Auditory Noise Facilitates Lower Visual Reaction Times in Humans
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.1.1. Inclusion Criteria
- Youth: 20–35 years without chronic disease diagnosed and BMI < 28
- All subjects should have normal or corrected to normal vision (6/6 or better) with normal stereo acuity, as measured by the Frisby test (40 s arc or better).
- Normal hearing
- Signature of consent under information
2.1.2. Exclusion Criteria
- Uncorrected severe visual or hearing impairment
- Presence of serious neurological disease or disorder
- Presence of not stabilizing comorbidity
2.2. Measures and Tests
2.2.1. Visual Reaction Task
2.2.2. Crossmodal Stochastic Resonance Interface
2.2.3. Experimental Protocol
2.3. Statistical Analysis
2.3.1. Estimate of the Initial Parameters for the exGaussian Distribution
2.3.2. Optimization of the exGaussian Distribution Parameters
2.3.3. Goodness of the Fit
2.3.4. Refinement of the exGaussian Distribution Parameters
2.3.5. The exGaussian Mean and Standard Deviation
2.3.6. The exGaussian Mean and Standard Deviation Distribution Comparison between the Two Experimental Conditions
3. Results
Visual SRT exGaussian Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silverman, I.W. Simple reaction time: It is not what it used to be. Am. J. Psychol. 2010, 123, 39–50. [Google Scholar] [CrossRef]
- J., J. Some Reaction-Time Studies. Science 1885, 6, 458–459. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, S. Memory-Scanning: Mental Processes Revealed by Reaction-Time Experiments. Am. Sci. 1969, 57, 421–457. [Google Scholar] [PubMed]
- Dye, M.W.; Green, C.S.; Bavelier, D. Increasing speed of processing with action video games. Curr. Dir. Psychol. Sci. 2009, 18, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, C.; Ars, J.F.; Ferrer, S.E. Reaction times as a measure of uncertainty. Psicothema 2008, 20, 43–48. [Google Scholar]
- Christie, L.S.; Luce, R.D. Decision structure and time relations in simple choice behavior. Bull. Math. Biophys. 1956, 18, 89–112. [Google Scholar] [CrossRef]
- Dawson, M.R. Fitting the ex-Gaussian equation to reaction time distributions. Behav. Res. Methods Instrum. Comput. 1988, 20, 54–57. [Google Scholar] [CrossRef]
- Eckner, J.T.; Kutcher, J.S.; Richardson, J.K. Pilot evaluation of a novel clinical test of reaction time in National Collegiate Athletic Association Division I football players. J. Athl. Train. 2010, 45, 327–332. [Google Scholar] [CrossRef]
- Galton, F. Exhibition of instruments (1) for testing perception of differences of tint, and (2) for determining reaction-time. J. Anthropol. Inst. Great Br. Irel. 1890, 19, 27–29. [Google Scholar] [CrossRef]
- Jaśkowski, P. Simple reaction time and perception of temporal order: Dissociations and hypotheses. Percept. Mot. Ski. 1996, 82, 707–730. [Google Scholar] [CrossRef]
- Lachaud, C.M.; Renaud, O. A tutorial for analyzing human reaction times: How to filter data, manage missing values, and choose a statistical model. Appl. Psycholinguist. 2011, 32, 389–416. [Google Scholar] [CrossRef]
- Luce, R.D. Response Times: Their Role in Inferring Elementary Mental Organization; Oxford University Press: New York, NY, USA, 1986. [Google Scholar]
- McGill, W. Stochastic latency mechanisms. In Handbook of Mathematical Psychology; John Wiley & Sons: Hoboken, NJ, USA, 1963; pp. 1–309. [Google Scholar]
- Murray, H.G. Stimulus intensity and reaction time: Evaluation of a decision-theory model. J. Exp. Psychol. 1970, 84, 383. [Google Scholar] [CrossRef]
- Pachella, R.G. The Interpretation of Reaction Time in Information Processing Research; Kantowitz, B., Ed.; Earlbaum Associates: New York, NY, USA, 1974. [Google Scholar]
- Ratcliff, R. Group reaction time distributions and an analysis of distribution statistics. Psychol. Bull. 1979, 86, 446. [Google Scholar] [CrossRef]
- Ratcliff, R.; Murdock, B.B. Retrieval processes in recognition memory. Psychol. Rev. 1976, 83, 190. [Google Scholar] [CrossRef]
- Ratcliff, R.; Tuerlinckx, F. Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability. Psychon. Bull. Rev. 2002, 9, 438–481. [Google Scholar] [CrossRef]
- Savazzi, S.; Marzi, C.A. Speeding up reaction time with invisible stimuli. Curr. Biol. 2002, 12, 403–407. [Google Scholar] [CrossRef]
- Schupp, W.; Schlier, C. The dependence of simple reaction time on temporal patterns of stimuli. Kybernetik 1972, 11, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.L. Psychophysically principled models of visual simple reaction time. Psychol. Rev. 1995, 102, 567–593. [Google Scholar] [CrossRef]
- Ulrich, R.; Miller, J. Information Processing Models Generating Lognormally Distributed Reaction Times. J. Math. Psychol. 1993, 37, 513–525. [Google Scholar] [CrossRef]
- v Fieandt, K. Personal Tempo and Phenomenal Time at Different Age-Levels; University of Helsinki: Helsinki, Finland, 1956. [Google Scholar]
- Welford, A. Choice reaction time: Basic concepts. In Reaction Times; Academic Press: New York, NY, USA, 1980; pp. 73–128. [Google Scholar]
- Woodley, M.A.; te Nijenhuis, J.; Murphy, R. Were the Victorians cleverer than us? The decline in general intelligence estimated from a meta-analysis of the slowing of simple reaction time. Intelligence 2013, 41, 843–850. [Google Scholar] [CrossRef]
- Corbin, C.B.; Pangrazi, R.P.; Franks, B.D. Definitions: Health, Fitness, and Physical Activity; President’s Council on Physical Fitness and Sports Research Digest; 2000; Series 3; Volume 9. Available online: https://eric.ed.gov/?id=ED470696 (accessed on 20 May 2024).
