Hope in the War against Multidrug Resistance. Zool. Res. 2019, 40, 488. [Google Scholar] [CrossRef] [PubMed]
- Carey, C.; Cohen, N.; Rollins-Smith, L. Amphibian Declines: An Immunological Perspective. Dev. Comp. Immunol. 1999, 23, 459–472. [Google Scholar] [CrossRef] [PubMed]
Primary Antibodies | Supplier | Catalog Number | Source | Dilution |
---|---|---|---|---|
MHC class II (Y-Ae) | Santa Cruz biotechnology | sc-32247 | mouse | 1:300 |
TLR-2 (p-Ab) | Active Motif | 40981 | rabbit | 1:200 |
Langerin/CD207 | Santa Cruz biotechnology | sc-271272 | mouse | 1:300 |
Secondary Antibodies | Supplier | Catalog Number | Source | Dilution |
Alexa Fluor 488 donkey anti-mouse IgG (H + L) | Invitrogen | A21202 | donkey | 1:300 |
Alexa Fluor 594 donkey anti-rabbit IgG (H + L) | Invitrogen | A21207 | donkey | 1:300 |
L. catesbeianus | A. means | T. natans | |
---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | |
TLR2+ | 374.56 ± 23.78 | 363.47 ± 21.67 | 342.63 ± 25.74 |
Langerin/CD207+ | 323.25 ± 24.53 | 311.52 ± 23.41 | 312.63 ± 28.91 |
MHCII+ | 366.05 ± 24.73 | 356.28 ± 29.23 | 326.55 ± 22.32 |
TLR2 + Langerin/CD207+ | 314.29 ± 23.40 | 305.27 ± 22.45 | 308.20 ± 28.86 |
TLR2 + MHCII+ | 321.34 ± 21.04 | 317.49 ± 23.78 | 309.71 ± 31.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardo, G.P.; Miller, A.; Aragona, M.; Messina, E.; Fumia, A.; Kuciel, M.; Alesci, A.; Pergolizzi, S.; Lauriano, E.R. Immunohistochemical Characterization of Langerhans Cells in the Skin of Three Amphibian Species. Biology 2024, 13, 210. https://doi.org/10.3390/biology13040210
Lombardo GP, Miller A, Aragona M, Messina E, Fumia A, Kuciel M, Alesci A, Pergolizzi S, Lauriano ER. Immunohistochemical Characterization of Langerhans Cells in the Skin of Three Amphibian Species. Biology. 2024; 13(4):210. https://doi.org/10.3390/biology13040210
Chicago/Turabian StyleLombardo, Giorgia Pia, Anthea Miller, Marialuisa Aragona, Emmanuele Messina, Angelo Fumia, Michał Kuciel, Alessio Alesci, Simona Pergolizzi, and Eugenia Rita Lauriano. 2024. "Immunohistochemical Characterization of Langerhans Cells in the Skin of Three Amphibian Species" Biology 13, no. 4: 210. https://doi.org/10.3390/biology13040210
APA StyleLombardo, G. P., Miller, A., Aragona, M., Messina, E., Fumia, A., Kuciel, M., Alesci, A., Pergolizzi, S., & Lauriano, E. R. (2024). Immunohistochemical Characterization of Langerhans Cells in the Skin of Three Amphibian Species. Biology, 13(4), 210. https://doi.org/10.3390/biology13040210