Tumorspheres as In Vitro Model for Identifying Predictive Chemoresistance and Tumor Aggressiveness Biomarkers in Breast and Colorectal Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Gene Set Enrichment Analysis of Responders Versus Non-Responders Breast Cancer and Colorectal Cancer Patients
2.3. Reagents
2.4. Cell Culture
2.5. Tumorsphere Generation
2.6. RNA Isolation and RT-qPCR
2.7. Cell Viability Assay
2.8. Tumorsphere Formation Efficiency and Size Determination
2.9. ROC Analysis
2.10. Statistical Analysis
3. Results
3.1. Identification of Main Chemotherapy-Resistance Pathways Involved in Breast and Colorectal Cancer
3.2. Tumorsphere Generation Enhances Cytokine and Chemokine Pathways
3.3. Chemotherapy Treatment Shows Less Effectiveness in Breast and Colorectal Cancer Tumorspheres
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dagogo-Jack, I.; Shaw, A.T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 2017, 15, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- Hibino, S.; Kawazoe, T.; Kasahara, H.; Itoh, S.; Ishimoto, T.; Sakata-Yanagimoto, M.; Taniguchi, K. Inflammation-Induced Tumorigenesis and Metastasis. Int. J. Mol. Sci. 2021, 22, 5421. [Google Scholar] [CrossRef] [PubMed]
- Alfaro, C.; Sanmamed, M.F.; Rodríguez-Ruiz, M.E.; Teijeira, Á.; Oñate, C.; González, Á.; Ponz, M.; Schalper, K.A.; Pérez-Gracia, J.L.; Melero, I. Interleukin-8 in Cancer Pathogenesis, Treatment and Follow-Up. Cancer Treat. Rev. 2017, 60, 24–31. [Google Scholar] [CrossRef]
- De Simone, V.; Franzè, E.; Ronchetti, G.; Colantoni, A.; Fantini, M.C.; Di Fusco, D.; Sica, G.S.; Sileri, P.; Macdonald, T.T.; Pallone, F.; et al. Th17-Type Cytokines, IL-6 and TNF-α Synergistically Activate STAT3 and NF-KB to Promote Colorectal Cancer Cell Growth. Oncogene 2015, 34, 3493–3503. [Google Scholar] [CrossRef]
- Wahli, W. A Gut Feeling of the PXR, PPAR and NF-KappaB Connection. J. Intern. Med. 2008, 263, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Kang, Y.; Chen, L.; Wang, H.; Liu, J.; Zeng, S.; Yu, L. The Drug-Resistance Mechanisms of Five Platinum-Based Antitumor Agents. Front. Pharmacol. 2020, 11, 343. [Google Scholar] [CrossRef]
- Sazonova, E.V.; Kopeina, G.S.; Imyanitov, E.N.; Zhivotovsky, B. Platinum drugs and taxanes: Can we overcome resistance? Cell Death Discov. 2021, 7, 155. [Google Scholar] [CrossRef]
- Lu, S.; Li, Y.; Zhu, C.; Wang, W.; Zhou, Y. Managing Cancer Drug Resistance from the Perspective of Inflammation. J. Oncol. 2022, 2022, 3426407. [Google Scholar] [CrossRef]
- Reyes, M.E.; de La Fuente, M.; Hermoso, M.; Ili, C.G.; Brebi, P. Role of CC Chemokines Subfamily in the Platinum Drugs Resistance Promotion in Cancer. Front. Immunol. 2020, 11, 533580. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Zhu, Y.; Zhang, C.; Yang, X.; Gao, Y.; Li, M.; Yang, H.; Liu, T.; Tang, H. Chronic inflammation, cancer development and immunotherapy. Front. Pharmacol. 2022, 13, 1040163. [Google Scholar] [CrossRef]
- Weiswald, L.B.; Bellet, D.; Dangles-Marie, V. Spherical Cancer Models in Tumor Biology. Neoplasia 2015, 17, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.S.; Barros, A.S.; Costa, E.C.; Moreira, A.F.; Correia, I.J. 3D tumor spheroids as in vitro models to mimic in vivo human solid tumors resistance to therapeutic drugs. Biotechnol. Bioeng. 2019, 116, 206–226. [Google Scholar] [CrossRef]