- Brebner, J.M. Introduction: An historical background sketch. In Reaction Times; Academic Press: New York, NY, USA, 1980; pp. 1–23. [Google Scholar]
- Kemp, B.J. Reaction time of young and elderly subjects in relation to perceptual deprivation and signal-on versus signal-off conditions. Dev. Psychol. 1973, 8, 268. [Google Scholar] [CrossRef]
- Marshall, W.; Talbot, S.; Ades, H. Cortical response of the anesthetized cat to gross photic and electrical afferent stimulation. J. Neurophysiol. 1943, 6, 1–15. [Google Scholar] [CrossRef]
- Robinson, E.S. Work of the integrated organism. In A Handbook of General Experimental Psychology; Clark University Press: Worcester, MA, USA, 1934; pp. 571–650. [Google Scholar]
- Sanders, A.F.; Sanders, A. Elements of Human Performance: Reaction Processes and Attention in Human Skill; Psychology Press: New York, NY, USA, 1998. [Google Scholar]
- Saville, C.W.; Shikhare, S.; Iyengar, S.; Daley, D.; Intriligator, J.; Boehm, S.G.; Feige, B.; Klein, C. Is reaction time variability consistent across sensory modalities? Insights from latent variable analysis of single-trial P3b latencies. Biol. Psychol. 2012, 91, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Araki, M.; Choshi, K. Contingent muscular tension during a choice reaction task. Percept. Mot. Ski. 2006, 102, 736–746. [Google Scholar] [CrossRef] [PubMed]
- Broadbent, D.E. Decision and Stress; Academic Press: Oxford, UK, 1971. [Google Scholar]
- Cote, K.A.; Milner, C.E.; Smith, B.A.; Aubin, A.J.; Greason, T.A.; Cuthbert, B.P.; Wiebe, S.; Duffus, S.E. CNS arousal and neurobehavioral performance in a short-term sleep restriction paradigm. J. Sleep Res. 2009, 18, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Davranche, K.; Audiffren, M.; Denjean, A. A distributional analysis of the effect of physical exercise on a choice reaction time task. J. Sports Sci. 2006, 24, 323–329. [Google Scholar] [CrossRef]
- Etnyre, B.; Kinugasa, T. Postcontraction influences on reaction time. Res. Q. Exerc. Sport 2002, 73, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Freeman, G. The facilitative and inhibitory effects of muscular tension upon performance. Am. J. Psychol. 1933, 45, 17–52. [Google Scholar] [CrossRef]
- Kroll, W. Effects of local muscular fatigue due to isotonic and isometric exercise upon fractionated reaction time components. J. Mot. Behav. 1973, 5, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Martinie, M.-A.; Olive, T.; Milland, L. Cognitive dissonance induced by writing a counterattitudinal essay facilitates performance on simple tasks but not on complex tasks that involve working memory. J. Exp. Soc. Psychol. 2010, 46, 587–594. [Google Scholar] [CrossRef]
- Philip, P.; Taillard, J.; Sagaspe, P.; Valtat, C.; Sanchez-Ortuno, M.; Moore, N.; Charles, A.; Bioulac, B. Age, performance and sleep deprivation. J. Sleep Res. 2004, 13, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Richards, H.J.; Hadwin, J.A.; Benson, V.; Wenger, M.J.; Donnelly, N. The influence of anxiety on processing capacity for threat detection. Psychon. Bull. Rev. 2011, 18, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Singleton, W. Deterioration of performance on a short-term perceptual-motor task. In Symposium on Fatigue; H. K. Lewis & Co.: Oxford, UK, 1953; pp. 163–172. [Google Scholar]
- Takahashi, M.; Nakata, A.; Haratani, T.; Ogawa, Y.; Arito, H. Post-lunch nap as a worksite intervention to promote alertness on the job. Ergonomics 2004, 47, 1003–1013. [Google Scholar] [CrossRef] [PubMed]
- VaezMousavi, S.; Barry, R.J.; Clarke, A.R. Individual differences in task-related activation and performance. Physiol. Behav. 2009, 98, 326–330. [Google Scholar] [CrossRef]
- van den Berg, J.; Neely, G. Performance on a simple reaction time task while sleep deprived. Percept. Mot. Ski. 2006, 102, 589–599. [Google Scholar] [CrossRef]
- Welford, A. Fundamentals of Skill; Methuen & Co., Ltd.: London, UK, 1968. [Google Scholar]
- Dassanayake, T.L.; Michie, P.T.; Jones, A.; Carter, G.; Mallard, T.; Whyte, I. Cognitive impairment in patients clinically recovered from central nervous system depressant drug overdose. J. Clin. Psychopharmacol. 2012, 32, 503–510. [Google Scholar] [CrossRef]
- Durlach, P.J.; Edmunds, R.; Howard, L.; Tipper, S.P. A rapid effect of caffeinated beverages on two choice reaction time tasks. Nutr. Neurosci. 2002, 5, 433–442. [Google Scholar] [CrossRef]
- Fillmore, M.T.; Blackburn, J. Compensating for alcohol-induced impairment: Alcohol expectancies and behavioral disinhibition. J. Stud. Alcohol 2002, 63, 237–246. [Google Scholar] [CrossRef]
- Froeliger, B.; Gilbert, D.G.; McClernon, F.J. Effects of nicotine on novelty detection and memory recognition performance: Double-blind, placebo-controlled studies of smokers and nonsmokers. Psychopharmacology 2009, 205, 625–633. [Google Scholar] [CrossRef]
- Hernández, O.H.; Vogel-Sprott, M.; Ke-Aznar, V.I. Alcohol impairs the cognitive component of reaction time to an omitted stimulus: A replication and an extension. J. Stud. Alcohol Drugs 2007, 68, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Kleemeier, R.W.; Rich, T.A.; Justiss, W.A. The effects of alpha-(2-piperidyl) benzhydrol hydrochloride (Meratran) on psychomotor performance in a group of aged males. J. Gerontol. 1956, 11, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Kruisselbrink, L.D.; Martin, K.L.; Megeney, M.; Fowles, J.R.; Murphy, R.J. Physical and psychomotor functioning of females the morning after consuming low to moderate quantities of beer. J. Stud. Alcohol 2006, 67, 416–420. [Google Scholar] [CrossRef] [PubMed]
- Liguori, A.; Robinson, J.H. Caffeine antagonism of alcohol-induced driving impairment. Drug Alcohol Depend. 2001, 63, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Linder, G.N. The effect of caffeine consumption on reaction time. Bull. South Carol. Acad. Sci. 2001, 42–43, Gale Academic OneFile. Available online: https://go.gale.com/ps/i.do?p=AONE&u=anon~a7264525&id=GALE|A80160028&v=2.1&it=r (accessed on 16 August 2024).
- Lorist, M.M.; Snel, J. Caffeine effects on perceptual and motor processes. Electroencephalogr. Clin. Neurophysiol. 1997, 102, 401–413. [Google Scholar] [CrossRef] [PubMed]
- McLellan, T.M.; Kamimori, G.H.; Bell, D.G.; Smith, I.F.; Johnson, D.; Belenky, G. Caffeine maintains vigilance and marksmanship in simulated urban operations with sleep deprivation. Aviat. Space Environ. Med. 2005, 76, 39–45. [Google Scholar] [PubMed]
- Moskowitz, H.; Florentino, D. A Review of the Literature on the Effects of Low Doses of Alcohol on Driving-Related Skills; NHTSA: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- O’Neill, M.; Brown, V.J. Amphetamine and the adenosine A2A antagonist KW-6002 enhance the effects of conditional temporal probability of a stimulus in rats. Behav. Neurosci. 2007, 121, 535. [Google Scholar] [CrossRef] [PubMed]
- Spencer, S.V.; Hawk, L.W.; Richards, J.B.; Shiels, K.; Pelham, W.E.; Waxmonsky, J.G. Stimulant treatment reduces lapses in attention among children with ADHD: The effects of methylphenidate on intra-individual response time distributions. J. Abnorm. Child Psychol. 2009, 37, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Botwinick, J. Cautiousness in advanced age. J. Gerontol. 1966, 21, 347–353. [Google Scholar] [CrossRef] [PubMed]
- Der, G.; Deary, I.J. Age and sex differences in reaction time in adulthood: Results from the United Kingdom Health and Lifestyle Survey. Psychol. Aging 2006, 21, 62. [Google Scholar] [CrossRef] [PubMed]
- Gorus, E.; De Raedt, R.; Lambert, M.; Lemper, J.-C.; Mets, T. Reaction times and performance variability in normal aging, mild cognitive impairment, and Alzheimer’s disease. J. Geriatr. Psychiatry Neurol. 2008, 21, 204–218. [Google Scholar] [CrossRef] [PubMed]
- Hultsch, D.F.; MacDonald, S.W.; Dixon, R.A. Variability in reaction time performance of younger and older adults. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2002, 57, P101–P115. [Google Scholar] [CrossRef]
- Jevas, S.; Yan, J.H. The effect of aging on cognitive function: A preliminary quantitative review. Res. Q. Exerc. Sport 2001, 72, 38–40. [Google Scholar]
- Luchies, C.W.; Schiffman, J.; Richards, L.G.; Thompson, M.R.; Bazuin, D.; DeYoung, A.J. Effects of age, step direction, and reaction condition on the ability to step quickly. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2002, 57, M246–M249. [Google Scholar] [CrossRef]
- MacDonald, S.W.; Nyberg, L.; Sandblom, J.; Fischer, H.; Bäckman, L. Increased response-time variability is associated with reduced inferior parietal activation during episodic recognition in aging. J. Cogn. Neurosci. 2008, 20, 779–786. [Google Scholar] [CrossRef]
- Riddervold, I.S.; Pedersen, G.F.; Andersen, N.T.; Pedersen, A.D.; Andersen, J.B.; Zachariae, R.; Mølhave, L.; Sigsgaard, T.; Kjærgaard, S.K. Cognitive function and symptoms in adults and adolescents in relation to rf radiation from UMTS base stations. Bioelectromagn. J. Bioelectromagn. Soc. Soc. Phys. Regul. Biol. Med. Eur. Bioelectromagn. Assoc. 2008, 29, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Rose, S.A.; Feldman, J.F.; Jankowski, J.J.; Caro, D.M. A longitudinal study of visual expectation and reaction time in the first year of life. Child Dev. 2002, 73, 47–61. [Google Scholar] [CrossRef]
- Van Damme, S.; Crombez, G. Measuring attentional bias to threat in children and adolescents: A matter of speed? J. Behav. Ther. Exp. Psychiatry 2009, 40, 344–351. [Google Scholar] [CrossRef]
- Redfern, M.S.; Müller, M.L.; Jennings, J.R.; Furman, J.M. Attentional dynamics in postural control during perturbations in young and older adults. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2002, 57, B298–B303. [Google Scholar] [CrossRef]
- Whiting, W.L.; Sample, C.H.; Hagan, S.E. Top-down processing modulates older adults’ susceptibility to noise. Aging Neuropsychol. Cogn. 2014, 21, 370–385. [Google Scholar] [CrossRef] [PubMed]
- Hanslmayr, S.; Gross, J.; Klimesch, W.; Shapiro, K.L. The role of alpha oscillations in temporal attention. Brain Res. Rev. 2011, 67, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Lajoie, Y.; Gallagher, S. Predicting falls within the elderly community: Comparison of postural sway, reaction time, the Berg balance scale and the Activities-specific Balance Confidence (ABC) scale for comparing fallers and non-fallers. Arch. Gerontol. Geriatr. 2004, 38, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Myerson, J.; Robertson, S.; Hale, S. Aging and intraindividual variability in performance: Analyses of response time distributions. J. Exp. Anal. Behav. 2007, 88, 319–337. [Google Scholar] [CrossRef] [PubMed]
- Bashore, T.R.; Ridderinkhof, K.R. Older age, traumatic brain injury, and cognitive slowing: Some convergent and divergent findings. Psychol. Bull. 2002, 128, 151. [Google Scholar] [CrossRef] [PubMed]
- Collins, M.W.; Field, M.; Lovell, M.R.; Iverson, G.; Johnston, K.M.; Maroon, J.; Fu, F.H. Relationship between postconcussion headache and neuropsychological test performance in high school athletes. Am. J. Sports Med. 2003, 31, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Kontos, A.P.; Covassin, T.; Elbin, R.; Parker, T. Depression and neurocognitive performance after concussion among male and female high school and collegiate athletes. Arch. Phys. Med. Rehabil. 2012, 93, 1751–1756. [Google Scholar] [CrossRef] [PubMed]
- Luethcke, C.A.; Bryan, C.J.; Morrow, C.E.; Isler, W.C. Comparison of concussive symptoms, cognitive performance, and psychological symptoms between acute blast-versus nonblast-induced mild traumatic brain injury. J. Int. Neuropsychol. Soc. 2011, 17, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.P.; Brice, C.; Leach, A.; Tiley, M.; Williamson, S. Effects of upper respiratory tract illnesses in a working population. Ergonomics 2004, 47, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Levitt, S.; Gutin, B. Multiple Choice Reaction Time and Movement Time during Physical Exertion. Res. Q. Am. Assoc. Health Phys. Educ. Recreat. 1971, 42, 405–410. [Google Scholar] [CrossRef]