- Shehzad, A.; Ravinayagam, V.; AlRumaih, H.; Aljafary, M.; Almohazey, D.; Almofty, S.; Al-Rashid, N.A.; Al-Suhaimi, E.A. Application of Three-dimensional (3D) Tumor Cell Culture Systems and Mechanism of Drug Resistance. Curr. Pharm. Des. 2019, 25, 3599–3607. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Alexander, C.M. Tumorsphere assay provides more accurate prediction of in vivo responses to chemotherapeutics. Biotechnol. Lett. 2014, 36, 481. [Google Scholar] [CrossRef] [PubMed]
- Torrens-Mas, M.; Hernández-López, R.; Pons, D.G.; Roca, P.; Oliver, J.; Sastre-Serra, J. Sirtuin 3 silencing impairs mitochondrial biogenesis and metabolism in colon cancer cells. Am. J. Physiol.-Cell Physiol. 2019, 317, C398–C404. [Google Scholar] [CrossRef]
- Martinez-Bernabe, T.; Sastre-Serra, J.; Ciobu, N.; Oliver, J.; Pons, D.G.; Roca, P. Estrogen Receptor Beta (ERβ) Maintains Mitochondrial Network Regulating Invasiveness in an Obesity-Related Inflammation Condition in Breast Cancer. Antioxidants 2021, 10, 1371. [Google Scholar] [CrossRef]
- Fekete, J.T.; Győrffy, B. ROCplot.org: Validating predictive biomarkers of chemotherapy/hormonal therapy/anti-HER2 therapy using transcriptomic data of 3,104 breast cancer patients. Int. J. Cancer 2019, 145, 3140–3151. [Google Scholar] [CrossRef]
- Riggio, A.I.; Varley, K.E.; Welm, A.L. The lingering mysteries of metastatic recurrence in breast cancer. Br. J. Cancer 2020, 124, 13–26. [Google Scholar] [CrossRef]
- Nors, J.; Iversen, L.H.; Erichsen, R.; Gotschalck, K.A.; Andersen, C.L. Incidence of Recurrence and Time to Recurrence in Stage I to III Colorectal Cancer: A Nationwide Danish Cohort Study. JAMA Oncol. 2024, 10, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef] [PubMed]
- Jones, V.S.; Huang, R.Y.; Chen, L.P.; Chen, Z.S.; Fu, L.; Huang, R.P. Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim. Biophys. Acta-Rev. Cancer 2016, 1865, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Kumari, N.; Dwarakanath, B.S.; Das, A.; Bhatt, A.N. Role of interleukin-6 in cancer progression and therapeutic resistance. Tumor Biol. 2016, 37, 11553–11572. [Google Scholar] [CrossRef]
- Waugh, D.J.J.; Wilson, C. The Interleukin-8 Pathway in Cancer. Clin. Cancer Res. 2008, 14, 6735–6741. [Google Scholar] [CrossRef]
- Hu, F.; Song, D.; Yan, Y.; Huang, C.; Shen, C.; Lan, J.; Chen, Y.; Liu, A.; Wu, Q.; Sun, L.; et al. IL-6 regulates autophagy and chemotherapy resistance by promoting BECN1 phosphorylation. Nat. Commun. 2021, 12, 3651. [Google Scholar] [CrossRef]
- Bent, E.H.; Millán-Barea, L.R.; Zhuang, I.; Goulet, D.R.; Fröse, J.; Hemann, M.T. Microenvironmental IL-6 inhibits anti-cancer immune responses generated by cytotoxic chemotherapy. Nat. Commun. 2021, 12, 6218. [Google Scholar] [CrossRef]
- David, J.M.; Dominguez, C.; Hamilton, D.H.; Palena, C. The IL-8/IL-8R Axis: A Double Agent in Tumor Immune Resistance. Vaccines 2016, 4, 22. [Google Scholar] [CrossRef]
- Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef]
- André, T.; Boni, C.; Navarro, M.; Tabernero, J.; Hickish, T.; Topham, C.; Bonetti, A.; Clingan, P.; Bridgewater, J.; Rivera, F.; et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J. Clin. Oncol. 2009, 27, 3109–3116. [Google Scholar] [CrossRef]
KEGG | Breast Cancer (GSE25066) | Colorectal Cancer (GSE72970) | ||||
---|---|---|---|---|---|---|
Size | Edges | Genes | Size | Edges | Genes | |