- Sjöberg, H. Relations Between Heart Rate, Reaction Speed, and Subjective Effort at Different Work Loads on a Bicycle Ergometer. J. Hum. Stress 1975, 1, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Kashihara, K.; Nakahara, Y. Short-Term Effect of Physical Exercise at Lactate Threshold on Choice Reaction Time. Percept. Mot. Ski. 2005, 100, 275–291. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, H.; Mori, S. Sport-Specific Decision-Making in a Go/Nogo Reaction Task: Difference among Nonathletes and Baseball and Basketball Players. Percept. Mot. Ski. 2008, 106, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Mc Morris, T.; Sproule, J.; Draper, S.; Child, R. Performance of a Psychomotor Skill following Rest, Exercise at the Plasma Epinephrine Threshold and Maximal Intensity Exercise. Percept. Mot. Ski. 2000, 91, 553–562. [Google Scholar] [CrossRef] [PubMed]
- McMorris, T.; Graydon, J. The effect of incremental exercise on cognitive performance. Int. J. Sport Psychol. 2000, 31, 66–81. [Google Scholar]
- Lemmink, K.A.P.M.; Visscher, C. Effect of Intermittent Exercise on Multiple-Choice Reaction Times of Soccer Players. Percept. Mot. Ski. 2005, 100, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Pesce, C.; Tessitore, A.; Casella, R.; Pirritano, M.; Capranica, L. Focusing of visual attention at rest and during physical exercise in soccer players. J. Sports Sci. 2007, 25, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Collardeau, M.; Brisswalter, J.; Audiffren, M. Effects of a Prolonged Run on Simple Reaction Time of Well Trained Runners. Percept. Mot. Ski. 2001, 93, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Lord, S.R.; Matters, B.; St George, R.; Thomas, M.; Bindon, J.; Chan, D.K.; Collings, A.; Haren, L. The effects of water exercise on physical functioning in older people. Australas. J. Ageing 2006, 25, 36–41. [Google Scholar] [CrossRef]
- Snowden, M.; Steinman, L.; Mochan, K.; Grodstein, F.; Prohaska, T.R.; Thurman, D.J.; Brown, D.R.; Laditka, J.N.; Soares, J.; Zweiback, D.J.; et al. Effect of Exercise on Cognitive Performance in Community-Dwelling Older Adults: Review of Intervention Trials and Recommendations for Public Health Practice and Research. J. Am. Geriatr. Soc. 2011, 59, 704–716. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D. Effects of acute bouts of exercise on cognition. Acta Psychol. 2003, 112, 297–324. [Google Scholar] [CrossRef] [PubMed]
- Deleuze, J.; Christiaens, M.; Nuyens, F.; Billieux, J. Shoot at first sight! First person shooter players display reduced reaction time and compromised inhibitory control in comparison to other video game players. Comput. Hum. Behav. 2017, 72, 570–576. [Google Scholar] [CrossRef]
- Dykstra, R.; Koutakis, P.; Hanson, N. Relationship between physical fitness variables and reaction time in eSports Gamers. Int. J. eSports Res. IJER 2021, 1, 1–14. [Google Scholar] [CrossRef]
- Ersin, A.; Tezeren, H.C.; Ozunlu Pekyavas, N.; Asal, B.; Atabey, A.; Diri, A.; Gonen, İ. The Relationship between Reaction Time and Gaming Time in E-Sports Players. Kinesiology 2022, 54, 36–42. [Google Scholar] [CrossRef]
- Richardson, B. Reaction Time Differences in Video Game and Non-Video Game Players. In Proceedings of the Symposium of University Research and Creative Expression (SOURCE), Ellensburg, WA, USA, 15 May 2014; p. 175. [Google Scholar]
- Ziv, G.; Lidor, R.; Levin, O. Reaction time and working memory in gamers and non-gamers. Sci. Rep. 2022, 12, 6798. [Google Scholar] [CrossRef] [PubMed]
- Ziv, G.; Lidor, R.; Levin, O. Reaction time and working memory in middle-aged gamers and non-gamers. Acta Psychol. 2022, 228, 103666. [Google Scholar] [CrossRef] [PubMed]
- DeVocht, J.W.; Vining, R.; Smith, D.L.; Long, C.; Jones, T.; Goertz, C. Effect of chiropractic manipulative therapy on reaction time in special operations forces military personnel: A randomized controlled trial. Trials 2019, 20, 5. [Google Scholar] [CrossRef] [PubMed]
- Lawson, B.D.; Ranes, B.M.; Thompson, L.-B.I. Smooth moves: Shooting performance is related to efficiency of rifle movement. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2016, 60, 1524–1528. [Google Scholar] [CrossRef]
- Meyers, J.E. Long-Term Test–Retest Stability of ANAM in a Large Military Sample. Arch. Clin. Neuropsychol. 2019, 35, 70–74. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, S.M.J.; Shahram, T.; Dehghan, N. Alterations of visual reaction time and short term memory in military radar personnel. Iran. J. Public Health 2013, 42, 428. [Google Scholar] [PubMed]
- Ranes, B.; Lawson, B.; King, M.; Dailey, J. Effects of Rifle Handling, Target Acquisition, and Trigger Control on Simulated Shooting Performance; US Army Aeromedical Research Laboratory: Fort Rucker, AL, USA, 2014. [Google Scholar]
- Russo, M.; Sing, H.; Kendall, A.; Johnson, D.; Santiago, S.; Escolas, S.; Holland, D.; Thorne, D.; Hall, S.; Redmond, D. Visual perception, flight performance, and reaction time impairments in military pilots during 26 hours of continuous wake: Implications for automated workload control systems as fatigue management tools. Res. Technol. Organ. 2005, 27, 1–16. [Google Scholar]
- Vrijkotte, S.; Roelands, B.; Meeusen, R.; Pattyn, N. Sustained military operations and cognitive performance. Aerosp. Med. Hum. Perform. 2016, 87, 718–727. [Google Scholar] [CrossRef] [PubMed]
- SonyCSL. Available online: https://www.sonycsl.co.jp/tokyo/7277/ (accessed on 15 December 2023).
- Human Computer Integration Lab. Available online: https://lab.plopes.org/ (accessed on 15 December 2023).
- Kasahara, S.; Nishida, J.; Lopes, P. Preemptive action: Accelerating human reaction using electrical muscle stimulation without compromising agency. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–15. [Google Scholar]
- Kasahara, S.; Takada, K.; Nishida, J.; Shibata, K.; Shimojo, S.; Lopes, P. Preserving agency during electrical muscle stimulation training speeds up reaction time directly after removing EMS. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Yokohama, Japan, 8–13 May 2021; pp. 1–9. [Google Scholar]
- FITLIGHT. Available online: https://www.fitlighttraining.com/ (accessed on 10 January 2024).
- Appelbaum, L.G.; Schroeder, J.E.; Cain, M.S.; Mitroff, S.R. Improved visual cognition through stroboscopic training. Front. Psychol. 2011, 2, 276. [Google Scholar] [CrossRef] [PubMed]
- Edwards, D.J.; Cortes, M.; Wortman-Jutt, S.; Putrino, D.; Bikson, M.; Thickbroom, G.; Pascual-Leone, A. Transcranial direct current stimulation and sports performance. Front. Hum. Neurosci. 2017, 11, 243. [Google Scholar] [CrossRef] [PubMed]
- Eldredge, N.; Gould, S.J. Punctuated equilibria: An alternative to phyletic gradualism. Models Paleobiol. 1972, 82, 115. [Google Scholar]
- Parisi, G. Nobel lecture: Multiple equilibria. Rev. Mod. Phys. 2023, 95, 030501. [Google Scholar] [CrossRef]
- Do, H. The Organization of Behavior; John Wiley & Sons, Inc.: New York, NY, USA, 1949. [Google Scholar]
- Little, W.A. The existence of persistent states in the brain. Math. Biosci. 1974, 19, 101–120. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, M. Viscous liquids and the glass transition: A potential energy barrier picture. J. Chem. Phys. 1969, 51, 3728–3739. [Google Scholar] [CrossRef]
- Cavagna, A. Supercooled liquids for pedestrians. Phys. Rep. 2009, 476, 51–124. [Google Scholar] [CrossRef]
- Grifoni, M.; Hänggi, P. Coherent and incoherent quantum stochastic resonance. Phys. Rev. Lett. 1996, 76, 1611. [Google Scholar] [CrossRef] [PubMed]
- Stassi, R.; Savasta, S.; Garziano, L.; Spagnolo, B.; Nori, F. Output field-quadrature measurements and squeezing in ultrastrong cavity-QED. New J. Phys. 2016, 18, 123005. [Google Scholar] [CrossRef]
- Valenti, D.; Carollo, A.; Spagnolo, B. Stabilizing effect of driving and dissipation on quantum metastable states. Phys. Rev. A 2018, 97, 042109. [Google Scholar] [CrossRef]
- Stassi, R.; De Liberato, S.; Garziano, L.; Spagnolo, B.; Savasta, S. Quantum control and long-range quantum correlations in dynamical Casimir arrays. Phys. Rev. A 2015, 92, 013830. [Google Scholar] [CrossRef]
- Wagner, T.; Talkner, P.; Bayer, J.C.; Rugeramigabo, E.P.; Hänggi, P.; Haug, R.J. Quantum stochastic resonance in an ac-driven single-electron quantum dot. Nat. Phys. 2019, 15, 330–334. [Google Scholar] [CrossRef]
- Zhu, J.; Nakao, H. Stochastic periodic orbits in fast-slow systems with self-induced stochastic resonance. Phys. Rev. Res. 2021, 3, 033070. [Google Scholar] [CrossRef]
- Dussutour, A.; Beekman, M.; Nicolis, S.C.; Meyer, B. Noise improves collective decision-making by ants in dynamic environments. Proc. R. Soc. B Biol. Sci. 2009, 276, 4353–4361. [Google Scholar] [CrossRef] [PubMed]
- Valenti, D.; Denaro, G.; La Cognata, A.; Spagnolo, B.; Bonanno, A.; Basilone, G.; Mazzola, S.; Zgozi, S.; Aronica, S. Picophytoplankton Dynamics in Noisy Marine Environment. Acta Phys. Pol. B 2012, 43, 1227–1240. [Google Scholar] [CrossRef]
- Gammaitoni, L.; Hänggi, P.; Jung, P.; Marchesoni, F. Stochastic resonance. Rev. Mod. Phys. 1998, 70, 223. [Google Scholar] [CrossRef]
- Wellens, T.; Shatokhin, V.; Buchleitner, A. Stochastic resonance. Rep. Prog. Phys. 2003, 67, 45. [Google Scholar] [CrossRef]
- Moss, F.; Ward, L.M.; Sannita, W.G. Stochastic resonance and sensory information processing: A tutorial and review of application. Clin. Neurophysiol. 2004, 115, 267–281. [Google Scholar] [CrossRef]
- McDonnell, M.D.; Abbott, D. What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput. Biol. 2009, 5, e1000348. [Google Scholar] [CrossRef]
- McDonnell, M.D.; Ward, L.M. The benefits of noise in neural systems: Bridging theory and experiment. Nat. Rev. Neurosci. 2011, 12, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Benzi, R.; Parisi, G.; Sutera, A.; Vulpiani, A. Stochastic resonance in climatic change. Tellus 1982, 34, 10–16. [Google Scholar] [CrossRef]