Chemokine signaling pathway | 171 | 67 | RHOA, RAP1B, GNAI2, GRK2, GNG10, GSK3A, RAP1A, LYN, PRKACB, GRK6, GRK6, CXCL8, ARRB2, ADCY7, PIK3CD, CCL4, CXCL10, CCL5, NCF1, CCR1, CCL3L1, CCL3L3, CCL3, CX3CR1, CXCR5, VAV1, SHC3, CCR7, XCL1, PIK3CG, PF4, ADCY8, GNG7, CXCR6, CCR2, CCR5, CXCR2, CXCR1, GNG5, PRKACG, CCR9, CCR2, CCL22, CCL17, HCK, CCR8, CCL7, CCR3, IKBKB, PRKCB, CCL11, CCL15, LYN, GRK6, IKBKB, CXCL11, PIK3CD, ITK, CXCR6, CXCL8, GRK6, CXCR4, DOCK2, RAC2, CCL8, NCF1, PPBP, RASGRP2, XCL2, XCL1, CXCL5, CCL2, CXCR5, CXCR4, ARRB1, CCL24, IKBKG, GRK2, WAS, GSK3A, STAT1 | 184 | 52 | CXCL8, GNAI1, CCL26, CXCR2, CXCL1, CCL20, CCL8, CCL28, PF4, CCL3L3, PPBP, CXCL6, CXCL5, GRK3, FGR, CCR10, CXCL3, CCL4, ELMO1, HCK, GNAI2, NRAS, NFKB1, RAC2, PAK1, CCR1, CXCL2, NCF1, PRKCD, MAPK1, AKT1, CCR3, GNB1, MAP2K1, PIK3CG, GNG10, CXCL9, RAF1, GNAI3, CX3CL1, CCR2, PRKACB, LYN, CXCR4, GRK5, KRAS, GNG2, CCL13, GNG11, STAT3, CCL25, GRB2 |
Cytokine-cytokine receptor interaction | 257 | 69 | PPBP, IL1R2, CXCR2, CXCR1, TNFRSF10C, CCR1, PF4, TNFRSF10C, IL18, IL4, CCR3, IL2RA, IL24, LTB, ACKR4, IL16, IL32, CCR1, TNFRSF25, CCR7, CCL3L1, CCL3L3, CCL3, CCL8, CX3CR1, CD4, TNFSF8, IL13RA2, XCL2, XCL1, CXCL11, IL36RN, CD27, IL1R2, IL21R, IL7R, XCL2, XCL1, TNFRSF25, CSF2RA, IL21R, TNFRSF25, CCL2, TNFRSF10C,IL1B, CRLF2, IL11, CSF2RB, CCL4, IL2RG, CXCR4, CCL17, CD70, TNFSF12, CSF3R, TNFRSF17, TNFRSF11A, CXCR5, IL1RAP, IL16, IL11RA, CCL5, TNFSF18, CCL15, IL9R, CCL7, IL10RA, TNFRSF14, LTA, CCR5, TNFRSF1B, IL21, TNFSF14, CXCR5, BMP3, IL10, CSF3, IL37, CCL5, IL18RAP, CXCL8, IL11, TNFRSF25, IL1B, IL4, CXCR4, IL9R, CXCR4, XCL1, IL1RAP, CSF2RA, IL2RA | 284 | 58 | CXCL8, IL1B, CCL26, CXCR2, CSF2RB, CXCL1, IL24, CCL20, CCL8, CCL28, IL13RA2, PF4, CCL3L3, TNFSF9, TNFRSF11A, FAS, PPBP, IL13RA1, TNFRSF10D, IL6, IL17RB, CXCL6, TNFRSF17, CXCL5, IL18R1, INHBB, CCR10, CXCL3, CCL4, TNFRSF10A, TNFRSF21, CSF3R, IL15, TNFRSF18, CD27, BMP4, OSM, TNFRSF11B, IFNGR2, BMP2, CCR1, CXCL2, GHR, IL1R2, CCR3, CXCL17, ACKR4, TNFSF18, IL7R, IL18, TNFRSF10B, PRL, IL2RA, CXCL9, CX3CL1, CCR2, TGFBR2, IL10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Bernabe, T.; Morla-Barcelo, P.M.; Melguizo-Salom, L.; Munar-Gelabert, M.; Maroto-Blasco, A.; Torrens-Mas, M.; Oliver, J.; Roca, P.; Nadal-Serrano, M.; Pons, D.G.; et al. Tumorspheres as In Vitro Model for Identifying Predictive Chemoresistance and Tumor Aggressiveness Biomarkers in Breast and Colorectal Cancer. Biology 2024, 13, 724. https://doi.org/10.3390/biology13090724
Martinez-Bernabe T, Morla-Barcelo PM, Melguizo-Salom L, Munar-Gelabert M, Maroto-Blasco A, Torrens-Mas M, Oliver J, Roca P, Nadal-Serrano M, Pons DG, et al. Tumorspheres as In Vitro Model for Identifying Predictive Chemoresistance and Tumor Aggressiveness Biomarkers in Breast and Colorectal Cancer. Biology. 2024; 13(9):724. https://doi.org/10.3390/biology13090724
Chicago/Turabian StyleMartinez-Bernabe, Toni, Pere Miquel Morla-Barcelo, Lucas Melguizo-Salom, Margalida Munar-Gelabert, Alba Maroto-Blasco, Margalida Torrens-Mas, Jordi Oliver, Pilar Roca, Mercedes Nadal-Serrano, Daniel Gabriel Pons, and et al. 2024. "Tumorspheres as In Vitro Model for Identifying Predictive Chemoresistance and Tumor Aggressiveness Biomarkers in Breast and Colorectal Cancer" Biology 13, no. 9: 724. https://doi.org/10.3390/biology13090724
APA StyleMartinez-Bernabe, T., Morla-Barcelo, P. M., Melguizo-Salom, L., Munar-Gelabert, M., Maroto-Blasco, A., Torrens-Mas, M., Oliver, J., Roca, P., Nadal-Serrano, M., Pons, D. G., & Sastre-Serra, J. (2024). Tumorspheres as In Vitro Model for Identifying Predictive Chemoresistance and Tumor Aggressiveness Biomarkers in Breast and Colorectal Cancer. Biology, 13(9), 724. https://doi.org/10.3390/biology13090724