- Mantegna, R.N.; Spagnolo, B.; Testa, L.; Trapanese, M. Stochastic resonance in magnetic systems described by Preisach hysteresis model. J. Appl. Phys. 2005, 97, 10E519. [Google Scholar] [CrossRef]
- Douglass, J.K.; Wilkens, L.; Pantazelou, E.; Moss, F. Noise enhancement of information transfer in crayfish mechanoreceptors by stochastic resonance. Nature 1993, 365, 337–340. [Google Scholar] [CrossRef]
- Spezia, S.; Curcio, L.; Fiasconaro, A.; Pizzolato, N.; Valenti, D.; Spagnolo, B.; Lo Bue, P.; Peri, E.; Colazza, S. Evidence of stochastic resonance in the mating behavior of Nezara viridula (L.). Eur. Phys. J. B 2008, 65, 453–458. [Google Scholar] [CrossRef]
- Levin, J.E.; Miller, J.P. Broadband neural encoding in the cricket cereal sensory system enhanced by stochastic resonance. Nature 1996, 380, 165–168. [Google Scholar] [CrossRef] [PubMed]
- Matthews, P.; Raul, P.; Ward, L.M.; van Boxtel, J.J. Stochastic Resonance in the Sensory Systems and its Applications in Neural Prosthetics. Clin. Neurophysiol. 2024, 165, 182–200. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.M.; MacLean, S.E.; Kirschner, A. Stochastic resonance modulates neural synchronization within and between cortical sources. PLoS ONE 2010, 5, e14371. [Google Scholar] [CrossRef]
- Hidaka, I.; Nozaki, D.; Yamamoto, Y. Functional stochastic resonance in the human brain: Noise induced sensitization of baroreflex system. Phys. Rev. Lett. 2000, 85, 3740. [Google Scholar] [CrossRef] [PubMed]
- Ushakov, Y.V.; Dubkov, A.; Spagnolo, B. Regularity of spike trains and harmony perception in a model of the auditory system. Phys. Rev. Lett. 2011, 107, 108103. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Kai, S. Noise-induced entrainment and stochastic resonance in human brain waves. Phys. Rev. Lett. 2002, 88, 218101. [Google Scholar] [CrossRef] [PubMed]
- Surazhevsky, I.; Demin, V.; Ilyasov, A.; Emelyanov, A.; Nikiruy, K.; Rylkov, V.; Shchanikov, S.; Bordanov, I.; Gerasimova, S.; Guseinov, D. Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network. Chaos Solitons Fractals 2021, 146, 110890. [Google Scholar] [CrossRef]
- Winterer, G.; Ziller, M.; Dorn, H.; Frick, K.; Mulert, C.; Dahhan, N.; Herrmann, W.; Coppola, R. Cortical activation, signal-to-noise ratio and stochastic resonance during information processing in man. Clin. Neurophysiol. 1999, 110, 1193–1203. [Google Scholar] [CrossRef] [PubMed]
- Ditzinger, T.; Stadler, M.; Strüber, D.; Kelso, J. Noise improves three-dimensional perception: Stochastic resonance and other impacts of noise to the perception of autostereograms. Phys. Rev. E 2000, 62, 2566. [Google Scholar] [CrossRef] [PubMed]
- Usher, M.; Feingold, M. Stochastic resonance in the speed of memory retrieval. Biol. Cybern. 2000, 83, L011–L016. [Google Scholar] [CrossRef] [PubMed]
- Kallman, W.; Isaac, W. Altering arousal in humans by varying ambient sensory conditions. Percept. Mot. Ski. 1977, 44, 19–22. [Google Scholar] [CrossRef] [PubMed]
- Treviño, M.; De la Torre-Valdovinos, B.; Manjarrez, E. Noise improves visual motion discrimination via a stochastic resonance-like phenomenon. Front. Hum. Neurosci. 2016, 10, 572. [Google Scholar] [CrossRef] [PubMed]
- Harrar, V.; Lugo, E.J.; Doti, R.; Faubert, J. Multisensory stochastic facilitation:effect of thresholds and reaction times. Ann. Eye Sci. 2018, 3, AB056. [Google Scholar] [CrossRef]
- Alvar, A.; Francis, A.L. Effects of background noise on autonomic arousal (skin conductance level). JASA Express Lett. 2024, 4, 013601. [Google Scholar] [CrossRef] [PubMed]
- Umbrello, M.; Sorrenti, T.; Mistraletti, G.; Formenti, P.; Chiumello, D.; Terzoni, S. Music therapy reduces stress and anxiety in critically ill patients: A systematic review of randomized clinical trials. Minerva Anestesiol. 2019, 85, 886–898. [Google Scholar] [CrossRef] [PubMed]
- Lugo, E.; Doti, R.; Faubert, J. Auditory Noise Can Facilitate Body’s Peripheral Temperature Switchovers. Int. J. Ambient. Comput. Intell. (IJACI) 2019, 10, 48–62. [Google Scholar] [CrossRef]
- Lugo, E.; Doti, R.; Faubert, J. Ubiquitous crossmodal stochastic resonance in humans: Auditory noise facilitates tactile, visual and proprioceptive sensations. PLoS ONE 2008, 3, e2860. [Google Scholar] [CrossRef] [PubMed]
- Rod, P. Math is Fun. Available online: http://www.mathsisfun.com/index.htm (accessed on 5 May 2023).
- Deary, I.J.; Liewald, D.; Nissan, J. A free, easy-to-use, computer-based simple and four-choice reaction time programme: The Deary-Liewald reaction time task. Behav. Res. Methods 2011, 43, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Sekuler, R.; Blake, R. Perception; McGraw-Hill: New York, NY, USA, 1990. [Google Scholar]
- Milner-Bolotin, M.; Zazkis, R. A Study of Future Physics Teachers’ Knowledge for Teaching: A Case of a Decibel Sound Level Scale. LUMAT Int. J. Math Sci. Technol. Educ. 2021, 9, 336–365. [Google Scholar] [CrossRef]
- Robin, O.; Plante, C. An illustrated tutorial for logarithmic scales and decibels in acoustics. J. Acoust. Soc. Am. 2022, 152, 2880–2892. [Google Scholar] [CrossRef] [PubMed]
- Mira-Iglesias, A.; Navarro-Pardo, E.; Conejero, J.A. Power-law distribution of natural visibility graphs from reaction times series. Symmetry 2019, 11, 563. [Google Scholar] [CrossRef]
- Castro-Palacio, J.C.; Fernández-de-Córdoba, P.; Isidro, J.M.; Sahu, S.; Navarro-Pardo, E. Human reaction times: Linking individual and collective behaviour through physics modeling. Symmetry 2021, 13, 451. [Google Scholar] [CrossRef]
- Dyson, N.A. Chromatographic Integration Methods; Royal Society of Chemistry: Cambridge, UK, 1998. [Google Scholar]
- Olivier, J.; Norberg, M. Positively skewed data: Revisiting the Box-Cox power transformation. Int. J. Psychol. Res. 2010, 3, 69–78. [Google Scholar] [CrossRef]
- Zaiontz, C. Real Statistics Using Excel. Available online: https://real-statistics.com/distribution-fitting/distribution-fitting-via-maximum-likelihood/ (accessed on 15 December 2023).
- Howell, D.C. Statistical Methods for Psychology; Cengage Wadsworth: Belmont, CA, USA, 2010. [Google Scholar]
- Schilling, A.; Sedley, W.; Gerum, R.; Metzner, C.; Tziridis, K.; Maier, A.; Schulze, H.; Zeng, F.-G.; Friston, K.J.; Krauss, P. Predictive coding and stochastic resonance as fundamental principles of auditory phantom perception. Brain 2023, 146, 4809–4825. [Google Scholar] [CrossRef] [PubMed]
- Schilling, A.; Krauss, P. Tinnitus is associated with improved cognitive performance and speech perception–can stochastic resonance explain? Front. Aging Neurosci. 2022, 14, 1073149. [Google Scholar] [CrossRef] [PubMed]
- Paulraj, M.; Subramaniam, K.; Yaccob, S.B.; Adom, A.H.B.; Hema, C. Auditory evoked potential response and hearing loss: A review. Open Biomed. Eng. J. 2015, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.; Lee, S.N. Low-intensity steady background noise enhances pitch fusion across the ears in normal-hearing listeners. Front. Psychol. 2021, 12, 626762. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, H.; Miyaoka, T.; Horiguchi, J.; Yamamoto, Y. Central cross-modal stochastic resonance in human tactile blink reflex. AIP Conf. Proc. 2007, 922, 545–548. [Google Scholar]
- Yasuda, H.; Miyaoka, T.; Horiguchi, J.; Yasuda, A.; Hänggi, P.; Yamamoto, Y. Novel class of neural stochastic resonance and error-free information transfer. Phys. Rev. Lett. 2008, 100, 118103. [Google Scholar] [CrossRef]
- Mizukami, H.; Kakigi, R.; Nakata, H. Effects of stimulus intensity and auditory white noise on human somatosensory cognitive processing: A study using event-related potentials. Exp. Brain Res. 2019, 237, 521–530. [Google Scholar] [CrossRef] [PubMed]
- Ai, L.; Liu, J.; Liu, J. Using auditory noise to enhance the fine-motor of human’s hand due to cross-modal stochastic resonance. In Proceedings of the 2009 2nd International Conference on Biomedical Engineering and Informatics, Tianjin, China, 17–19 October 2009; pp. 1–4. [Google Scholar]
- Manjarrez, E.; Mendez, I.; Martinez, L.; Flores, A.; Mirasso, C.R. Effects of auditory noise on the psychophysical detection of visual signals: Cross-modal stochastic resonance. Neurosci. Lett. 2007, 415, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Cao, G.; Xu, G.; Fang, P.; Cui, G.; Xiao, Y.; Li, G.; Li, M.; Xue, T.; Zhang, Y. Auditory Noise Leads to Increased Visual Brain-Computer Interface Performance: A Cross-Modal Study. Front. Neurosci. 2020, 14, 590963. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Du, G.; Xu, G.; Zhao, X.; Fang, P.; Li, M.; Cao, G.; Li, G.; Xue, T.; Zhang, Y. Performance Evaluation of Visual Noise Imposed Stochastic Resonance Effect on Brain-Computer Interface Application: A Comparison Between Motion-Reversing Simple Ring and Complex Checkerboard Patterns. Front. Neurosci. 2019, 13, 1192. [Google Scholar] [CrossRef] [PubMed]
- Voros, J.L.; Sherman, S.O.; Rise, R.; Kryuchkov, A.; Stine, P.; Anderson, A.P.; Clark, T.K. Galvanic vestibular stimulation produces cross-modal improvements in visual thresholds. Front. Neurosci. 2021, 15, 640984. [Google Scholar] [CrossRef] [PubMed]
- Huidobro, N.; Gutierrez-Gomez, A.; Gutierrez, J.; Zea, I.; Mendez-Balbuena, I.; Flores, A.; Trenado, C.; Manjarrez, E. Augmenting global coherence in EEG signals with binaural or monaural noises. Brain Topogr. 2020, 33, 461–476. [Google Scholar] [CrossRef] [PubMed]
- Yashima, J.; Kusuno, M.; Sugimoto, E.; Sasaki, H. Auditory noise improves balance control by cross-modal stochastic resonance. Heliyon 2021, 7, e08299. [Google Scholar] [CrossRef] [PubMed]
- Rogan, S.; Radlinger, L.; Hilfiker, R.; Schmidtbleicher, D.; De Bie, R.A.; De Bruin, E.D. Feasibility and effects of applying stochastic resonance whole-body vibration on untrained elderly: A randomized crossover pilot study. BMC Geriatr. 2015, 15, 25. [Google Scholar] [CrossRef] [PubMed]
- White, O.; Babič, J.; Trenado, C.; Johannsen, L.; Goswami, N. The promise of stochastic resonance in falls prevention. Front. Physiol. 2019, 9, 1865. [Google Scholar] [CrossRef] [PubMed]
- Rogan, S.; Schmidtbleicher, D.; Radlinger, L. Immediate effects after stochastic resonance whole-body vibration on physical performance on frail elderly for skilling-up training: A blind cross-over randomised pilot study. Aging Clin. Exp. Res. 2014, 26, 519–527. [Google Scholar] [CrossRef]
- van der Groen, O.; Wenderoth, N. Transcranial random noise stimulation of visual cortex: Stochastic resonance enhances central mechanisms of perception. J. Neurosci. 2016, 36, 5289–5298. [Google Scholar] [CrossRef] [PubMed]
- van der Groen, O.; Wenderoth, N. Random noise stimulation of the cortex: Stochastic resonance enhances central mechanisms of perception. Brain Stimul. Basic Transl. Clin. Res. Neuromodul. 2017, 10, e4. [Google Scholar] [CrossRef]
- Angwin, A.J.; Wilson, W.J.; Arnott, W.L.; Signorini, A.; Barry, R.J.; Copland, D.A. White noise enhances new-word learning in healthy adults. Sci. Rep. 2017, 7, 13045. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.-Y. The effects of white noise on attentional performance and on-task behaviors in preschoolers with ADHD. Int. J. Environ. Res. Public Health 2022, 19, 15391. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Liu, B.; Liu, Z.; Gao, X. EEG gamma-band activity during audiovisual speech comprehension in different noise environments. Cogn. Neurodyn. 2015, 9, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Sayed Daud, S.N.S.; Sudirman, R. Effect of auditory noise circumstance on visual images encoding based electroencephalography analysis. Int. J. Healthc. Manag. 2024, 17, 483–497. [Google Scholar] [CrossRef]
- Krauss, P.; Tziridis, K.; Schilling, A.; Schulze, H. Cross-modal stochastic resonance as a universal principle to enhance sensory processing. Front. Neurosci. 2018, 12, 578. [Google Scholar] [CrossRef] [PubMed]
- Hidaka, S.; Ide, M. Sound can suppress visual perception. Sci. Rep. 2015, 5, 10483. [Google Scholar] [CrossRef] [PubMed]
- Hülsdünker, T.; Riedel, D.; Käsbauer, H.; Ruhnow, D.; Mierau, A. Auditory information accelerates the Visuomotor reaction speed of Elite Badminton players in Multisensory environments. Front. Hum. Neurosci. 2021, 15, 779343. [Google Scholar] [CrossRef] [PubMed]
- Steriade, M. Arousal—Revisiting the Reticular Activating System. Science 1996, 272, 225. [Google Scholar] [CrossRef] [PubMed]
- Van der Werf, Y.D.; Witter, M.P.; Groenewegen, H.J. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. Brain Res. Rev. 2002, 39, 107–140. [Google Scholar] [CrossRef] [PubMed]
- Arent, S.M.; Landers, D.M. Arousal, anxiety, and performance: A reexamination of the inverted-U hypothesis. Res. Q. Exerc. Sport 2003, 74, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.-i.; Kitamura, T.; Ando, Y. Annoyance of noise stimuli in relation to the spatial factors extracted from the interaural cross-correlation function. J. Sound Vib. 2004, 277, 511–521. [Google Scholar] [CrossRef]
Variable | ||
---|---|---|
Sex | Female | 53 |
Male | 48 | |
Age (years) | Mean | 31 |
SD | 3 | |
Education | Degree (college) | 100% |
Degree (college) | Single | 96 |
Married | 4 | |
Living in common law | 1 | |
Hours of Sleep (hr) | Mean | 5 |
SD | 1 | |
Comorbidities | Hypothyroidism | 4 |
Depression | 3 | |
Asthma | 3 | |
Dyslipidemia | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Pacheco, A.; Rodríguez Morales, F.Y.; Misaghian, K.; Faubert, J.; Lugo Arce, J.E. Auditory Noise Facilitates Lower Visual Reaction Times in Humans. Biology 2024, 13, 631. https://doi.org/10.3390/biology13080631
Pérez-Pacheco A, Rodríguez Morales FY, Misaghian K, Faubert J, Lugo Arce JE. Auditory Noise Facilitates Lower Visual Reaction Times in Humans. Biology. 2024; 13(8):631. https://doi.org/10.3390/biology13080631
Chicago/Turabian StylePérez-Pacheco, Argelia, Fernando Yael Rodríguez Morales, Khashayar Misaghian, Jocelyn Faubert, and Jesus Eduardo Lugo Arce. 2024. "Auditory Noise Facilitates Lower Visual Reaction Times in Humans" Biology 13, no. 8: 631. https://doi.org/10.3390/biology13080631
APA StylePérez-Pacheco, A., Rodríguez Morales, F. Y., Misaghian, K., Faubert, J., & Lugo Arce, J. E. (2024). Auditory Noise Facilitates Lower Visual Reaction Times in Humans. Biology, 13(8), 631. https://doi.org/10.3390/biology13080631